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Abstract—The mobile app market has expanded exponentially,
offering millions of apps with diverse functionalities, yet research
in mobile app recommendation remains limited. Traditional
sequential recommender systems utilize the order of items in
users’ historical interactions to predict the next item for the
users. Position embeddings, well-established in transformer-based
architectures for natural language processing tasks, effectively
distinguish token positions in sequences. In sequential recom-
mendation systems, position embeddings can capture the order
of items in a user’s historical interaction sequence. Nevertheless,
this ordering does not consider the time elapsed between two
interactions of the same user (e.g., 1 day, 1 week, 1 month),
referred to as “user rhythm”. In mobile app recommendation
datasets, the time between consecutive user interactions is notably
longer compared to other domains like movies, posing significant
challenges for sequential recommender systems. To address this
phenomenon in the mobile app domain, we introduce INTERPOS,
an Interaction Rhythm Guided Positional Morphing strategy for
autoregressive mobile app recommender systems. INTERPOS in-
corporates rhythm-guided position embeddings, providing a more
comprehensive representation that considers both the sequential
order of interactions and the temporal gaps between them. This
approach enables a deep understanding of users’ rhythms at a
fine-grained level, capturing the intricacies of their interaction
patterns over time. We propose three strategies to incorporate
the morphed positional embeddings in two transformer-based
sequential recommendation system architectures. Our exten-
sive evaluations show that INTERPOS outperforms state-of-the-
art models using 7 mobile app recommendation datasets on
NDCG@K and HIT@K metrics. The source code of INTERPOS
is available at https://github.com/dlgrad/INTERPOS.

Index Terms—recommendation systems, mobile app recom-
mendations, sequential recommendations.

I. INTRODUCTION

Mobile app market is witnessing exponential growth. Apple
Appstore [1] and Google Play [2] include over 2.2 and 3.5
million apps, respectively [3]. Despite the vastness of the
market and the abundance of apps accessible to users, the
research in mobile app recommendation remains constrained.

Sequential recommender systems play a crucial role by
leveraging the temporal order of items in users’ historical inter-
actions to predict their future preferences. In natural language
processing tasks, position embedding is a well-established
technique in transformer-based architectures to capture the
order of tokens in sequences. However, in sequential recom-
mendation systems, the reliance on position embeddings falls
short in addressing a critical aspect – the temporal dynamics
inherent in users’ interaction patterns, which we refer to as
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Fig. 1: INTERPOS considers user interaction rhythm with
position embedding for tracking user preferences effectively
reflecting the user’s behavior over time.

“user rhythm”. While position embedding can distinguish the
order of items in a user’s historical interactions, it does not
take into account the time elapsed between two interactions
by the same user, be it a day, a week, or a month. In mobile
app recommendation datasets, the time gap between two
consecutive user interactions is considerably longer compared
to other widely studied domains, such as movies.

To quantify this phenomenon, we analyze the time in-
tervals between consecutive user interactions in mobile app
recommendation datasets and compare them with other do-
mains, including various categories from the AMAZON PROD-
UCT REVIEWS dataset [4]–[6] (e.g., Beauty, Video Games,
CDs and Vinyl, Software, Grocery and Gourmet Food) and
MOVIELENS-1M [7]. Our analysis, detailed in Figure 2,
reveals an important pattern in other domain datasets: a
substantial concentration of zero time differences between
user interactions. Since many datasets, except for mobile app
recommendation datasets, exhibit interactions on the same day,
existing methods [8], [9] that consider time intervals between
interactions do not need to learn to account for extended
time gaps. These methods employ interval-based self-attention
mechanisms, which are not effective in capturing the longer
gaps between interactions.

In this work, we introduce a novel approach that integrates
the gaps between successive interactions directly at the embed-
ding layer. By embedding the time intervals early in the model
architecture, we allow the model to learn and incorporate the
temporal dynamics of user behavior more effectively. This
approach captures longer gaps between interactions effectively,

https://arxiv.org/abs/2506.12661v1
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Fig. 2: Percentage of consecutive user interactions on the same
day in the mobile app domain compared to other domains.

which are particularly prevalent in the mobile app domain, and
significantly enhances the model’s ability to generate accurate
recommendations compared to existing techniques [8], [9] that
fail to adequately account for these extended time intervals.
Figure 1 provides an overview of our approach.

Specifically, we build INTERPOS on the observation that a
user’s interaction rhythm encodes valuable behavioral patterns
that can be used for morphing the position encoding of
items effectively. To achieve this, we introduce three fusion-
based strategies for transformer-based recommender system
architectures. These strategies, namely basic fusion, multilayer
perceptron-based fusion, and gated fusion, are developed to
integrate user rhythm into the recommendation process. The
basic fusion strategy adds traditional position embeddings with
rhythmic embeddings. The multilayer perceptron-based fusion
incorporates additional layers of multilayer perceptrons after
concatenating absolute position and user rhythm embeddings,
enhancing the model’s capacity to capture intricate relation-
ships. Lastly, the gated fusion leverages a gating mechanism,
enabling the model to learn how to judiciously mix and match
positional embedding with rhythmic embedding.

To validate the efficacy of our proposed strategies, we
implement them in two well-established transformer-based
architectures: LightSANs [10] and SASRec [11]. Through
this integration, we report considerable performance improve-
ments across 7 mobile app recommendation datasets. On
average, across all the datasets, INTERPOS fusion strate-
gies, called INTERPOS-BF, INTERPOS-GF, and INTERPOS-
MF, achieve up to 157.3%, 156.67%, and 158% improve-
ment in NDCG@20 and 145.62%, 141.01%, and 142.85%
improvement in NDCG@20, respectively. We observe that,
across all the dataset splits, INTERPOS-BF, INTERPOS-GF,
and INTERPOS-MF show up to 145.15%, 139.39%, and
1143.63% improvement in HIT@10 and 142.6%, 133.04%,
and 137.04% improvement in HIT@20.

Our contributions are as follows:

• We investigate an underexplored domain in recommen-
dation systems: mobile app recommendations.

• We introduce a novel paradigm that seamlessly integrates
position embedding with user interaction rhythm by

developing three fusion strategies for transformer-based
recommender system architectures.

• We empirically demonstrate the effectiveness of incorpo-
rating interaction rhythm guidance and morphed position-
ing through extensive studies in mobile app recommen-
dation, showcasing its superior performance.

II. PRELIMINARIES

Problem Formulation. Let U =
{
U1,U2,U3, . . . ,U|U|

}
and

I =
{
I1, I2, I3, . . . , I|I|

}
represent the set of users and apps,

respectively. A user-app interaction sequence is defined by
SUi =

{
(Ui, Ip)|SUi |

}
where i ∈

{
x | 1 ≤ x ≤ U|U |

}
and

p ∈
{
y | 1 ≤ y ≤ I|I|

}
. Given a user-app interaction sequence

for i-th user:
SUi =

{
(Ui, I1)1 , (Ui, I2)2 , . . . , (Ui, Ip)|SUi |−1

}
(1)

up to sequence length |SUi | − 1, sequential recommendation
seeks to predict the next app which a user is likely to interact
with, Ip+1 in the user’s next interaction (Ui, Ip+1)|SUi |. It is
important to note that the users are not explicitly modeled
in the task formulation. The users are represented by their
interaction history. Having noted this detail, we can simplify
the notation by dropping the reference to the user in the
interaction history, SUi . The simplified user-app interaction
sequence can be written as:

SUi =
(
S1,S2,S3,S4, . . . ,S|SUi |

)
(2)

Given an input user/item sequence SUi =(
S1,S2,S3,S4, . . . ,S|SUi |−1

)
the model is expected

to predict the shifted version of the input SUi =(
S2,S3,S4,S5, . . . ,S|SUi |

)
. Sequential data can be modeled

with an autoregressive transformers architecture [12]–[20].
Self-attention. Self-attention is the main architectural
choice behind transformers. Self-attention is defined as:
Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, where Q,K, and

V are query, key, and value matrices, respectively. In a
transformer-based next-item prediction task, an embedding
layer, fΨ, is employed to encode the items in a user’s in-
teraction history, SUi , into the embedding space.

Ψ = fΨ(SUi), (3)

where item embedding matrix Ψ ∈ Rn×d and d is the
embedding dimension. Correspondingly, the input embedding
matrix can be thought of as containing item embeddings.

Each Ii represents an item in the embedding space. The
self-attention mechanism must be equipped with a sense
of order in the input sequence. Let us define the absolute
positions as P = {P1,P1, . . . ,Pn}. fΘ(.) is employed for
encoding the absolute position information into embedding
space, represented as Θ. Position embeddings have the same
dimension as the input embeddings Θ ∈ Rn×d. Finally,
E = Ψ + Θ represents the user-item interaction sequence,
SUi in the embedding space:

E =


I1 +P1

I2 +P2

...
In +Pn

 (4)
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Fig. 3: Overview of INTERPOS Fusion Architectures.

III. APPROACH

First, we conceptualize and represent the mathematical
formulation of our proposed approach.

A. User’s Interaction Rhythm

A user-item interaction is represented by a sequence SUi

for a user Ui. We assume that a user’s interaction sequence
emerges across a particular period, and we call it the Activity
Window. Referring back to Equation 1, we can rewrite the
Equation 2 as follows:

SUi =
(
St1
1 ,St2

2 ,St3
3 ,St4

4 , . . . ,StN
|SUi |

)
(5)

where tN represents the time of interaction for the last
interaction for a user Ui. Let us define ∆t1 = 0 and
∆ti = ti − ti−1∀i ∈ {2, 3, . . . , n}. Having the notion of ∆ti
noted, let us define fΩ(.) to encode a user’s interaction rhythm
∆ti to the embedding space. Now, we can define the user’s
embedded interaction rhythm, Ω, as follows:

Ω = {R1,R2,R3, . . . ,Rn} (6)

Ω encodes the useful behavioral and preferential shifts for
a user over the Activity Window. Ri represents the encoded
∆ti in the embedding space, i.e., fΩ(∆ti). We argue that
Ω can be consumed by next-item prediction architectures for
making more informed predictions. We propose three different
architectural variations to fuse Ω into an autoregressive next-
item prediction architecture.

B. Fusion Architectures

We present three different fusion methodologies to incorpo-
rate Ω into autoregressive next-item prediction architectures.
Our proposed methodologies morph the existing position
encoding Θ, by fusing Ω into it, effectively enriching the
model’s ability to discern the relative importance of the user’s
interaction history over the Activity Window.

Basic Fusion. Basic fusion employs a direct fusion approach
of Θ and Ω. Let us define a vector-valued function f : Rd ×
Rd → Rd. f can represent element-wise summation, element-
wise multiplication, or some other function. In our case, F
is a simple element-wise addition. Let us say M represents a
morphed version of Θ by fusing it with Ω through f :

M = f(Θ,Ω) (7)

M is employed to update Equation 4 to get the user-app
interaction sequence. SUi in the updated embedding space,
E′, with morphed position embeddings,

E′ =


I1 +M1

I2 +M2

...
In +Mn

 (8)

where Mi is an element-wise sum of Pi and Ri. Figure 3a
depicts the INTERPOS-BF architecture.
MLP Fusion. Let us define h to be a multi-layer perceptron
such that h : R2d → Rd. Given Θ and Ω, [Θ,Ω] represent
their instance-wise concatenation, resulting in Rn×2d matrix.
Having Θ and Ω concatenated, h is employed to generate the
fused matrix M,

M = h([Θ,Ω]) (9)

Equation 8 is employed for generating the updated embed-
dings for SUi where Mi represents h([Pi,Ri]) Figure 3b
outlines the INTERPOS-MF fusion architecture.
Gated Fusion. Let hp, hr and hc be multi-layer perceptrons. Θ
is linearly projected using hp and tanh non-linearity is applied
such that hp(Θ) ∈ Rn×d. hr is employed to project the rhythm
embeddings Ω to the embedding space, followed by a tanh
non-linearity such that hr(Ω) ∈ Rn×d. Gating matrix W is
obtained by linearly projecting [Θ,Ω] ∈ Rn×2d using hc where
[Θ,Ω] ∈ Rn×2d represents the concatenation of Θ ∈ Rn×d



TABLE I: Datasets statistics.
Descriptor ↓ Dataset −→ Action RolePlaying Casual Simulation Strategy Puzzle MobileRec

# Unique Users 80961 77858 48091 56771 52055 51456 0.7 M
# Unique Apps 529 658 432 537 520 537 10173
Avg. interactions per user 9.82 9.63 8.22 8.58 8.37 8.34 27.56
Avg. interactions per app 1502.93 1139.57 915.47 906.56 838.06 798.92 1896.88
Maximum interactions by a user 29 30 23 24 22 24 256
Maximum interactions on an app 5372 3663 5209 3180 305 3742 14,345
Total Interactions (in Millions) 0.79 M 0.74 M 0.39 M 0.48 M 0.42 M 0.43 M 19.3 M

and Ω ∈ Rn×d. Once [Θ,Ω] ∈ Rn×2d has been projected, a
sigmoid function is employed to get the gating signal. Gated
fusion can be represented as follows:

Θ′ = tanh(hp(Θ)) (10)
Ω′ = tanh(hr(Ω)) (11)
W = σ(hc([Θ,Ω])) (12)

M = W ⊙Θ′ + (1−W)⊙ Ω′ (13)

where Θ′ and Ω′ represent the linear projections of Θ and
Ω. σ represents the sigmoid function, and W is the gating
signal that is employed to fuse the updated position and
user’s interaction rhythm to get the fused matrix, M ∈ Rn×d.
Figure 3c illustrates the INTERPOS-GF architecture.

IV. EXPERIMENTS

A. Experimental Setup

We use RecBole [26]–[28] for the implementation. We
integrate INTERPOS into LightSANs [10] and SASRec [11]
architectures. LightSANs integration is as follows. We use two
transformer layers with two attention heads, the hidden size
is 64 and the inner size is 256, while the number of latent
interests is set to 5. The sequence length is capped at 50, with
a hidden dropout probability of 0.5 and an attention dropout
probability of 0.5. Hidden activation is Gaussian Error Linear
Unit (GELU) and cross-entropy (CE) loss for the next-item
prediction task. Models are trained for 100 epochs with an
early-stopping patience of 10 with a batch size of 4096, and
our learning rate is 0.001. SASRec has two transformer layers
with two attention heads; the hidden size is 128 and the inner
size is 256. We employ GELU activation and the Adam opti-
mizer with a learning rate of 0.001. The same base SASRec
architecture is consistently kept across for INTERPOS integra-
tion to get INTERPOS-BM, INTERPOS-GF, and INTERPOS-
MF. The models’ trainable parameters depend on the maxi-
mum interaction rhythm difference. A leave-one-out strategy
is employed for validation and testing. The full item set is
used for evaluation. We normalize the interaction rhythms
in Action, Casual, RolePlaying, Puzzle, Simulation, Strategy
with 0.2 and in case of MobileRec dataset, we clip the
interaction rhythm at 800. We employ HIT@K and NDCG@K
evaluation metrics where k ∈ {10, 15, 20}.

B. Datasets

Our experiments use 7 datasets for evaluating INTERPOS
and benchmarking the performance gains in comparison with
the competing baselines. MobileRec [29] is a large-scale
dataset with over 19 million user-app interactions spanning

48 categories. We select the top 6 categories with the high-
est number of interactions, including (Action, RolePlaying,
Puzzle, Casual, Simulation, Strategy, and Simulation). On top
of these 6 datasets, a full-scale MobileRec [29] dataset with
all 48 categories has also been used to establish the efficacy
of INTERPOS. Table I presents detailed statistics of datasets.

C. Baselines

We have employed several strong baselines for benchmark-
ing the efficacy of INTERPOS, as described in the following.

Pop is a simple popularity-based recommender system. This
model captures the popularity of items in the dataset and
suggests the most popular items to users as recommendations.
GRU4Rec [21] applies an RNN-based method for the session-
based recommendation. This baseline presents a method to
account for data distribution shifts along with data augmenta-
tion. LightSANs [10] introduces a self-attention network with
low-rank decomposition that projects users’ historical items
onto a small number of latent interests. SASRec [11] employs
the attention mechanism for sequential recommendation task.
SINE [22] proposes to use multiple embeddings to capture
various aspects of a user’s behavior. HGN [23] emphasizes the
importance of recent chronological user-app interactions and
integrates Bayesian Personalized Ranking (BPR) to capture
both long-term and short-term user interests. GCSAN [24]
a graph-contextualized self-attention model is proposed that
employs both graph neural networks and self-attention net-
works. Graph neural network captures rich local associations,
while self-attention networks capture long-range correlations.
BERT4Rec [25] utilizes bidirectional self-attention, framing
the sequential recommendation problem under the cloze objec-
tive. TiSASRec [8] incorporates time intervals between user
interactions by explicitly modeling the timestamp of the inter-
actions in the self-attention layer. FEARec [9] explicitly learns
low-frequency and high-frequency information and combines
time and frequency characteristics via auto-correlation.

V. RESULTS AND DISCUSSION

We observe that INTERPOS with all the variations, exhibits
a strong capability to steer the target model towards better
performance. Our experiments also show that the proposed
rhythm integration strategies INTERPOS-BF, INTERPOS-GF,
and INTERPOS-MF show their strengths on all datasets.
Performance on Action dataset. Action dataset has ≈81k
unique users and 529 unique apps with nearly 1500 interac-
tions per unique app and around 9 interactions per unique user
on average. We report our results for Action dataset in Table II.
Overall, when INTERPOS is incorporated in the LightSANs,



TABLE II: Results on Action dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0111 0.0132 0.0144 0.0248 0.0325 0.0377

Sequential

GRU4Rec [21] 0.0130 0.0166 0.0197 0.0295 0.0432 0.0565
LightSANs [10] 0.0142 0.0181 0.0217 0.0312 0.0458 0.0609
SASRec [11] 0.0134 0.0171 0.0202 0.0291 0.0432 0.0564
SINE [22] 0.0091 0.0119 0.0142 0.0202 0.0307 0.0403
HGN [23] 0.0128 0.0165 0.0199 0.0283 0.0425 0.0569
GCSAN [24] 0.0129 0.0164 0.0195 0.0281 0.0412 0.0546
BERT4Rec [25] 0.0096 0.0128 0.0154 0.0218 0.0339 0.0452

Time-aware FEARec [9] 0.0147 0.0194 0.0201 0.0293 0.0461 0.0514
TiSASRec [8] 0.0150 0.0199 0.0212 0.033 0.0514 0.0575

This work

LightSANs
INTERPOS-BF 0.0386 0.0465 0.0533 0.0809 0.1107 0.1395
INTERPOS-GF 0.0385 0.0461 0.0523 0.0790 0.1077 0.1340
INTERPOS-MF 0.0387 0.0463 0.0527 0.0804 0.1095 0.1363

SASRec
INTERPOS-BF 0.0234 0.0286 0.0331 0.0491 0.069 0.0878
INTERPOS-GF 0.0257 0.0316 0.0364 0.0539 0.0761 0.0964
INTERPOS-MF 0.0262 0.0324 0.0375 0.0555 0.0788 0.1008

TABLE III: Results on RolePlaying dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0056 0.0084 0.0130 0.0132 0.0237 0.0436

Sequential

GRU4Rec [21] 0.0174 0.0210 0.0246 0.0362 0.0497 0.0651
LightSANs [10] 0.0165 0.0206 0.0238 0.0357 0.0511 0.0649
SASRec [11] 0.0146 0.018 0.0212 0.0522 0.0717 0.0916
SINE [22] 0.0094 0.0112 0.0131 0.0192 0.0262 0.0343
HGN [23] 0.0126 0.0160 0.0190 0.0270 0.0399 0.0523
GCSAN [24] 0.0120 0.0149 0.0175 0.0258 0.0365 0.0477
BERT4Rec [25] 0.0102 0.0128 0.0151 0.0210 0.0308 0.0403

Time-aware FEARec [9] 0.0181 0.0191 0.024 0.04 0.0558 0.0651
TiSASRec [8] 0.0194 0.0206 0.0203 0.0387 0.0522 0.0654

This work

LightSANs
INTERPOS-BF 0.0328 0.0398 0.0451 0.0684 0.0949 0.1174
INTERPOS-GF 0.0353 0.0429 0.0485 0.0747 0.1035 0.1271
INTERPOS-MF 0.0341 0.0412 0.0466 0.0724 0.0996 0.1220

SASRec
INTERPOS-BF 0.0252 0.0303 0.0350 0.0522 0.0717 0.0916
INTERPOS-GF 0.0294 0.0354 0.0402 0.0612 0.084 0.1042
INTERPOS-MF 0.0283 0.0342 0.0387 0.0597 0.0821 0.1012

it performs better than SASRec integration. In LightSANs
integration, INTERPOS-BF performs better on NDCG@k
where k ∈ {15, 20}. On HIT@k, INTERPOS-BF is a better-
performing strategy for k ∈ {10, 15, 20}. This observation that
within one dataset, our proposed fusion strategies find their
strengths on different values of k in both NDCG and HIT
can be attributed to relative metric strictness. We argue that
the choice of INTERPOS (i.e., INTERPOS-BF, INTERPOS-
GF, INTERPOS-MF) fusion strategies depends upon the
dataset’s distributional variations and the underlying metric.
In comparison with other competing baselines, we observe
that INTERPOS outperforms all the baselines by a significant
margin. Among the baselines, time-aware baselines perform
the best while the popularity remains the worst. The sequen-
tial recommendation baselines have mixed results among all
the sequential baselines. LightSANs [10] demonstrates strong
performance on NDCG@k and HIT@k for all values of k. The
time-aware baselines outperform all the sequential baselines
except for the NDCG@20 metric, which shows that time-
sensitivity in fact plays an important role. INTERPOS man-
ages to outperform time-aware baselines by a large margin.
As compared to best-performing baselines, on NDCG@10, we
observe a percentage improvement of 157.3%, 156.67%, and
158% by INTERPOS-BF, INTERPOS-GF, and INTERPOS-

MF respectively in LightSANs integration. On NDCG@20,
INTERPOS-BF, INTERPOS-GF, and INTERPOS-MF manage
to achieve 145.62%, 141.01%, and 142.85% improvement
compared to LightSANs [10], respectively. On HIT@10 and
HIT@20, INTERPOS-BF manages a percentage improvement
of 145.15% and 142.6%, INTERPOS-GF demonstrates an
improvement of 139.39% and 133.04% while INTERPOS-MF
shows 143.63% and 137.04% improvement.

Performance on RolePlaying dataset. RolePlaying has
roughly 78k unique users and 658 unique apps, with an
average interaction of 1139.57 per unique app and 9.63 per
unique user. Table III reports the results for RolePlaying.
INTERPOS-MF is the best-performing fusion strategy among
INTERPOS when integrated into LightSANs. Again, time-
aware baselines perform better as compared to other baselines.
Among sequential baselines, GRU4Rec [21] is the among
all the baselines. INTERPOS-MF integration with LightSANs
obtains a considerable percentage improvement over all base-
lines. INTERPOS-GF integration with LightSANs achieves a
significant 88.62% improvement against GRU4Rec [21] on
NDCG@10. Similarly, it demonstrates an 81.95% improve-
ment on NDCG@10 compared to TiSASRec. On HIT@15
and HIT@20, INTERPOS-GF shows 85.48% and 94.34%
improvement in comparison with time-aware baselines.



TABLE IV: Results on Casual dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0112 0.0144 0.0186 0.0204 0.0324 0.0501

Sequential

GRU4Rec [21] 0.0294 0.0351 0.0399 0.0576 0.0791 0.0998
LightSANs [10] 0.0294 0.0355 0.0403 0.0559 0.0793 0.0996
SASRec [11] 0.0283 0.0340 0.0386 0.0566 0.0783 0.0975
SINE [22] 0.0256 0.0295 0.0327 0.0466 0.0613 0.0752
HGN [23] 0.0288 0.0343 0.0392 0.0569 0.0778 0.0985
GCSAN [24] 0.0267 0.0317 0.0361 0.0508 0.0699 0.0885
BERT4Rec [25] 0.0252 0.0295 0.0331 0.0515 0.0678 0.0830

Time-aware FEARec [9] 0.0304 0.041 0.0353 0.0599 0.089 0.0973
TiSASRec [8] 0.0261 0.04 0.0344 0.057 0.0822 0.1023

This work

LightSANs
INTERPOS-BF 0.0390 0.0474 0.0551 0.0790 0.1108 0.1434
INTERPOS-GF 0.0400 0.0484 0.0545 0.0817 0.1136 0.1394
INTERPOS-MF 0.0424 0.0518 0.0592 0.0871 0.123 0.1541

SASRec
INTERPOS-BF 0.0316 0.0377 0.0435 0.0634 0.0867 0.1113
INTERPOS-GF 0.0343 0.0402 0.0455 0.0664 0.0891 0.1112
INTERPOS-MF 0.0329 0.0392 0.0445 0.0654 0.0894 0.1119

TABLE V: Results on Strategy dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0194 0.0213 0.0244 0.0341 0.0411 0.0543

Sequential

GRU4Rec [21] 0.0212 0.0270 0.0313 0.0478 0.0698 0.0880
LightSANs [10] 0.0268 0.0332 0.0384 0.0579 0.082 0.1040
SASRec [11] 0.0186 0.0240 0.0285 0.0412 0.0618 0.0808
SINE [22] 0.0098 0.0127 0.0156 0.0200 0.0308 0.0432
HGN [23] 0.0207 0.0265 0.0312 0.0445 0.0664 0.0863
GCSAN [24] 0.0171 0.0216 0.0255 0.0387 0.0559 0.0722
BERT4Rec [25] 0.0140 0.0178 0.0208 0.0307 0.0454 0.0580

Time-aware FEARec [9] 0.0237 0.0336 0.0336 0.0599 0.0899 0.0943
TiSASRec [8] 0.0253 0.0375 0.0375 0.0592 0.0912 0.1056

This work

LightSANs
INTERPOS-BF 0.0403 0.0482 0.0552 0.086 0.116 0.1457
INTERPOS-GF 0.0395 0.0471 0.0540 0.0845 0.1133 0.1423
INTERPOS-MF 0.0384 0.0465 0.0533 0.0816 0.1122 0.1411

SASRec
INTERPOS-BF 0.0283 0.0348 0.0404 0.0611 0.0857 0.1093
INTERPOS-GF 0.0299 0.0368 0.0426 0.064 0.0902 0.1150
INTERPOS-MF 0.0316 0.0383 0.0442 0.0661 0.0914 0.1165

Performance on Casual dataset. Table IV summarizes the re-
sults on Casual dataset. INTERPOS-MF integrated with Light-
SANs outclasses baselines and other fusion strategies. Time-
aware baselines perform better as compared to others with
the exception of NDCG@20 metric, where LightSANs [10]
performs better as compared to other baselines. INTREPOS-
MF integrated with LightSANs manages to outperform the best
time-aware baseline (i.e., FEARec) by 39.47% on NDCG@10
metric and by 67.70% on NDCG@20. Notable improvements
are obtained by other fusion strategies on NDCG@10 and
NDCG@15. Consider the NDCG@10 and NDCG@15 metrics,
INTERPOS-BF manages to outperform FEARec by 28.28%
and 15.60% while INTERPOS-GF demonstrates a percent
improvement of 31.57% and 18.04%. On HIT@10, HIT@15,
and HIT@20, INTERPOS-MF shows 45.40%, 38.20%, and
50.63% improvements against the best-performing (i.e., time-
aware) baselines on these metrics. INTERPOS-BF shows an
improvement of 31.88%, 24.49%, and 40.17% on these metrics
in comparison with the best-performing baselines. Similarly,
INTERPOS-GF manages to obtain, 36.39%, 27.64%, and
36.26% improvement in comparison with the best performing
baselines on HIT@10, and HIT@15, and HIT@20.

Performance on Simulation dataset. Table VI presents

the results on Simulation dataset. On NDCG@20, under
LightSANs integration, INTERPOS-BF demonstrates 72.94%
improvement over the best-performing baseline LightSANs.
INTERPOS-GF and INTERPOS-MF show 46.91% and
62.67% improvement over LightSANs on NDCG@20. On
NDCG@10 FEARec outclasses other baselines. INTERPOS-
BF manages to get 46.93% improvement over the best-
performing baseline. On HIT@10 and HIT@20, INTERPOS-
BF outperforms the best baseline method TiSASRec by 52.52%
and 62.67%, while INTERPOS-GF manages a 30.32% and
41.78% improvement and INTERPOS-MF shows a 48.13%
and 57.74% improvement, respectively.

Performance on Strategy dataset. On Strategy dataset,
INTERPOS in both integration with LightSANs and SASRec
outclass all the competing baselines. Detailed results are
shown in Table V. On NDCG@10, LightSANs [10] outclasses
the other baseline methods. INTERPOS-BF under Light-
SANs integration manages to outperform LightSANs [10] on
NDCG@10 by 50.37%. Similarly, on HIT@15 and HIT@20,
INTERPOS-BF manages to outperform the best competing
baselines FEARec and LightSANs [10] by 28.53% and 43.75%.
On the other hand, on NDCG@10, INTERPOS-GF and
INTERPOS-MF show a percentage improvement of 47.38%



TABLE VI: Results on Simulation dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0136 0.0178 0.0202 0.0255 0.0414 0.0518

Sequential

GRU4Rec [21] 0.0197 0.0245 0.0289 0.0407 0.0587 0.0774
LightSANs [10] 0.0198 0.0248 0.0292 0.0412 0.0601 0.0789
SASRec [11] 0.0175 0.0221 0.0263 0.0383 0.0558 0.0732
SINE [22] 0.0145 0.0171 0.0200 0.0345 0.0445 0.0567
HGN [23] 0.0181 0.0231 0.0273 0.0383 0.0571 0.0751
GCSAN [24] 0.0179 0.0226 0.0268 0.0397 0.0579 0.0755
BERT4Rec [25] 0.0149 0.0194 0.0227 0.0324 0.0495 0.0633

Time-aware FEARec [9] 0.0245 0.0246 0.025 0.0417 0.0644 0.0731
TiSASRec [8] 0.0159 0.0313 0.0285 0.0455 0.0611 0.0781

This work

LightSANs
INTERPOS-BF 0.036 0.0435 0.0505 0.0694 0.0977 0.1277
INTERPOS-GF 0.0299 0.0369 0.0429 0.0593 0.0857 0.1113
INTERPOS-MF 0.0335 0.0409 0.0475 0.0674 0.0953 0.1232

SASRec
INTERPOS-BF 0.0177 0.0223 0.0261 0.0389 0.0564 0.0724
INTERPOS-GF 0.0216 0.0274 0.0327 0.0462 0.0680 0.0905
INTERPOS-MF 0.0211 0.0266 0.0316 0.0446 0.0657 0.0867

TABLE VII: Results on Puzzle dataset, best results are shown in bold, second best results are underlined.

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0172 0.0215 0.0244 0.0382 0.0545 0.0668

Sequential

GRU4Rec [21] 0.0224 0.0271 0.0317 0.0458 0.0635 0.0832
LightSANs [10] 0.0229 0.0278 0.0322 0.0464 0.0652 0.0837
SASRec [11] 0.0221 0.0270 0.0313 0.0446 0.0635 0.0816
SINE [22] 0.0194 0.0227 0.0257 0.0377 0.0506 0.0629
HGN [23] 0.0222 0.0270 0.0314 0.0454 0.0638 0.0823
GCSAN [24] 0.0227 0.0274 0.0313 0.0465 0.0644 0.0812
BERT4Rec [25] 0.0189 0.0228 0.0259 0.0363 0.0510 0.0642

Time-aware FEARec [9] 0.0267 0.0288 0.0338 0.052 0.0679 0.0725
TiSASRec [8] 0.0262 0.0316 0.0355 0.048 0.0717 0.0828

This work

LightSANs
INTERPOS-BF 0.0377 0.0444 0.0505 0.0719 0.0976 0.1234
INTERPOS-GF 0.0408 0.0485 0.0556 0.0789 0.1082 0.1379
INTERPOS-MF 0.0370 0.0440 0.0506 0.0701 0.0967 0.1248

SASRec
INTERPOS-BF 0.0231 0.0285 0.0330 0.0478 0.0683 0.0872
INTERPOS-GF 0.0283 0.0344 0.0401 0.0583 0.0814 0.1055
INTERPOS-MF 0.0246 0.0303 0.0354 0.0515 0.0731 0.0949

and 43.28%, respectively. On NDCG@20, INTERPOS-GF
and INTERPOS-MF manage to get 40.62% and 38.8% im-
provement over LightSANs [10]. On HIT@10, we notice that
INTERPOS-BF demonstrates considerable improvement by
43.57% over FEARec, while INTERPOS-GF and INTERPOS-
MF demonstrate 41.06% and 36.22% improvements over the
best baseline. Similarly, a 27.19% and 37.97% improvement is
shown by INTERPOS-BF on HIT@15 and HIT@20 evaluation
metrics over TiSASRec.

Performance on Puzzle dataset. On Puzzle dataset,
INTERPOS-GF turns out to be the outstanding fusion strategy.
In comparison with the most competitive baseline FEARec
on NDCG@10, INTERPOS-GF shows 52.80% improvement.
Similarly, INTERPOS-GF obtains a performance improvement
of 53.48% and 56.61% over the best-performing baseline
(i.e., TiSASRec) on NDCG@15 and NDCG@20, respectively.
INTERPOS-BF gets 42.25% and INTERPOS-MF manages a
42.53% improvement over TiSASRec on NDCG@20. INTER-
POS outclasses the best baseline on HIT@10 and HIT@20 by
significant margins, where INTERPOS-GF shows the highest
improvement among the INTERPOS variations, 51.73% and
64.75%, respectively.

Performance on MobileRec dataset. On the MobileRec

dataset, we observe INTERPOS with SASRec settings are the
best-performing models, INTERPOS-GF outperforms all of
our variants on all metrics with the exception of HIT@20.
We believe the key reason behind the INTERPOS integrated
with SASRec variants outperforming LightSANs integrated
INTERPOS variants is that MobileRec has the least percentage
of user interactions on the same day as compared to other
datasets (shown in Figure 2). Please see Table VIII for detailed
results. In the MobileRec dataset, there are 19 million user-
app interactions, 0.7 million unique users, and more than
10k unique applications. There are 27.56 interactions per
user on average, while on average, there are more than 1800
interactions per unique app. On NDCG@10, NDCG@15, and
NDCG@20, INTERPOS-GF demonstrates 8.04%, 7.76% and
9.48% improvement compared to the best competing baseline
SASRec. On HIT@10, HIT@15, and HIT@20, INTERPOS
varitants outclass the best-performing baseline SASRec by
12.20%, 10.30%, and 13.88%, respectively.

Summary of Results. In conclusion, we observe that often
existing time-aware baselines, FEARec and TiSASRe, per-
form better than sequential baselines, which highlights the
significance of incorporating time sensitivity into the mod-
els. However, these time-aware baselines incorporated time



TABLE VIII: Results on MobileRec dataset, best results are shown in bold, second best results are underlined

Category Method ↓ Metric −→ NDCG HIT
@10 @15 @20 @10 @15 @20

Popularity Pop 0.0077 0.0092 0.0103 0.0151 0.0208 0.0256

Sequential

GRU4Rec [21] 0.0074 0.0089 0.0102 0.0153 0.021 0.0261
LightSANs [10] 0.0079 0.0092 0.0104 0.0158 0.0208 0.0260
SASRec [11] 0.0087 0.0103 0.0116 0.0172 0.0233 0.0288
SINE [22] 0.0076 0.0091 0.0102 0.0157 0.0213 0.0260
HGN [23] 0.0046 0.0056 0.0064 0.0096 0.0132 0.0165
GCSAN [24] 0.0081 0.0095 0.0107 0.0161 0.0214 0.0266
BERT4Rec [25] 0.0069 0.0081 0.0091 0.0139 0.0185 0.0226

Time-aware FEARec [9] 0.0077 0.0089 0.0071 0.0169 0.0221 0.0231
TiSASRec [8] 0.0063 0.0091 0.0107 0.0167 0.0219 0.0259

This work

LightSANs
INTERPOS-BF 0.0083 0.0098 0.0111 0.0167 0.0224 0.0279
INTERPOS-GF 0.0091 0.0107 0.0120 0.0186 0.0246 0.0301
INTERPOS-MF 0.0082 0.0097 0.0110 0.0167 0.0224 0.0278

SASRec
INTERPOS-BF 0.0089 0.0108 0.0125 0.0184 0.0256 0.0328
INTERPOS-GF 0.0094 0.0111 0.0127 0.0193 0.0257 0.0322
INTERPOS-MF 0.0093 0.0111 0.0125 0.0191 0.0256 0.0318

sensitivity at a later stage in contrast to INTERPOS, which
fuses this information earlier on and produces significantly
better results. Empirical results show that there is no clear
winner in the fusion strategies. Yet, all fusion strategies exhibit
statistically significant performance compared to all the base-
lines including sequential and time-aware recommendation
systems across all 7 datasets. Moreover, fusion strategies
integrated into SASRec demonstrate superior performance on
MobileRec, while these strategies show better results on all
other datasets when incorporated into LightSANs. It is also
important to highlight despite not being a clear winner in
the fusion strategies, the results of these strategies are sta-
tistically insignificant when compared with with another. We
empirically show that INTERPOS can better capture the user’s
behavioral and preferential shifts over the Activity Window.
Through these results, we demonstrate that the integration of
the user’s interaction rhythm into an autoregressive next-item
prediction model can facilitate better learning of the user’s
behavioral pattern leading to tailored predictions.

VI. RELATED WORK

Recommender systems have been applied in diversified
domains like products [30], [31], news [32], movies [33]
and a large body of research work focuses on improving
recommender systems, which is the focus of this work. SAS-
Rec [11] strives to find a balance between Markov Chain (MC)
based methods and Recurrent Neural Network (RNN) based
designs. BERT4Rec [25] proposed to adopt a cloze objec-
tive for randomly masked items prediction by leveraging
their bidirectional contextual conditioning. [34] proposes a
knowledge-enhanced memory network using RNN with key-
value memory networks.

He and others [35] fused similarity-based methods with
Markov chains for personalized sequential recommendations.
Observing that session embeddings and item embeddings
are not in the same embedding space, [36] proposes a
framework to unify the representation spaces for encoding
and decoding processes. [37] proposes a model to make
an informed decision on the consumption of repeated items.
A short-term attention memory priority model is proposed
in [38] [39] suggested extracting the self-supervision signal

by utilizing the inherent correlation in the data to improve the
data representation through pertaining. Convolutional filters
are employed in [40] [41] proposes parallel RNNs to exploit
user clicks and accompanying features (visual and textural)
for modeling user interaction sessions. [42] proposes a two-
layer hierarchical attention network to make use of the user’s
long-term historical interactions and short-term preferences. In
comparison, our work fuses the user’s interaction rhythm to
improve sequential recommendation systems.

Yuan and others [43] presented the idea of a holed con-
volutional neural network. [44] argues to employ explicit
features on top of the transition patterns of items Graph
neural networks are employed in [45] A neural personal-
ized embedding model is proposed in [46] for improving
the recommendation performance for cold users. The authors
in [47] proposed to employ transformer pretraining on reverse
sequences and obtain predictions on the prior items. [8]
considers the user’s interaction timestamp within the sequence
modeling. [48], [49], [50] study app reviews in context of
developer responses and app issues.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose INTERPOS which employs a
user’s interaction rhythm to morph the position encodings to
inject a sense of the user’s behavior and preference shifts
over the user’s interactions in the context of mobile apps
recommendation. We empirically establish that interaction
rhythm is correlated with a user’s behavioral pattern and can
provide an autoregressive model with a unique perspective
on a user’s preference shifts. We incroporate three strategies,
INTERPOS-BF, INTERPOS-GF, and INTERPOS-MF, into
two transformer-based recommendation system architecture.
We show that the proposed integration strategies show strong
learning capacity and help improve the underlying autoregres-
sive model for the mobile apps recommendation task. We
empirically establish that INTERPOS variants outclass the
sequential and time-aware baselines across all the datasets
by a large margin. In the future, we will explore alternative
strategies to incorporate the user’s interaction rhythm into an
autoregressive design.



REFERENCES

[1] Apple, “Apple app store,” https://apps.apple.com/, 2024, accessed: 2024-
01-06.

[2] Google, “Google play store,” https://play.google.com/store/apps, 2022,
accessed: 2024-01-06.

[3] L. Ceci, “Number of apps available in leading
app store,” https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/, accessed: 2024-
01-06.

[4] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based
recommendations on styles and substitutes,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, 2015, pp. 43–52.

[5] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in proceedings
of the 25th international conference on world wide web, 2016, pp. 507–
517.

[6] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 conference on empirical methods in natural language pro-
cessing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[7] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[8] J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for
sequential recommendation,” in Proceedings of the 13th international
conference on web search and data mining, 2020, pp. 322–330.

[9] X. Du, H. Yuan, P. Zhao, J. Qu, F. Zhuang, G. Liu, Y. Liu, and V. S.
Sheng, “Frequency enhanced hybrid attention network for sequential
recommendation,” in Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2023, pp. 78–88.

[10] X. Fan, Z. Liu, J. Lian, W. X. Zhao, X. Xie, and J.-R. Wen, “Lighter
and better: low-rank decomposed self-attention networks for next-item
recommendation,” in Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval, 2021,
pp. 1733–1737.

[11] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in 2018 IEEE international conference on data mining (ICDM).
IEEE, 2018, pp. 197–206.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[13] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[14] A. Roberts, C. Raffel, K. Lee, M. Matena, N. Shazeer, P. J. Liu,
S. Narang, W. Li, and Y. Zhou, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” 2019.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems,
vol. 32, 2019.

[17] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher,
“Ctrl: A conditional transformer language model for controllable gen-
eration,” arXiv preprint arXiv:1909.05858, 2019.

[18] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H.-W. Hon, “Unified language model pre-training for
natural language understanding and generation,” Advances in neural
information processing systems, vol. 32, 2019.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[20] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” arXiv preprint arXiv:2006.03654, 2020.

[21] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for
session-based recommendations,” in Proceedings of the 1st workshop on
deep learning for recommender systems, 2016, pp. 17–22.

[22] Q. Tan, J. Zhang, J. Yao, N. Liu, J. Zhou, H. Yang, and X. Hu, “Sparse-
interest network for sequential recommendation,” in Proceedings of the

14th ACM international conference on web search and data mining,
2021, pp. 598–606.

[23] C. Ma, P. Kang, and X. Liu, “Hierarchical gating networks for sequential
recommendation,” in Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining, 2019, pp.
825–833.

[24] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and
X. Zhou, “Graph contextualized self-attention network for session-based
recommendation.” in IJCAI, vol. 19, 2019, pp. 3940–3946.

[25] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in Proceedings of the 28th ACM international confer-
ence on information and knowledge management, 2019, pp. 1441–1450.

[26] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu,
H. Wang, C. Tian, Y. Min, Z. Feng, X. Fan, X. Chen, P. Wang, W. Ji,
Y. Li, X. Wang, and J. Wen, “Recbole: Towards a unified, comprehensive
and efficient framework for recommendation algorithms,” in CIKM.
ACM, 2021, pp. 4653–4664.

[27] L. Xu, Z. Tian, G. Zhang, J. Zhang, L. Wang, B. Zheng, Y. Li, J. Tang,
Z. Zhang, Y. Hou, X. Pan, W. X. Zhao, X. Chen, and J.-R. Wen,
“Towards a more user-friendly and easy-to-use benchmark library for
recommender systems,” 2023, p. 2837–2847.

[28] W. X. Zhao, Y. Hou, X. Pan, C. Yang, Z. Zhang, Z. Lin, J. Zhang,
S. Bian, J. Tang, W. Sun et al., “Recbole 2.0: Towards a more up-to-date
recommendation library,” in Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, 2022, pp. 4722–
4726.

[29] M. H. Maqbool, U. Farooq, A. Mosharrof, A. B. Siddique,
and H. Foroosh, “Mobilerec: A large scale dataset for mobile
apps recommendation,” p. 3007–3016, 2023. [Online]. Available:
https://doi.org/10.1145/3539618.3591906

[30] A. Yan, C. Dong, Y. Gao, J. Fu, T. Zhao, Y. Sun, and J. McAuley,
“Personalized complementary product recommendation,” in Companion
Proceedings of the Web Conference 2022, 2022, pp. 146–151.

[31] M. M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, and J. McAuley,
“Attentive sequential models of latent intent for next item recommen-
dation,” in Proceedings of The Web Conference 2020, 2020, pp. 2528–
2534.

[32] F. Wu, Y. Qiao, J.-H. Chen, C. Wu, T. Qi, J. Lian, D. Liu, X. Xie, J. Gao,
W. Wu et al., “Mind: A large-scale dataset for news recommendation,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 3597–3606.

[33] Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang, “Jointly
modeling aspects, ratings and sentiments for movie recommendation
(jmars),” in Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2014, pp. 193–202.

[34] J. Huang, W. X. Zhao, H. Dou, J.-R. Wen, and E. Y. Chang, “Im-
proving sequential recommendation with knowledge-enhanced memory
networks,” in The 41st international ACM SIGIR conference on research
& development in information retrieval, 2018, pp. 505–514.

[35] R. He and J. McAuley, “Fusing similarity models with markov chains
for sparse sequential recommendation,” in 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 2016, pp. 191–200.

[36] Y. Hou, B. Hu, Z. Zhang, and W. X. Zhao, “Core: simple and effective
session-based recommendation within consistent representation space,”
in Proceedings of the 45th international ACM SIGIR conference on
research and development in information retrieval, 2022, pp. 1796–1801.

[37] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. De Rijke, “Repeatnet:
A repeat aware neural recommendation machine for session-based
recommendation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 4806–4813.

[38] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: short-term
attention/memory priority model for session-based recommendation,”
in Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 2018, pp. 1831–1839.

[39] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang,
and J.-R. Wen, “S3-rec: Self-supervised learning for sequential recom-
mendation with mutual information maximization,” in Proceedings of
the 29th ACM international conference on information & knowledge
management, 2020, pp. 1893–1902.

[40] J. Tang and K. Wang, “Personalized top-n sequential recommendation
via convolutional sequence embedding,” in Proceedings of the eleventh
ACM international conference on web search and data mining, 2018,
pp. 565–573.



[41] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk, “Parallel recurrent
neural network architectures for feature-rich session-based recommen-
dations,” in Proceedings of the 10th ACM conference on recommender
systems, 2016, pp. 241–248.

[42] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong,
and J. Wu, “Sequential recommender system based on hierarchical
attention network,” in IJCAI International Joint Conference on Artificial
Intelligence, 2018.

[43] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A simple
convolutional generative network for next item recommendation,” in
Proceedings of the twelfth ACM international conference on web search
and data mining, 2019, pp. 582–590.

[44] T. Zhang, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, D. Wang, G. Liu, X. Zhou
et al., “Feature-level deeper self-attention network for sequential recom-
mendation.” in IJCAI, 2019, pp. 4320–4326.

[45] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp.

346–353.
[46] T. Nguyen and A. Takasu, “Npe: neural personalized embedding for

collaborative filtering,” arXiv preprint arXiv:1805.06563, 2018.
[47] Z. Liu, Z. Fan, Y. Wang, and P. S. Yu, “Augmenting sequential rec-

ommendation with pseudo-prior items via reversely pre-training trans-
former,” in Proceedings of the 44th international ACM SIGIR conference
on Research and development in information retrieval, 2021, pp. 1608–
1612.

[48] U. Farooq, A. B. Siddique, F. Jamour, Z. Zhao, and V. Hristidis, “App-
aware response synthesis for user reviews,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 699–708.

[49] M. Fereidouni, A. Mosharrof, U. Farooq, and A. Siddique, “Proactive
prioritization of app issues via contrastive learning,” in 2022 IEEE
International Conference on Big Data (Big Data), 2022, pp. 535–544.

[50] S. Maji, M. Fereidouni, V. Chhetri, U. Farooq, and A. B.
Siddique, “Mobileconvrec: A conversational dataset for mobile apps
recommendations,” 2024. [Online]. Available: https://arxiv.org/abs/2405.
17740


