arXiv:2501.06894v3 [cs.SE] 6 Jun 2025

Analyzing the Evolution and Maintenance of
Quantum Software Repositories

Krishna Upadhyay*, Vinaik Chhetri*, A.B. Siddiquef, Umar Farooq*
* Louisiana State University, t University of Kentucky
Email: kupadh4 @lsu.edu, vchhet2 @lsu.edu, siddique@cs.uky.edu, ufarooq@lsu.edu

Abstract—Quantum computing is rapidly advancing, but quan-
tum software development faces significant challenges, including
a steep learning curve, high hardware error rates, and a lack of
mature engineering practices. This study conducts a large-scale
mining analysis of over 21,000 GitHub repositories, containing 1.2
million commits from more than 10,000 developers, to examine
the evolution and maintenance of quantum software. We analyze
repository growth, programming language and framework adop-
tion, and contributor trends, revealing a 200% increase in repos-
itories and a 150% rise in contributors since 2017. Additionally,
we investigate software development and maintenance practices,
showing that perfective commits dominate (51.76 %), while the
low occurrence of corrective commits (18.54 %) indicates potential
gaps in bug resolution. Furthermore, 34% of reported issues are
quantum-specific, highlighting the need for specialized debugging
tools beyond conventional software engineering approaches. This
study provides empirical insights into the software engineering
challenges of quantum computing, offering recommendations to
improve development workflows, tooling, and documentation. We
are also open-sourcing our dataset to support further analysis
by the community and to guide future research and tool de-
velopment for quantum computing. The dataset is available at:
https://github.com/Kkriss-u/QRepoAnalysis-Paper.

Index Terms—Quantum Software Engineering, Software
Repositories, Software Mining, Software Evolution, Software
Maintenance.

I. INTRODUCTION

Quantum computing has the potential to transform in-
dustries by solving problems that are currently beyond the
capabilities of classical computers. Quantum computers can
perform calculations exponentially faster in certain applica-
tions using quantum mechanics and facilitate breakthroughs
in many fields such as cryptography, material science, and
optimization. Shor’s algorithm threatens modern encryption
by efficiently factoring large integers [45], while Grover’s
algorithm accelerates unstructured database searches [25]. The
economic impact is expected to be significant, with projections
suggesting that the global quantum computing market could
surpass $125 billion by 2030 [46]. This potential has driven
major investments, such as the $1.2 billion U.S. National
Quantum Initiative [1], along with contributions from industry
including IBM, Google, and Microsoft [43]. However, quan-
tum software development faces unique challenges compared
to classical computing, such as the probabilistic nature of
quantum operations, high error rates in hardware, and a steep
learning curve for developers [26].

Despite rapid advancements in quantum hardware, quan-
tum software development remains challenging and underde-

veloped. Frameworks like Qiskit [2] and Cirq [4] are still
maturing and lack the robustness of classical software ecosys-
tems [2], [18]. Developers face a steep learning curve due to
the complexity of quantum models, the probabilistic nature
of computations, and the need for a strong grasp of quantum
mechanics [17], [32]. The field also suffers from a lack of
standardized tools, debugging environments, and educational
resources, which collectively hinder progress [26]. These chal-
lenges highlight the need for analyzing real-world repositories
to better understand current quantum programming practices
and identify key areas for improvement.

State-of-the-Art. Prior research on quantum software has
largely concentrated on small-scale or qualitative analyses of
developer challenges. Paltenghi and Pradel [38] examined 18
quantum projects to identify recurring bug patterns, while
Zhao et al. [49] analyzed 36 bugs in Qiskit, highlighting key
debugging challenges. In a separate study, Zhao and others
[48] explored 391 quantum machine learning issues across 22
projects. More recently, Chen et al. [16] investigated quantum-
specific code smells in 15 programs. Other studies have
analyzed discussions from Stack Exchange, GitHub issues,
and Xanadu Discussion Forums [19], [47], offering qualitative
insights into quantum software engineering. However, these
works are either constrained by their limited dataset size or
focus on specific frameworks, leaving a gap in understanding
the broader landscape of quantum software development.
Overview of This Work. Unlike prior work, this work
conducts a systematic mining analysis of over 21 thousand
GitHub repositories, which contain more than 1.2 million
commits contributed by more than 10,000 unique developers.
By leveraging this large dataset, we extract broad trends, ana-
lyze software activity patterns, and identify key challenges in
quantum computing development. This data-driven approach
provides a comprehensive perspective on the state of quan-
tum software and offers previously unexplored quantitative
insights. Our analysis reveals a 200% increase in the number
of repositories and a 150% rise in contributors since 2017,
indicating the rapid expansion of quantum computing thanks
to the availability of frameworks like Qiskit [2], Cirq [4], and
PennyLane [6]. We further examine trends in programming
languages and frameworks and find out that Python and Qiskit
dominate but that there is also a shift toward specialized tools.
Additionally, we discover that quantum computing projects
are focused on simulation, machine learning, and algorithm
development, reinforcing the field’s evolving priorities and the

https://github.com/kriss-u/QRepoAnalysis-Paper
https://arxiv.org/abs/2501.06894v3

need for robust infrastructure and quantum-specific tools.

While analyzing the state of maintenance, we examine
commit patterns and note an increase in both commit volume
and size over time, which reflects growing project complexity
and heightened developer engagement. A deeper analysis
of reported issues reveals that over 34% of the issues are
specific to quantum computing. Furthermore, our analysis of
commits identifies that perfective commits, aimed at refining
functionality, are the most common, while fewer corrective
commits suggest areas for improvement in bug resolution. Last
but not least, we categorize repositories by activity levels and
demonstrate that high-activity repositories typically feature
frequent updates, larger codebases, and greater community
involvement, in contrast to low-activity projects, which exhibit
sporadic updates.

Our findings highlight challenges and opportunities in quan-
tum software engineering, emphasizing the need for improved
development workflows, enhanced debugging tools, and more
structured maintenance practices. The dominance of perfective
commits over corrective commits suggests a gap in bug res-
olution, indicating that better issue-tracking mechanisms and
automated testing frameworks could strengthen software relia-
bility. The high proportion of quantum-specific issues indicates
the necessity for specialized tooling, such as domain-aware
debuggers and enhanced simulators, to support developers in
tackling the unique complexities of quantum programming.
Moreover, the disparity between high- and low-activity repos-
itories suggests that community-driven initiatives, improved
documentation, and more accessible learning resources could
help sustain engagement in quantum software projects.

In summary, this work establishes a solid foundation to drive
targeted advancements in quantum software and to promote
sustained growth and technical progress. Through an in-depth
analysis of development patterns, community structure, and
maintenance practices, we provide actionable insights for
enhancing quantum programming tools, documentation, and
community resources. We are open-sourcing our dataset to
facilitate additional analysis by the community to guide future
research and inspire the development of specialized tools for
the unique demands of quantum computing.

II. BACKGROUND AND RELATED WORK
A. Quantum Software Development

Quantum software encompasses quantum platforms that
provide the tools and environments developers need to write
and execute quantum programs. Developers use these plat-
forms to create algorithms that run on quantum hardware
or simulators, bridging theoretical quantum concepts with
practical applications.

Quantum platforms generally have three main components:
a programming language, a compiler, and an execution envi-
ronment. Quantum programming languages include both API-
based libraries and stand-alone languages. For instance, Qiskit
provides quantum programming abstractions as a Python li-
brary, making it accessible within a well-known host lan-
guage [28]. In contrast, other languages, such as Q# [36],

Silq [11], and Quipper [23], are stand-alone languages specif-
ically designed for quantum programming, offering dedicated
syntax and semantics to better align with quantum computing
paradigms. These languages help developers create complex
quantum operations through high-level abstractions like qubits,
gates, and circuits. The compiler component translates high-
level quantum code into low-level instructions optimized for
execution on quantum hardware, often using intermediate
representations like QASM [12]. This process standardizes
translation, applies optimizations, and reduces error-prone
operations, which is crucial given the sensitivity of quantum
systems to noise. Finally, the execution environment supports
running quantum programs on either actual quantum devices
or simulators that emulate quantum conditions. Simulators are
especially useful during development, as they allow testing un-
der controlled conditions with noise models that approximate
real hardware behavior [21].

B. Related Work

Mining software repositories research has produced a vast
array of studies across different domains, including machine
learning, programming language adoption, mobile apps, and
blockchain, among others. Research on language trends, such
as [9], [42], reveal how shifts impact software quality. Studies
on bug prediction leverage historical data to improve defect
prediction [31], [41]. Eyolfson et al. [20] explored how de-
veloper experience and commit timing affect bug introduc-
tion, shedding light on factors impacting software reliability.
Mining repositories in Android development has exposed
issues like API misuse and permission risks [10], [33], while
blockchain security research identifies common vulnerabilities
in smart contracts [39]. Additionally, Buse and Weimer [13]
automated documentation from commit messages to enhance
traceability. These studies exemplify how mining repositories
capture critical insights from version control data to advance
software quality, security, and development practices.

Existing studies on quantum software development primar-
ily focus on small datasets, often limited to specific platforms
or a narrow subset of quantum issues. For example, Paltenghi
and Pradel [38] conducted an empirical study of bugs in quan-
tum computing platforms by analyzing 223 bugs in 18 open-
source projects, including major platforms such as Qiskit, Cirq,
and Q#. Although this study provides critical insights into
quantum-specific bugs and recurring bug patterns, its scope
remains limited to specific platforms, offering a narrower
perspective on the quantum software landscape. Similarly,
Zhao et al. [49] collected a dataset of 36 bugs exclusively from
the Qiskit platform, highlighting issues unique to quantum pro-
gramming but restricting the analysis to a single framework.

This study seeks to fill this gap by analyzing a large dataset
of GitHub repositories related to quantum computing. Through
this analysis, we aim to provide a snapshot of the current
state of quantum computing development, identify key trends,
and offer insights into the collaborative dynamics within the
community. Our findings will contribute to a deeper under-

TABLE I: File patterns used to extract package dependencies

TABLE II: Languages and their package names patterns.

by programming language. [Language | File Patterns |
[Language [File Patterns | Python cirqg, amazon-braket-sdk, giskit
Python Pipfile, pyproject.toml, C++ cuda-quantum, gpp ,grack
requirementsx.txt, requires.txt, C_ forest-sdk, grack
requireds.txt, setup.py, setup.cfg LlS_p forest-sdk, gcl
C++ CMakeLists.txt, Makefile, conanfile.txt Julia PastaQ, Yao
C CMakeLists.txt, Makefile Rust quil-rs
Lisp Makefile
Julia Project.toml package dependencies in standard Python project files (e.g.,
Rust Cargo.toml

standing of the landscape of quantum computing research and
development and inform future efforts to advance the field.

III. METHODOLOGY
A. Study Objective and Research Questions

Following the Goal Question Metric (GQM) guidelines
[14], our research goal is structured as follows: Analyze
quantum computing projects for the purpose of exploring and
categorizing with respect to their current status, evolution, and
maintenance from the point of view of quantum computing re-
searchers and developers in the context of GitHub repositories.

Two main research questions (RQ) arise from this goal. We
explore quantum computing repositories to understand their
development, popularity, and maintenance.

RQ1. What is the current status and evolution of the
Quantum Computing Community?

« RQ1.1: How has the popularity of quantum computing
changed?

e RQ1.2: How have programming languages and frame-
work usage trends evolved?

o RQI1.3: What is the developers’ distribution for different
frameworks and how do developers collaborate?

¢ RQ1.4: What trends and insights can be derived from
topics and project categories?

RQ2. How can we assess and classify the maintenance
status of Quantum Computing repositories on GitHub
based on their commit and issues data?

« RQ2.1: What commit patterns reveal over time?

¢ RQ2.2 How do the size and frequency of commits evolve
over time?

« RQ2.3 What are the prominent topics in the reported
issues?

« RQ2.4: How do various commit types (perfective, correc-
tive, adaptive) influence the maintenance of repositories?

¢ RQ2.5: How can commit data be used to categorize the
activity status of individual repositories?

e RQ2.6: How do repository characteristics vary across
different activity levels?

B. Dataset Construction

1) Data Collection: We collected data from the Quan-
tum Open Software Foundation (QOSF) list [8] and ex-
panded it using GitHub’s Code Search API [5], focusing on

requirements.txt, setup.py) and keyword searches
in relevant files (see Table I). Due to the API’s 1,000-result
limit, we refined our search scope and manually inspected se-
lected repositories. We also included repository forks, resulting
in 95,011 repositories (2,799 originals and 92,212 forks).

2) Preprocessing: Since GitHub Code Search matches any
substring, we need to make sure identified packages are
genuinely used and not false positives. During the process,
we manually inspected 1,300 search results to verify quantum-
related repositories. We identified two common false-positive
patterns: (1) repositories that copied content instead of forking
and (2) monorepos containing both quantum-specific and
unrelated libraries, such as the Azure SDK for NET [3].
To address this, we compiled a list of such repositories for
exclusion.

Next, we shallow-cloned the repositories and analyzed
standard files for package occurrences. We used tokei to
detect programming languages and then searched for relevant
package names in corresponding files (Table I). We also
maintained a mapping of programming languages to quantum
framework package names (Table II). Since tokei does not
detect certain languages like Q#, we used GitHub Linguist [22]
as a fallback. This process yielded 24,374 repositories.

For commit analysis, we removed redundant commits from
forks, focusing only on new developments. We also excluded
tagged version commits (ref: tag), bot-authored commits,
and anomalously high-volume commits. After multiple iter-
ations of data cleaning and manual inspection, we retained
24,122 repositories and 1,232,828 commits from 10,697 users.

C. Dataset Analysis

Next, we describe the dataset and explain how various
data points help address the research questions (RQs) outlined
earlier. Our dataset includes 24,122 quantum computing repos-
itories from GitHub, containing over 1.2 million commits,
and 157,471 issues. These repositories cover diverse topics,
such as simulation, quantum machine learning, algorithms, and
frameworks, providing a foundation for analyzing the current
state and evolution of quantum software.

1) Repository Characteristics: The dataset captures key
information on project scale, community engagement, and
activity levels, supporting RQ1 on the status and growth of
quantum software. Typical repositories in the dataset have
around 3.2 stars and 1.1 forks, though popular repositories
like Qiskit/giskit attract significantly more attention,
with 5,167 stars and 2,353 forks, reflecting high community
interest. Repositories contain 132,707 lines of code on average,

3 o
g New Repositories =
2 10 ot itori 20K £
o otal Repositories G
,_ o
8_ 800 US National Quantum Act 15K %
» o
L2 600 G
I} Cirq released 10K 5
‘© Qo
é 400 Qiskit released [S

| =
) 5K =
0;1 200 =
] o ©O
z o T T T =

T T T T T
2012 2013 2015 2017 2019 2020 2022 2024
Ql Q4 Q3 Q2 Q1 Q4 Q3 Q3

Fig. 1: Quantum Computing repository growth over time.

contributing to a total of over 3.2 billion lines, underscoring
the substantial codebase supporting quantum software.

2) Issues and User Engagement: The issue data provides
insights for RQ2.3 which focuses on the issue patterns of
the repositories. The dataset includes 157,471 reported issues
with 278,089 comments from 9,132 unique users, showing
active community engagement in identifying and addressing
challenges. Of these issues, 15,405 remain open, highlighting
ongoing development needs. The issues cover both general
software engineering concerns and quantum-specific topics,
such as quantum experiments and matrix operations, helping
us understand the unique demands within quantum software.

3) Commit and Maintenance Analysis: The commit data
provides comprehensive details essential for answering RQ2.1,
RQ2.2, RQ2.4, RQ2.5 and RQ2.6 on maintenance practices.
With 1,232,828 commits, each entry includes information on
the author, lines added or deleted, files changed, and commit
timestamp, offering detailed insights into project evolution.
Using a fine-tuned DistilBERT model, we categorized commits
into perfective, adaptive, and corrective types, allowing us to
analyze how different maintenance actions influence software
development. This classification reveals maintenance priori-
ties, such as functionality enhancement, adaptability to new
requirements, and bug resolution practices.

IV. RESULTS

A. Current Status and Evolution of Quantum Computing Com-
munity (RQ1)

1) How has Quantum Computing popularity changed?: To
evaluate the growth in popularity of quantum computing, we
analyzed trends in both the number of repositories and the
number of contributors over time.

To find the number of quantum projects started, we analyzed
the start dates of projects; this allows us to track the emergence
of new repositories as well as the cumulative total of quantum
computing projects. Figure 2 presents both the count of newly
created repositories each quarter and the overall growth in
the number of projects over time. The data reveals a gradual
increase in new projects from 2012 through 2016, reflecting
early and moderate interest in quantum computing. However,
around 2017, there is a noticeable acceleration in the number
of new projects, suggesting a growing interest in quantum

@
= 600 New Contributors 10K
s I .
& 500 Total Contributors »)
5 2
2 400 2
g 6K S
£ 300 3
3 a 9
£ 200 g
8 2K
% 100

0
z 0 T T T T T T T

2008 2010 2012 2015 2017 2019 2022 2024
Ql Q2 Q3 QI Q2 Q4 Q1 Q3

Fig. 2: Contributors’ growth in Quantum computing projects.

computing during this period. This increase becomes more
prominent between 2018 and 2021, with especially sharp rises
around 2019 and 2020. This surge is likely correlated with
the release and adoption of accessible open-source quantum
platforms, such as Qiskit (released in March 2017) and Cirq
(released in July 2018), which lowered the barriers for new
developers to enter the field.

By 2023, the cumulative number of quantum computing
repositories nears 20,000, underscoring the field’s expanding
popularity and developer engagement. The steady increase in
both new projects and total repository count reflects a rapidly
growing ecosystem, indicating not only rising interest but also
a commitment to developing resources and tools for quantum
computing. This growth provides a strong indicator of quan-
tum computing’s increasing prominence in both academics and
industry.

To further understand, how many developers are contribut-
ing to quantum projects, we analyze all the contributors to
existing quantum projects and community growth over time.

Complementing the repositories trend, the contributor
growth (in Figure 2) reveals a similar pattern, with new
contributors joining steadily over time and a marked in-
crease starting around 2018. The total number of contributors
continues to grow, reaching 10,697 by 2024. This surge in
active developers indicates a robust, expanding community
contributing to quantum computing projects on GitHub.

Finding 1.1. Quantum computing’s popularity has
shown a significant upward trend, as reflected in the
steady increase in new repositories, total projects, and
active contributors over time. The sharp rise beginning
around 2017 underscores growing community engage-
ment and sustained interest in quantum computing.

2) How have programming languages and framework usage
trends evolved?: To explore how programming language and
framework usage trends have evolved in quantum computing,
we examined project repositories over time, specifically fo-
cusing on the growth in the use of various languages and
frameworks.

Framework Usage. Figure 3 shows the evolution of popular
quantum computing frameworks, with a strong dominance by

(%]

Q

S 8K Frameworks

a — Qiskit QDK

8 6K Cirq OpenFermion

x —QuTiP PyQuil

g aK Amazon Braket - OpenQASM 3

1E3 PennyLane QUEST

>

z K R

g —

|9 O T I I I I T T T
2012 2014 2015 2017 2019 2021 2022 2024

Q1 Q1 Q4 Q3 Q2 Q1 Q4 Q3
Fig. 3: Quantum computing framework usage over time, Qiskit
remains the most popular framework.

Qiskit. Starting around 2017, Qiskit [2] rapidly gained traction,
reflecting its widespread adoption and IBM’s continued sup-
port and community engagement. Cirq [4] and QuTiP [29] also
display steady growth, although at a slower pace compared to
Qiskit. Notably, other frameworks, such as Amazon Braket
SDK [7] and PennyLane [6], began appearing around 2020,
indicating newer entries into the quantum ecosystem, likely
supported by commercial cloud providers like Amazon.

This trend reflects a shift toward using comprehensive
frameworks that simplify quantum computing development,
offering specialized libraries and tools tailored to different
quantum hardware and software needs. The rise in the variety
of frameworks also underscores the diversification of quantum
software development, with developers opting for tools that
meet specific project or hardware requirements.
Programming Languages Usage. Figure 4 presents a clear
trend toward Python as the most widely used language for
quantum computing, consistent with the popularity of quantum
frameworks such as Qiskit, Cirq, and PennyLane that support
Python APIs. The widespread use of Python is evident, with
a significant lead over other languages, illustrating its role
as the primary language for quantum software development.
C++ has a strong but comparatively smaller presence, probably
because of its use in performance-critical components or low-
level operations.

Emerging languages, such as Q# from Microsoft [36] and
OpenQASM [12], show steady growth around 2018, sug-
gesting an increasing focus on languages explicitly designed
for quantum applications. Julia and Rust have also begun
to appear in recent years, reflecting a gradual diversification
in language preferences as developers explore options that
may offer performance benefits or specific features relevant
to quantum computing.

Finding 1.2. Programming language and framework
usage in quantum computing has evolved notably, with
Python and Qiskit dominating the landscape. How-
ever, recent growth in frameworks such as QuTiP and
Amazon Braket SDK, along with emerging quantum-
specific languages such as Q# and OpenQASM, re-
flects a diversifying ecosystem tailored to specialized
quantum applications.

(%]

Q

I Programming Languages
= i)

8 15K Python — JavaScript E#
) C++ Rust Lisp
9_: —Q# OpenQASM - Java
o 10K| ~Julia

)

Qo

g 5K

z

IS

|9 O T I I I I I I T

2012 2013 2015 2017 2019 2020 2022 2024

QL Q4 Q3 Q2 Q1 Q4 Q3 Q3
Fig. 4: Usage of programming languages in Quantum reposi-
tories, Python remains the most popular language.

3) What is the developers’ distribution for different frame-
works and how do developers collaborate?: The distribution
of developers across quantum computing frameworks reveals
varying levels of reliance and engagement. As shown in
Table 111, Qiskit is the most widely adopted, with 8,561 repos-
itories and 2,231 contributors relying on it for their projects,
making it a central resource in the quantum computing ecosys-
tem. Cirq and QuTiP follow, with 3,338 and 1,743 repositories,
respectively, each supported by active communities of over
1,200 and 670 contributors. Other frameworks, such as Penny-
Lane and Amazon Braket, are also widely utilized, with 1,464
and 1,525 repositories, backed by substantial contributor bases.
Frameworks like OpenFermion and PyQuil, while linked to
fewer repositories, maintain dedicated followings, suggesting
that developers often choose frameworks based on specific
applications or functionalities they offer.

TABLE III: Distribution of repositories using different frame-
works and associated contributors for repositories.

[Framework | # of repositories | # of contributors |
Amazon Braket 1,525 292
Cirq 3,338 1,205
OpenFermion 979 318
OpenQASM 3 561 227
PennyLane 1,464 558
PyQuil 610 239
QDK 1,299 286
Qiskit 8,561 2,231
QuEST 530 243
QuTiP 1743 673

Finding 1.3.1. Qiskit is the most widely used quantum
computing framework, followed by Cirg and QuTiP,
with each framework attracting distinct developer
communities based on specific functionalities and ap-
plications.

To explore the collaboration among authors in popular
quantum computing frameworks, we employ the Louvain
algorithm [40] to build a network of developers that have con-
tributed to the most prominent frameworks found in RQ 1.2.
We identify highly collaborative authors as those with signifi-
cant participation across multiple frameworks. Figure 5 illus-
trates the developers’ network using six clusters, where each

Node: dependabot{bot]
Node: eendebakpt
Node: JiahaoYao

Node: ryanhilll

Node: nathanshammah

copmeo

mmunity 4
microsoft/qsharp (38)
Nodes: 38 Community 5:
quantumlib/Cirg (216)
Qiskit/qiskit (13)
PennyLaneAl/pennylane (9)
odes: 216

munity 0:
PennyLanchlifeyipg (170)
Qiskit/giskit (18)

quup/qunp (14)
4 %0y "N
. L)

Community 1.
Qiskit/qiskit (439)
Qiskit/qiskit-aer (46) o
Nodes: 439 - @W
Community 3:
qutip/qutip (136)

Qiskit/qiskit (6)

Community 2: Qiskit/giskit-aer (4) |
2 J

Qiskit/qiskit-aer (46)
Nodes: 46
A
oo SR ee

Fig. 5: Network of developers working with popular frame-
works, highlighting the top 3 frameworks used in each cluster.

represents one of the prominent frameworks and highlights the
top three frameworks within each cluster. For brevity, we have
only displayed the top-5 most collaborative authors, identified
by the highest cross-framework participation, represented as
the larger nodes in Figure 5. The top-5 most collaborative
authors, along with their respective cross-framework partici-
pation, are as follows: dependabot[bot] (5), eendebakpt (4),
JiahaoYao (4), ryanhilll (3), and nathanshammah (3). The
most collaborative author in the network is a GitHub bot,
dependabot[bot], due to its role in automating the management
of project dependencies and ensuring they are consistently
updated.

Figure 5 also shows the -cross-framework collabora-
tion in quantum computing. Specifically, the percentage
of contributors who engage in cross-framework collabora-
tion is 0% for Community 2, 10% for Community 1,
19% for Community 0, 0% for Community 4, 7% for
Community 3, and 10% for Community 5.

TABLE IV: Breakdown of developer backgrounds contributing

>3 prominent Quantum Frameworks.
[Researchers [Quantum Developers | Physicists | Grad. Students | Bot |
[625% | 31.25% [1875% | 3715% | 625% |

To further understand developers appearing as collaborators,
we manually analyzed the GitHub profiles of the developers
that contribute to three or more prominent frameworks. As
shown in Table IV, the majority of contributors are graduate
students (37.5%), followed by quantum-focused developers
(31.25%), physicists (18.75%), and researchers (6.25%), with
bots accounting for 6.25%. This mix highlights a diverse
community, where graduate students and specialized quantum
developers are the most active collaborators, contributing
essential expertise from both academia and applied quantum
software development.

Finding 1.3.2. Collaboration patterns show limited
cross-framework interaction, concentrated around a
few key contributors. Graduate students and special-
ized quantum developers are the primary drivers of
cross-repository collaboration.

Educatlon/Tutorlals

Circuit Optimization

Algorithm s

Chemistry

SDK/Framework

Fig. 6: Word cloud of topics from Quantum repositories.

4) What trends and insights can be derived from project
topics?: To investigate project topics, we labeled repositories
based on their primary focus (as shown in Figure 6) and
analyzed trends in these topics over time. The timeline of
repository growth across categories (in Figure 7) reveals
distinct patterns: SDK/API and Quantum Simulation projects
exhibit the most substantial growth, indicating that toolkits
and simulation capabilities are key areas of interest in the
quantum computing field. Quantum Machine Learning and
Algorithm Implementation also show steady growth, reflecting
rising demand for quantum algorithms and their integration
with machine learning.

12K
Categories
(%]
8 191 —spriari Sﬁg,r;}g’t‘:y
5) .
£ o Education/Tutorials Compiler/Transpiler
8 _Quantum Circuit
2 Simulation Optimization
. 'I°‘|9°|”thm Benchmarking
° mplementation Tools
8 4K Quantum
% Machine
>z 2k Learning
1K
0

1 I I I T T T T
2012 2013 2015 2017 2019 2020 2022 2024
Ql Q4 Q@ Q2 Q1 Q4 Q3 Q3

Fig. 7: Growth of different topics in Quantum repositories.

The word cloud of repository categories further emphasizes
the prominence of these areas, with terms related to Simu-
lation, Machine Learning, and Compiler/Transpiler frequently
appearing. This trend suggests a strong focus on tools that sup-
port both foundational quantum research and applied quantum
computing projects, particularly in algorithm development and
machine learning integration.

Finding 1.4. The quantum computing community is not
only focused on foundational frameworks and simula-
tors but is also increasingly exploring applications in
machine learning, chemistry, and advanced algorithm
design.

100K

2
€
E 10K
(@]
O
T 1K
)
Q0
€ 100
b

T T T T T T T T
2008 2010 2012 2015 2017 2019 2022 2024
QT Q2 Q3 Q1 Q2 Q4 Q1 Q3
Fig. 8: Number of new commits in Quantum repositories show
a consistent growth.

B. Maintenance Analysis (RQ2)

1) What commit patterns reveal over time?: We analyzed
the overall commit activity in quantum computing repositories,
as shown in Figure 8. The graph illustrates commit counts
overtime on a log scale, capturing trends from as early as
2008 through to 2024.

The data reveals a gradual increase in commits during the
initial years, reflecting modest activity and slow growth in the
quantum computing development landscape. However, starting
around 2017, there has been a rise in commit frequency, likely
driven by increased community engagement and the emer-
gence of more accessible quantum development frameworks
and tools. Again, similar to the repository growth, commit
growth also significantly increases between 2020 and 2023,
indicating increased development efforts, community contri-
butions, and perhaps an expansion in the scope of quantum
projects.

Finding 2.1. The sharp rise in recent commit ac-
tivity indicates that quantum computing is evolving
from niche research into a collaborative, mature field,
marked by consistent improvements and a growing
number of contributors and projects.

2) How does the size and frequency of commits evolve?:
We examine the trends in code volume and file changes.
Figure 9 and Figure 10 show a steady increase in both the
number of lines added/deleted and files modified, with a
significant spike around 2020-2023.

This surge in file changes corresponds to a noticeable
jump in activity due to large-scale code reformatting, which
temporarily elevated the number of files modified. This pat-
tern aligns with the previously observed trend of accelerated
commit activity post-2017, reflecting a period of heightened
development and restructuring in quantum computing projects.
These spikes indicate both growing project complexity and
increased focus on code organization and standardization as
the field matures.

°
2 1B
Q M T
o o)
Q 100M =
3 k<
3 1M 100K O
< 3
qccg 1M : T
= Metrlcs 10k B
5 100K —— Lines Added by
v Q
5 10k L|_nes Deleted =
g —— Files Changed |1k 3
g T T T T T T T T

2008 2010 2012 2015 2017 2019 2022 2024

Ql Q2 Q3 Q1 Q2 Q4 Q1 Q3
Fig. 9: Code changes trend in Quantum software, in terms of
the number of lines added, deleted, and files changed.

s 1B
@
g’ 100M
]
o
s 10M
g
5 M
5 Changes
5 100K —— Total Changes
E 10K Additions
= Deleti
3 eletions
1K T T T T

T T T T
2008 2010 2012 2015 2017 2019 2022 2024
Q1 Q2 Q@ Q1 Q2 Q4 Q1 Q3
Fig. 10: Volume of code changes in Quantum repositories, the
number of lines added, deleted, and files changed.

Finding 2.2. Commit size and frequency have risen
significantly, with a spike from large-scale code re-
formatting around 2020-2023, indicating increasing
project complexity and a move toward standardized
development in quantum computing.

3) What are the prominent topics in the reported issues?:
We identified key topics in quantum computing repository
issues using BERTopic [24]. However, because unsupervised
BERTopic can generate noisy or inconsistent topics that are
difficult to interpret, we adopted a semi-supervised approach
to improve its reliability. Specifically, we initialized BERTopic
with seed topics — keywords selected based on their high
TF-IDF scores — to guide the model toward coherent and
meaningful clusters rather than arbitrary groupings.

To assess the effectiveness of our approach, we con-
ducted a qualitative validation focusing on two key aspects:
(1) whether BERTopic formed coherent and meaningful top-
ics, and (2) whether it generalized beyond the explicit seed
terms. We manually reviewed a diverse subset of issues from
each cluster to evaluate whether BERTopic not only grouped
semantically similar issues in the same cluster — even when
they did not explicitly contain the seed topic keywords — but
also identified a broader range of topics beyond those initially
defined by the seed terms. Our qualitative analysis confirmed
that the seeded BERTopic approach facilitated the discovery of

TABLE V: Description of the key features in the issues for Quantum Computing repositories.

[Topic [Components Frequency(%) |
Dependency Management and Updates deprecate, remove, bump, version, dependency, update, pypi, pip 14.76
Quantum Computing Terminology qubit, quantum, pulse, hamiltonian, matrix, gate, pauli, phase, rotation 11.33
Code Maintenance and Refactoring rename, update, refactor, fix, remove, typo, change 9.85
Quantum Computing Software and Frameworks qasm, qaoa, openqasm, qobj, qnode, gpu, qiskit, qutip, ibmq 7.94
Fixing Bugs error, fix, fail, bug, warning, log, issue 6.44
Documentation doc, documentation, readme, docstring, tutorial, docs, sphinx 5.75
Quantum Computing Hardware Interfaces driver, backend, device, channel, job, add, instrument, executor, gpu 5.72
Continuous Integration and Testing test, ci, travis, coverage, build, workflow, run, testing, integration 5.68
Quantum Computing Experiments measurement, calibration, benchmark, performance, experiment, noise 5.59
Version Control merge, update, release, link, branch, master, version, main, pr 4.66
Matrix Operations state, gradient, solver, matrix, vqe, observable, adjoint, sparse 4.08
Python Syntax import, module, json, dataset, serialization, kwarg, decorator 2.66
Data Visualization and Machine Learning Libraries | matplotlib, tensor, graph, plot, tensorflow, notebook, lattice, torch, visualization 2.16
Other circuit, pass, drawer, Frgnspiler, register, operator, wire, datum, seed, simulator, 13.37

rb, shot, sampler, optimizer, numpy, python, rust ’

meaningful clusters beyond the original TF-IDF terms while
improving topic cohesion and reducing noise. This approach
enabled us to uncover various issue categories relevant to
quantum software development, summarized in Table V.

Our analysis revealed that a significant portion of issues
(around 47.14%) are related to classic software engineering
challenges, including dependency management, code mainte-
nance, refactoring, documentation, continuous integration and
testing, and version control. These issues reflect common
needs in software projects, such as managing package versions,
fixing bugs, improving code structure, and ensuring seamless
integration and deployment processes. The prevalence of these
topics underscores that, like other software fields, quantum
computing projects require robust tools and practices for
maintaining code quality and collaboration.

About 34.66% of the reported issues are specific to quantum
computing, focusing on specialized topics such as quan-
tum computing basics (e.g., qubits, rotation), hardware inter-
faces, quantum computing experiments, matrix operations, and
quantum-specific software frameworks. These issues highlight
the unique challenges in quantum software, including the need
for tools that enable the simulation of quantum experiments
and support the complex mathematical operations essential for
quantum algorithms.

Finding 2.3. Approximately 47% of issues in quantum
computing repositories relate to classic software en-
gineering challenges, while 34% are quantum-specific
like quantum experiments and matrix operations. This
indicates a need for specialized tools to address the
unique requirements of quantum software development,
as well as a demand for overall robust software
infrastructure to support quantum computing.

4) Types of Commits: Understanding the proportions of
different types of commits is important to understand advances
in quantum computing. To identify the different commit types
in our repositories, we used the DistilBERT model fine-
tuned by [15] on GitHub commit messages [44]. This model
classified the commit messages into categories based on their
purpose: perfective (improvements), adaptive (adjustments to
changes), and corrective (bug fixes).

As shown in Table VI, the majority of commits are perfec-
tive (51.76%), this finding reflects an emphasis on improving
and refining code to enhance functionality and performance.
Adaptive commits, at 22.58%, indicate frequent adjustments
to accommodate new requirements or technologies, while
corrective commits, at 18.54%, suggest a relatively lower
occurrence of bug fixes. The presence of combined categories,
such as adaptive-perfective and corrective-perfective, suggests
overlapping maintenance efforts, where developers enhance
functionality while adapting or fixing the code.

TABLE VI: Percentage of Frequency for Each Classification

[Classification | Percentage (%) |
Perfective 51.76
Adaptive 22.58
Corrective 18.54
Adaptive Perfective 4.97
Corrective Perfective 1.23
Corrective Adaptive 0.46

Finding 2.4. The majority of commits in quantum
computing repositories focus on code improvements,
followed by adjustments, while corrective commits are
less frequent. This suggests an emphasis on enhancing
functionality over bug fixing, with potential gaps in
tracking and addressing bugs.

5) Classification of Repository Activity-Levels using Com-
mit Data: To account for potential duplication in forked
repositories, we analyzed only original commits not present
in parent repositories, resulting in 8,548 repositories being
included in our analysis. We examine the factors that dif-
ferentiate high-activity repositories from those with lower
activity through K-means clustering [34], [35] of repository
commit attributes, including commit frequency per month,
average gap between commits, number of commits, number
of contributors, and project duration. Specifically, we apply K-
means clustering to assign labels to the repositories and then
perform 2D Principal Component Analysis (PCA) [27], [30]
to visualize the clusters, as shown in Figure 11. Figure 11 il-
lustrates that the dashed red line, passing through the rightmost
lower-activity point (red circle), effectively separates high-
activity repositories (blue) from lower-activity ones (yellow).
Additionally, we observe that high-activity repositories tend

Principal Component 2

High Maintenance

O Low Maintenance

@ Rightmost Point From Yellow Cluster
== Line of separation

-2 0 2 4 6 8
Principal Component 1

Fig. 11: Clustering Quantum repositories into 2 classes: high
and low activity repositories.

to exhibit greater variance, as evidenced by more spread-out
scatter points and outliers.

TABLE VII: Mean centroids of repository activity categories.

[Category | Frequency | Avg. Days b/w C its | C | Authors [Months |
[High [2005 | 265 [187838 | 4523 [39 |
[Low | 28 | 387535 [0351 | 129 [147 |

Table VII displays the attributes of the centroids for the
two clusters, highlighting that high-activity repositories are
more actively managed, as evidenced by their higher commit
frequency, shorter commit gaps, larger number of commits,
more contributors, and longer duration of maintenance.

Finding 2.5. Highly active quantum repositories have
more contributors and are sustained over longer peri-
ods. However, there are fewer high-activity repositories
(3,562) compared to those with low-activity (4,986),
highlighting the disparity in the level of development
and support in the quantum computing ecosystem.

6) How do different repository characteristics differ be-
tween maintenance activity levels?: To explore differences
between high- and low-activity repositories, we examined
various attributes and commit categories, using the Mann-
Whitney U Test for statistical significance [37].

TABLE VIII: Mann-Whitney U Test results for continuous
variables.

. High Activit Low Activit

Variable g Mean y Mean ¥ p-value
Update Duration 281.9597 147.6592 <0.001
Stars 6.5573 0.61462 <0.001
Forks 2.1212 0.20753 <0.001
Size 40581.0595 32940.8206 <0.001
Contributors 53.2758 62.6904 0.044

Lines of code 468798.7614 115685.0642 <0.001

The results in Table VIII reveal notable distinctions be-
tween these repository types. High-activity repositories show
a significantly longer update duration, averaging 281.96 days
compared to 147.66 days in low-activity repositories (p <
0.001), which suggests more consistent, ongoing updates over
time. They also tend to attract more stars and forks, with high-
activity repositories averaging 6.56 stars and 2.12 forks versus
0.61 stars and 0.21 forks for low-activity ones, indicating

10M

=
B & . EEl High Maintenance
< .
M 5 i 2 EEE | ow Maintenance
2 e e
= -
£ 100K 0 o <
£ SN M om. S
8 10k 2 > S = 3
u— 8} O_O‘»
oK Q
@ & 3
JE: -
5 100
Z
10

P C A AP CP CA
P=Perfective, C=Corrective, A=Adaptive

Fig. 12: Distribution of different commit classes for high and
low activity repositories.

greater community interest and engagement. In terms of size,
high-activity repositories have substantially more lines of code
(468,798 vs 115,685) and overall project size, reflecting more
complex codebases that likely demand intensive upkeep. Inter-
estingly, low-activity repositories have a slightly higher mean
contributor count (62.69 vs 53.28, p = 0.044), suggesting low-
activity projects may receive occasional contributions without
sustained commitment.

The distribution of commit types across activity levels,
shown in Figure 12, further supports these findings. High-
activity repositories show a higher frequency of perfective
and adaptive commits, focusing on ongoing improvements and
adaptations to changes, while low-activity repositories exhibit
fewer updates across all commit categories. These insights
highlight that high-activity repositories are generally larger,
attract more engagement, and emphasize continuous enhance-
ment and adaptability, while low-activity repositories may
experience sporadic contributions without regular development
efforts.

Finding 2.6. High-activity repositories have frequent
updates, larger codebases, and greater community
engagement, while low-activity repositories show ir-
regular updates and smaller codebases.

V. IMPLICATIONS

Our findings highlight key challenges in quantum software
engineering and outline actionable steps to improve develop-
ment practices, tooling, and education.

(a) Bug Resolution and Software Reliability. The prevalence
of perfective commits (51.76%) over corrective commits
(18.54%) suggests that defect resolution is underempha-
sized. Prior work by Paltenghi and Pradel [38] found that
quantum software exhibits recurring bug patterns, yet our
findings indicate that corrective actions remain limited.
Enhancing automated testing, issue-tracking systems, and
debugging frameworks is critical for improving software
reliability.

(b) Quantum-Specific Tooling Needs. With 34% of reported
issues being unique to quantum computing, there is a

clear need for quantum-aware debugging tools, enhanced
simulators, and automated static analysis techniques.
Zhao et al. [49] identified debugging as a major challenge
in Qiskit, and our findings reinforce the necessity for
specialized tooling to address quantum-specific issues,
such as circuit optimization and error mitigation.
Sustaining Software Development. The divide between
high- and low-activity repositories indicates challenges
in long-term software maintenance. Studies on repos-
itory evolution [19], [47] suggest that engagement in
quantum projects is often short-lived, which aligns with
our observation that many repositories exhibit sporadic
contributions. Encouraging community-driven contribu-
tions, better documentation practices, and sustainable
governance models can improve repository longevity.
Standardization and Interoperability. As quantum com-
puting frameworks evolve, ensuring consistent APIs,
cross-framework compatibility, and adherence to software
engineering best practices will enhance usability and re-
duce fragmentation. Prior work on quantum programming
languages [48] has shown that the ecosystem remains
highly fragmented, and our findings confirm that while
Python and Qiskit dominate, newer frameworks, such as
Cirq and PennyLane are gaining traction, emphasizing the
need for standardization.

(c)

(d)

To drive advancements in quantum software engineering,
we open-source our dataset, providing the broader software
engineering community with empirical insights to inform tool
development, maintenance strategies, and best practices in
quantum software development.

V1. THREATS TO VALIDITY

Internal Validity. A potential threat to internal validity lies
in the criteria used for selecting quantum-related repositories.
While we aimed to ensure relevance by filtering for reposi-
tories with quantum-specific keywords and technologies, the
initial reliance on GitHub metadata alone may have intro-
duced some irrelevant or incomplete projects. To mitigate
this, we performed extensive data cleaning as described in
the processing section, where we removed unchanged forks,
retained only repositories demonstrating meaningful activity,
and ensured the presence of quantum package usage. These
steps helped refine the dataset to better represent genuine quan-
tum software development projects. However, there remains a
risk that some valid but low-activity repositories could have
been excluded, possibly omitting some niche or experimental
quantum projects.

External Validity. Our findings may have limited general-
izability beyond GitHub to other platforms where quantum
software may be developed, such as proprietary or institution-
hosted repositories. This study focuses exclusively on open-
source projects on GitHub, which could lead to insights that
reflect primarily the open-source quantum development com-
munity. This limitation suggests that proprietary or enterprise-
level practices may not be fully captured here, as they might
involve different workflows, tools, or challenges. Thus, while

10

the results provide valuable insights into open-source quantum
software, extending the study to include other sources could
yield a broader understanding of quantum software practices.
Construct Validity. The construct validity of this study
could be impacted by limitations inherent to mining software
repositories. Metrics such as commit counts, issue reports,
and collaboration structures provide quantitative insights into
development activities but may overlook qualitative factors
such as developer expertise, code quality, or algorithm com-
plexity. The absence of standardized best practices and tools
in quantum programming complicates the interpretation of
certain development patterns and issues. To address this, we in-
corporated additional filtering and categorization criteria based
on quantum package usage, commit activity, and algorithm
types, helping to focus the dataset on relevant aspects of
quantum software engineering.
Reliability. The reliability of our findings is based on the
reproducibility of the data mining and cleaning techniques
applied. Future changes to GitHub’s API or to repository
metadata could impact the replicability of aspects of our
methodology. Additionally, reliance on automated processes
like natural language processing (NLP) for issue and commit
classification may introduce some errors in categorization. To
reduce this risk, we detailed the data extraction and cleaning
process and cross-validated classifications where feasible to
ensure consistency.

By recognizing these limitations, we aim to provide trans-
parency about the study’s scope and the validity of our findings
within this context.

VII. CONCLUSIONS

This study provides a comprehensive analysis of the current
state, evolution, and maintenance practices in the quantum
computing community by examining over 21,000 GitHub
repositories, containing more than 1.2 million commits from
over 10,000 unique contributors. Through this large-scale
mining effort, we evaluate community growth, programming
trends, and maintenance practices as well as offer insights into
the strengths and areas for improvement in quantum software
development. Our findings show a rapidly growing community,
with a 200% increase in the number of repositories and a 150%
rise in contributors since 2017, underscoring the growing
interest in quantum computing. However, our commit analysis
reveals a focus on perfective updates, with fewer corrective
commits, which suggests potential gaps in bug resolution.
Additionally, a third of the issues emphasize the need for
specialized tools alongside general software infrastructure.

Based on our analysis of development patterns, commu-
nity structure, and maintenance practices, we recommend
investment in specialized tooling and systematic maintenance
frameworks for quantum computing. Enhanced support for
high-maintenance repositories could drive further innovation.
Additionally, extending this analysis to other platforms may
provide broader insights into the quantum software landscape.

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]
[23]

REFERENCES

National quantum initiative. https://www.quantum.gov/, 2018. Accessed:
2024-09-17.

Qiskit - world’s most popular software stack for quantum computing.
https://www.ibm.com/quantum/qiskit, 2022. Accessed: 2024-09-17.
Azure sdk for .net. https://github.com/Azure/azure-sdk-for-net, 2024.
Accessed: 2024-09-17.

Cirq. https://quantumai.google/cirq, 2024. Accessed: 2024-09-17.
Github code search api. https://docs.github.com/en/rest/search/search?
apiVersion=2022- 11-28#search-code, 2024. Accessed: 2024-09-17.
Pennylane — quantum programming software. https://pennylane.ai/,
2024. Accessed: 2024-09-17.

Python sdk for interacting with quantum devices on amazon
braket. https://github.com/amazon-braket/amazon-braket-sdk-python,
2024. Accessed: 2024-09-17.

Qosf awesome quantum software. https://github.com/qosf/
awesome-quantum-software, 2024. Accessed: 2024-09-17.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories
at massive scale using language modeling. In 2013 I10th working
conference on mining software repositories (MSR), pages 207-216.
IEEE, 2013.

Ali Alshehri, Pawel Marcinek, Abdulrahman Alzahrani, Hani Al-
shahrani, and Huirong Fu. Puredroid: Permission usage and risk
estimation for android applications. In Proceedings of the 2019 3rd
international conference on information system and data mining, pages
179-184, 2019.

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev.
Silg: a high-level quantum language with safe uncomputation and intu-
itive semantics. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020,
page 286-300, New York, NY, USA, 2020. Association for Computing
Machinery.

Lev S Bishop. Qasm 2.0: A quantum circuit intermediate representation.
In APS March Meeting Abstracts, volume 2017, pages P46-008, 2017.
Raymond PL Buse and Westley R Weimer. Automatically documenting
program changes. In Proceedings of the 25th IEEE/ACM international
conference on automated software engineering, pages 33-42, 2010.
Victor R Basilil Gianluigi Caldiera and H Dieter Rombach. The goal
question metric approach. Encyclopedia of software engineering, pages
528-532, 1994.

J. Castano, S. Martinez-Fernandez, X. Franch, and J. Bogner. Analyzing
the evolution and maintenance of ml models on hugging face. In
2024 IEEE/ACM 2l1st International Conference on Mining Software
Repositories (MSR), pages 607-618, Los Alamitos, CA, USA, apr 2024.
IEEE Computer Society.

Qihong Chen, Riben Camara, José Campos, André Souto, and Iftekhar
Ahmed. The smelly eight: An empirical study on the prevalence of code
smells in quantum computing. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages 358-370, 2023.
Antonio D Cércoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T
McClure, Andrew W Cross, Kristan Temme, Paul D Nation, Matthias
Steffen, and Jay M Gambetta. Challenges and opportunities of near-term
quantum computing systems. Proceedings of the IEEE, 108(8):1338-
1352, 2019.

Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beau-
drap, Lev S Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah,
John Smolin, Jay M Gambetta, et al. Openqasm 3: A broader and
deeper quantum assembly language. ACM Transactions on Quantum
Computing, 3(3):1-50, 2022.

Mohamed Raed El aoun, Heng Li, Foutse Khomh, and Moses Openja.
Understanding quantum software engineering challenges an empirical
study on stack exchange forums and github issues. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 343-354, 2021.

Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and developer
experience affect commit bugginess? In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 153-162, 2011.
Mark Fingerhuth, Tomés Babej, and Peter Wittek. Open source software
in quantum computing. PloS one, 13(12):0208561, 2018.
https://github.com/github-linguist/linguist.

Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter
Selinger, and Benoit Valiron. Quipper: a scalable quantum programming
language. In Proceedings of the 34th ACM SIGPLAN conference on

11

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Programming language design and implementation, pages 333-342,
2013.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-
based tf-idf procedure. arXiv preprint arXiv:2203.05794, 2022.

Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212-219, 1996.

Thomas Hiner, Damian S Steiger, Krysta Svore, and Matthias Troyer.
A software methodology for compiling quantum programs. Quantum
Science and Technology, 3(2):020501, 2018.

Harold Hotelling. Analysis of a complex of statistical variables into
principal components. Journal of educational psychology, 24(6):417,
1933.

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D Nation,
Lev S Bishop, Andrew W Cross, et al. Quantum computing with giskit.
arXiv preprint arXiv:2405.08810, 2024.

J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source
python framework for the dynamics of open quantum systems. Computer
Physics Communications, 183(8):1760-1772, 2012.

Tan Jolliffe. Principal component analysis. Encyclopedia of statistics in
behavioral science, 2005.

Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and An-
dreas Zeller. Predicting faults from cached history. In 29th International
Conference on Software Engineering (ICSE’07), pages 489-498. IEEE,
2007.

Ryan LaRose. Overview and comparison of gate level quantum software
platforms. Quantum, 3:130, 2019.

Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein.
Cid: Automating the detection of api-related compatibility issues in
android apps. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 153-163, 2018.
Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129-137, 1982.

J MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability/University of California Press,
1967.

Microsoft. Introduction to the quantum programming language g#. https:
//learn.microsoft.com/en-us/azure/quantum/qsharp-overview, 2019. Ac-
cessed: 2024-09-17.

Nadim Nachar et al. The mann-whitney u: A test for assessing whether
two independent samples come from the same distribution. Tutorials in
quantitative Methods for Psychology, 4(1):13-20, 2008.

Matteo Paltenghi and Michael Pradel. Bugs in quantum computing plat-
forms: an empirical study. Proc. ACM Program. Lang., 6(O0PSLA1),
April 2022.

Peng Qian, Zhenguang Liu, Qinming He, Butian Huang, Duanzheng
Tian, and Xun Wang. Smart contract vulnerability detection technique:
A survey. arXiv preprint arXiv:2209.05872, 2022.

Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels.
Scalable community detection with the louvain algorithm. In 2015 IEEE
international parallel and distributed processing symposium, pages 28—
37. 1IEEE, 2015.

Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu.
Sample size vs. bias in defect prediction. In Proceedings of the 2013 9th
Jjoint meeting on foundations of software engineering, pages 147-157,
2013.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality
in github. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, pages 155-165,
2014.

Jonathan Ruane, Andrew McAfee, and William Oliver. Quan-
tum computing for business leaders. https://hbr.org/2022/01/
quantum-computing-for-business-leaders, 2022. Accessed: 2024-09-17.
Muhammad Usman Sarwar, Sarim Zafar, Mohamed Wiem Mkaouer,
Gursimran Singh Walia, and Muhammad Zubair Malik. Multi-label
classification of commit messages using transfer learning. In 2020 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 37-42. IEEE, 2020.

Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303—
332, 1999.

https://www.quantum.gov/
https://www.ibm.com/quantum/qiskit
https://github.com/Azure/azure-sdk-for-net
https://quantumai.google/cirq
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code
https://pennylane.ai/
https://github.com/amazon-braket/amazon-braket-sdk-python
https://github.com/qosf/awesome-quantum-software
https://github.com/qosf/awesome-quantum-software
https://learn.microsoft.com/en-us/azure/quantum/qsharp-overview
https://learn.microsoft.com/en-us/azure/quantum/qsharp-overview
https://hbr.org/2022/01/quantum-computing-for-business-leaders
https://hbr.org/2022/01/quantum-computing-for-business-leaders

[46]

[47]

Grand View. Quantum computing software market size, share & [48] Pengzhan Zhao, Xiongfei Wu, Junjie Luo, Zhuo Li, and Jianjun Zhao.

trends analysis report by component, by deployment, by technology, An empirical study of bugs in quantum machine learning frameworks.
by application, by end-use, by region, and segment forecasts, 2024 - In 2023 IEEE International Conference on Quantum Software (QSW),
2030, 2024. Accessed: 2024-09-17. page 68-75. IEEE, July 2023.

Jake Zappin, Trevor Stalnaker, Oscar Chaparro, and Denys Poshyvanyk. [49] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. Identifying bug patterns in
‘When quantum meets classical: Characterizing hybrid quantum-classical quantum programs. In 2021 IEEE/ACM 2nd International Workshop on
issues discussed in developer forums, 2024. Quantum Software Engineering (Q-SE), pages 16-21, 2021.

12

	Introduction
	Background and Related Work
	Quantum Software Development
	Related Work

	Methodology
	Study Objective and Research Questions
	Dataset Construction
	Data Collection
	Preprocessing

	Dataset Analysis
	Repository Characteristics
	Issues and User Engagement
	Commit and Maintenance Analysis

	Results
	Current Status and Evolution of Quantum Computing Community (RQ1)
	How has Quantum Computing popularity changed?
	How have programming languages and framework usage trends evolved?
	What is the developers' distribution for different frameworks and how do developers collaborate?
	What trends and insights can be derived from project topics?

	Maintenance Analysis (RQ2)
	What commit patterns reveal over time?
	How does the size and frequency of commits evolve?
	What are the prominent topics in the reported issues?
	Types of Commits
	Classification of Repository Activity-Levels using Commit Data
	How do different repository characteristics differ between maintenance activity levels?

	Implications
	Threats to Validity
	Conclusions
	References

