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Abstract

The fields of succinct data structures and compressed
text indexing have seen quite a bit of progress over
the last two decades. An important achievement, pri-
marily using techniques based on the Burrows-Wheeler
Transform (BWT), was obtaining the full functional-
ity of the suffix tree in the optimal number of bits. A
crucial property that allows the use of BWT for design-
ing compressed indexes is order-preserving suffix links.
Specifically, the relative order between two suffixes in
the subtree of an internal node is same as that of the
suffixes obtained by truncating the first character of the
two suffixes. Unfortunately, in many variants of the
text-indexing problem, for e.g., parameterized pattern
matching, 2D pattern matching, and order-isomorphic
pattern matching, this property does not hold. Conse-
quently, the compressed indexes based on BWT do not
directly apply. Furthermore, a compressed index for any
of these variants has been elusive throughout the ad-
vancement of the field of succinct data structures. We
achieve a positive breakthrough on one such problem,
namely the Parameterized Pattern Matching problem.

Let T be a text that contains n characters from an
alphabet Σ, which is the union of two disjoint sets: Σs
containing static characters (s-characters) and Σp con-
taining parameterized characters (p-characters). A pat-
tern P (also over Σ) matches an equal-length substring
S of T iff the s-characters match exactly, and there ex-
ists a one-to-one function that renames the p-characters
in S to that in P . The task is to find the starting
positions (occurrences) of all such substrings S. Previ-
ous index [Baker, STOC 1993], known as Parameterized
Suffix Tree, requires Θ(n log n) bits of space, and can
find all occ occurrences in time O(|P | log σ+occ), where
σ = |Σ|. We introduce an n log σ+O(n)-bit index with
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O(|P | log σ+occ·log n log σ) query time. At the core, lies
a new BWT-like transform, which we call the Parame-
terized Burrows-Wheeler Transform (pBWT). The tech-
niques are extended to obtain a succinct index for the
Parameterized Dictionary Matching problem of Idury
and Schäffer [CPM, 1994].

1 Introduction

Pattern matching is a fundamental problem in Com-
puter Science with applications in web-data, texts and
biological sequences. In the data structural sense, the
text T (of n characters) is pre-processed and an index
is built to answer pattern matching queries for a pat-
tern P . Both text and pattern come from alphabet set
Σ of size σ. In the basic pattern matching query, all
occ occurrences of P in T, identified by their location
in T, are reported. Suffix trees [47] are the most pow-
erful and ubiquitous data structures for this purpose.
According to Gusfield’s book [24], they find myriad ap-
plications in sequence analysis for many different appli-
cations. Broadly speaking, there are two kinds of ap-
plications: (1) where we use augmenting data or arrays
on top of the suffix tree [37] and (2) where a variant of
suffix tree is required [5, 11, 20, 31, 17, 46].

In the era of budget, one of the negative aspects of
suffix tree was seen to be its space utilization – about
50 times the text for DNA sequences. In theoretical
sense, although considered linear in terms of words, the
suffix trees take Θ(n log n) space in terms of bit. How-
ever, the optimal is n log σ bits, leading to a complexity
gap. The advent of succinct data structures and com-
pressed text indexing, where the goal is to have data
structure in the space equal to the information theoret-
ical minimum, presented us with new indexes like Com-
pressed Suffix Array (CSA) [23] and FM-Index [16], and
eventually leading to a wonderful data structure called
fully-functional compressed suffix tree (CST) [43, 45].
In practical sense, these achieved remarkable break-
throughs by saving orders of magnitude of space. After
the introduction of CST, it could be used as a black box
to replace suffix tree. In more advanced applications,
one research line was to compress the augmenting data
and achieve succinct results. This found considerable
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success [37, 39]. However, the applications where vari-
ants of suffix trees are required (especially, one which
do not follow some crucial structural properties of suffix
trees) there has not been any significant (if any) progress
in achieving succinct/compressed indexes.

An important ingredient of suffix trees, crucial to
compressed text indexing, is suffix links. In suffix
trees, the leaves are arranged in the lexicographic order
of the suffix they represent. Suffix links have the
following order-preserving property. Consider two non-
root internal nodes u and v. The leaves obtained by
following suffix links from the leaves in u’s subtree
appear in the same relative order in the subtree of v.
Thus, the permutation of the suffixes in v’s subtree
can be encoded in terms of the permutation in u’s
subtree. In applications like p-suffix tree [5], 2D suffix
tree [20, 31], structural suffix tree [46] etc., this property
does not necessarily hold. This brings in new challenges
in how to encode such permutations, and even 15 years
after the introduction of the CSA and the FM-Index,
developing a succinct index for these classes of problem
has been elusive. Also, it has been largely unknown
whether succinct data structures are even possible. We
achieve a positive breakthrough on one such problem,
popularly known as Parameterized Pattern Matching.

1.1 Contribution
Introduced by Baker [5], we now formally define the
parameterized pattern matching problem. The alpha-
bet Σ is the union of two disjoint sets: Σs having σs
static characters (s-characters) and Σp having σp pa-
rameterized characters (p-characters). Two strings are
a parameterized match (p-match) if one can be trans-
formed to the other by applying a one-to-one function
that renames the p-characters.

Problem 1. ([5]) Let T be a text having n characters
from Σ. Assume that T terminates in an s-character
$ that appears only once. The task is to index T, such
that for a pattern P (over Σ), we can report the start
positions (occurrences) of all the substrings of T that
are a p-match with P .

Example. Let Σs = {A,B,C, $} and Σp = {w, x, y, z}.
Then, P = AxByCx p-matches within T[1, 21] =
AyBxCyAwBxCzxyAzBwCz$ at positions 1 and 15.
At position 1, the mapping is x → y and y → x;
whereas at position 15, the mapping is x → z and
y → w. Note that P does not match at position 7
because x would have to match with both w and z.

Baker [5] presented an index known as Parame-
terized Suffix Tree (p-suffix tree) that uses Θ(n log n)
bits. It can count the number of occurrences in

O(|P | log σ) time, and then report each occurrence in
O(1) time. Following is our main contribution.

Theorem 1. By using an n log σ+O(n)-bit self-index,
we can count the number of p-matches of a pattern P in
T[1, n] in O(|P | log σ) time. Subsequently, each match
can be reported in O(log σ log n) time.

At the core of our index, lies a new BWT-like trans-
form for a parameterized text, called the Parameterized
BWT. Using this, we handle the order-inversion in the
case of p-suffixes when their first characters are trun-
cated. To achieve this, we implement analogous ver-
sions of the last-to-first column mapping of Ferragina
and Manzini [16] using newly introduced concepts cou-
pled with existing succinct data structure toolkit.

The orthogonal problem to text indexing is the so-
called Dictionary Matching problem [2, 9, 26, 27]. The
task is to index multiple patterns and given a text, find
the positions having at least one occurrence of a pattern.
Idury and Schäffer [29] considered the following variant
known as Parameterized Dictionary Matching.

Problem 2. ([29]) Let D be a collection of d patterns
{P1,P2, . . . ,Pd} of total length n characters that are
chosen from Σ. The task is to index D, such that given a
text T (also over Σ), we can report all pairs 〈j,Pi〉 i.e.,
a position j and a pattern Pi ∈ D which is a p-match
with T [j − |Pi|+ 1, j].

Largely based on the Aho-Corasick (AC) automaton [2],
Idury and Schäffer presented an Θ(m logm) bit index,
where m ≤ n+ 1 is the number of states in the automa-
ton, that can report all occ pairs in time O(|T | log σ +
occ). Recently, Ganguly et al. [18] presented an
O(n log σ+d log n)-bit index with O(|T |(log σ+logσ n)+
occ) query time (see [19] for its dynamic version). By
largely reusing the index for proving Theorem 1, cou-
pled with a transform that closely resembles the XBWT
of Ferragina et al. [15], we prove the following theorem
which improves the existing results [18, 29].

Theorem 2. All occ pairs 〈j,Pi〉, such that a pattern
Pi ∈ D is a p-match with T [j−|Pi|+ 1, j], can be found
in O(|T | log σ + occ) time using an m log σ + O(m +
d log(m/d))-bit index.

1.2 Applications and Related Work
The main motivation behind Problem 1 is software pla-
giarism/clone detection. Baker [6] presented the role
of the problem and the efficiency of p-suffix trees us-
ing a program called Dup. Subsequently, the method-
ology became an integral part of various tools for soft-
ware version management and clone detection, where
identifiers and/or literals are renamed. Typically, these



are referred to as Type 2 clones in the literature.
(See [33, 41, 42] for well-cited surveys on this topic.) Al-
though there are different methodologies available, use
of p-suffix trees to detect Type-2 clones has proven use-
ful [8, 34, 44]. These typically use a hybrid approach,
such as a combination of (i) a parse tree, which converts
literals into parameterized symbols, and (ii) a p-suffix
tree on top of these symbols. Unfortunately, as with
traditional suffix trees, the space occupied by p-suffix
trees is too large for most practical purposes. In fact,
one of the available tools (CLICS [1]) very clearly ac-
knowledges that the major space consumption is due to
the use of suffix tree over parameterized symbols. This
inhibits the tool to be used for large software reposito-
ries. Some other tools [28] use more IR type method-
ology for indexing repositories based on variants of the
inverted index. Although less space consuming, there
are no theoretical guarantees possible on query-times in
such indexes. Following are a few other works that have
used p-suffix trees: finding relevant information based
on regular expressions in sequence databases [13, 14],
detecting cloned web pages [12], detecting similarities
in JAVA sources from bytecodes [7], etc.

On the theoretical side, parameterized pattern
matching has seen constant development since its in-
ception by Baker [5] in 1993. In one direction, the focus
was to design fast construction algorithms of p-suffix
trees [10, 32]. Other works [4, 25, 30] include addressing
variants such as p-matching in the streaming model and
approximate p-matching. Further generalizations of p-
matching have also played an important role in compu-
tational biology for finding similar sequences [3, 46]. We
refer the reader to [35, 36] for recent surveys.

1.3 Map
In Section 2, we take a close look at the parameterized
suffix tree of Baker [5] as it plays a crucial role in
the proposed index. The details of the parameterized
BWT, its accompanying last-to-first column mapping
implementation, and the adaptation of the backward-
search methodology are presented in Sections 3, 4, and 5
respectively. Section 6 presents a succinct index for
Problem 2. We conclude the paper in Section 7.

2 Parameterized Suffix Tree

Throughout this paper, we use the following terminolo-
gies: for a string S, |S| is its length, S[i], 1 ≤ i ≤ |S|, is
its ith character and S[i, j] = S[i] ◦ S[i+ 1] ◦ · · · ◦ S[j],
where ◦ denotes concatenation. If i > j, S[i, j] denotes
an empty string. Also Si denotes the circular suffix
starting at position i. Specifically, Si is S if i = 1 and
is S[i, |S|] ◦ S[1, i− 1] otherwise.

Baker [5] introduced the following encoding scheme

for matching strings over Σ = Σs ∪ Σp. A string
S is encoded into a string prev(S) of length |S| by
replacing the first occurrence of every p-character in S
by 0 and any other occurrence of a p-character by the
difference in text position from its previous occurrence.
Specifically, for any i ∈ [1, |S|], prev(S)[i] = S[i] if S[i]
is an s-character; otherwise, prev(S)[i] = (i − j), where
j < i is the last occurrence of S[i] before i. If j does
not exist, then j = i. For example, prev(AxByBx) =
A0B0B4, where A,B ∈ Σs and x, y ∈ Σp. Note that
prev(S) is a string over Σ′ = Σs∪{0, 1, . . . , |S|−1}, and
can be computed in time O(|S| log σ).

Fact 1. ([5]) Two strings S and S′ are a p-match iff
prev(S) = prev(S′). Also S and a prefix of S′ are a
p-match iff prev(S) is a prefix of prev(S′).

Moving forward, we follow the convention below.

Convention 1. In Σ′, the integer characters (corre-
sponding to p-characters) are lexicographically smaller
than s-characters. An integer character i comes before
another integer character j iff i < j. Also, $ is lexico-
graphically larger than all other characters.

Parameterized Suffix Tree (pST) is the compacted trie
of all strings in P = {prev(T[k, n]) | 1 ≤ k ≤ n}. Each
edge is labeled with a string over Σ′. We use path(u) to
denote the concatenation of edge labels on the path from
root to node u. Clearly, pST consists of n leaves (one per
each encoded suffix) and at most n − 1 internal nodes.
The space required is Θ(n log n) bits. See Figure 1 for
an illustration. The path of each leaf node corresponds
to the encoding of a unique suffix of T, and leaves are
ordered in the lexicographic order of the corresponding
encoded suffix.

To find all the occurrences of P , traverse the pST
from root by following the edge labels and find the
highest node u (called locus) such that path(u) is
prefixed by prev(P ). Then find the range [sp, ep] (called
suffix range of prev(P )) of leaves in the subtree of u
and report {pSA[i] | sp ≤ i ≤ ep} as the output.
Here, pSA[1, n] is the parameterized suffix array i.e.,
pSA[i] = j and pSA−1[j] = i iff prev(T[j, n]) is the
ith lexicographically smallest string in P. (Note that
path(`i) = prev(T[pSA[i], n]), where `i is the ith leftmost
leaf in pST.) The query time is O(|P | log σ + occ).

3 Parameterized Burrows-Wheeler Transform

We introduce a similar transform to that of the BWT,
which we call the Parameterized Burrows-Wheeler
Transform (pBWT). To obtain the pBWT of T, we first
create a matrix M with each row corresponding to a
unique circular suffix of T. Then, we sort all this rows



0 A0 B0C030A3$ C000A3$ $

$

0B0C530A3$
A0$

8 9
B0C530A3$

C030A3$ $

4 5 6 7

0

0A3$
A3$ B0C530A3$

1 2 3

10 11 12

i Ti prev(Ti) prev(TpSA[i]) TpSA[i] pSA[i] L[i] fi pBWT[i] pLF(i)
1 AxyBzCxzwAz$ A00B0C530A3$ 000A3$A70B6C xzwAz$AxyBzC 7 C C 11
2 xyBzCxzwAz$A 00B0C530A3$A 00A3$A00B6C5 zwAz$AxyBzCx 8 x 7 3 1
3 yBzCxzwAz$Ax 0B0C030A3$A7 00B0C530A3$A xyBzCxzwAz$A 2 A A 8
4 BzCxzwAz$Axy B0C030A3$A70 0A0$A00B6C53 wAz$AxyBzCxz 9 z 3 2 2
5 zCxzwAz$AxyB 0C030A3$A70B 0B0C030A3$A7 yBzCxzwAz$Ax 3 x 5 3 3
6 CxzwAz$AxyBz C000A3$A70B6 0C030A3$A70B zCxzwAz$AxyB 5 B B 10
7 xzwAz$AxyBzC 000A3$A70B6C 0$A00B5C530A z$AxyBzCxzwA 11 A A 9
8 zwAz$AxyBzCx 00A3$A00B6C5 A00B0C530A3$ AxyBzCxzwAz$ 1 $ $ 12
9 wAz$AxyBzCxz 0A0$A00B6C53 A0$A00B5C530 Az$AxyBzCxzw 10 w 12 4 4
10 Az$AxyBzCxzw A0$A00B5C530 B0C030A3$A70 BzCxzwAz$Axy 4 y 12 4 5
11 z$AxyBzCxzwA 0$A00B5C530A C000A3$A70B6 CxzwAz$AxyBz 6 z 3 2 6
12 $AxyBzCxzwAz $A00B0C530A3 $A00B0C530A3 $AxyBzCxzwAz 12 z 6 3 7

Figure 1: The text is T[1, 12] = AxyBzCxzwAz$, where Σs = {A,B,C, $} and Σp = {w, x, y, z}

lexicographically according to the prev(·) encoding of
the corresponding unique circular suffix, and obtain the
last column L of the sorted matrix M . Clearly, the ith
row is equal to TpSA[i]. Moving forward, denote by fi,
the first occurrence of L[i] in TpSA[i], where L[i] ∈ Σp.
The pBWT of T, denoted by pBWT[1, n], is defined as:

pBWT[i] =


L[i], if L[i] is an s-character,

number of distinct p-characters in

TpSA[i][1, fi], otherwise.

In other words, when L[i] ∈ Σs, pBWT[i] = T[pSA[i]−1]
(define T[0] = T[n] = $) and when L[i] ∈ Σp, pBWT[i]
is the number of 0’s in the fi-long prefix of prev(TpSA[i]).
Thus, pBWT is a sequence of n characters over the set
Σ′′ = Σs∪{1, 2, . . . , σp} of size σs+σp = σ. See Figure 1
for an illustration.

In order to represent pBWT in succinct space, we
map each s-character in Σ′′ to a unique integer in
[σp + 1, σ]. Specifically, the ith smallest s-character will
be denoted by (i + σp). Moving forward, pBWT[i] ∈
[1, σp] iff L[i] is a p-character and pBWT[i] ∈ [σp + 1, σ]
iff L[i] is a s-character. We summarize the relation
between prev(TpSA[i]) and prev(TpSA[i]−1) below.

Observation 1. Let 1 ≤ i ≤ n. If pBWT[i] ∈ Σs,

prev(TpSA[i]−1) = pBWT[i] ◦ prev(TpSA[i])[1, n− 1]

Otherwise, if pBWT[i] /∈ Σs,

prev(TpSA[i]−1) = 0 ◦ prev(TpSA[i])[1, fi − 1]◦
fi ◦ prev(TpSA[i])[fi + 1, n− 1]

3.1 Parameterized LF-Mapping
Based on the conceptual matrix M , the parameterized
last-to-first column (pLF) mapping of i is the position
at which the character at L[i] lies in the first column
of M . Specifically, pLF(i) = pSA−1[pSA[i] − 1]. The
significance is summarized in Theorem 3.

Theorem 3. Assume pLF(·) can be computed in tpLF
time. Then, for any parameter ∆, by using an ad-
ditional O((n/∆) log n)-bit structure, we can compute
pSA[·] and pSA−1[·] in O(∆ · tpLF) time.

Proof. Define, pLF0(i) = i and pLFk(i) =
pLF(pLFk−1(i)) = pSA−1[pSA[i] − k] for any inte-
ger k > 0. We maintain two ∆-sampled arrays,
one each for pSA and pSA−1. More specifically, we
explicitly maintain pSA[j] and pSA−1[j] if the value
belongs to {1, 1 + ∆, 1 + 2∆, 1 + 3∆, . . . , n}. The
total space for each sampled array can be bounded
by O((n/∆) log n) bits. To find pSA[i], repeatedly
apply the pLF(·) operation (starting from i) until
you obtain a j such that pSA[j] has been explicitly
stored. Suppose, the number of such operations is
k. Then, j = pLFk(i) = pSA−1[pSA[i] − k], which



gives pSA[i] = pSA[j] + k. Since k ≤ ∆, pSA[i] is
computed in O(∆ · tpLF) time. To find pSA−1[i], find
the smallest j ≥ i whose pSA−1[j] is explicitly stored.
Then, pSA−1[i] = pLFj−i(pSA−1[j]). As j − i ≤ ∆, the
time is bounded by O(∆ · tpLF). �

We remark that using Theorem 3, prev(T[x, y]) can be
extracted in O(∆ · tpLF + (y− x+ 1)(tpLF + log σ)) time.

To aid the reader’s intuition for computing pLF
mapping, we present Lemma 1, which shows how to
compare the lexicographic rank of two encoded suffixes
when prepended by their respective previous characters.
This key concept is then implemented in Section 4 to
arrive at Theorem 4.

Lemma 1. Consider two suffixes i and j corresponding
to the leaves `i and `j in pST. Then, pLF(i) and pLF(j)
are related as follows:

(a) If L[i] ∈ Σp and L[j] ∈ Σs, then pLF(i) < pLF(j).

(b) If both L[i], L[j] ∈ Σs, then pLF(i) < pLF(j) iff one
of the following holds:

• pBWT[i] < pBWT[j]

• pBWT[i] = pBWT[j] and i < j.

(c) Assume both L[i], L[j] ∈ Σp and i < j. Let u be the
lowest common ancestor of `i and `j in pST, and
z be the number of 0’s in the string path(u).

(1) If pBWT[i], pBWT[j] ≤ z, then pLF(i) <
pLF(j) iff pBWT[i] ≥ pBWT[j].

(2) If pBWT[i] ≤ z < pBWT[j], then pLF(i) >
pLF(j).

(3) If pBWT[i] > z ≥ pBWT[j], then pLF(i) <
pLF(j).

(4) If pBWT[i], pBWT[j] > z, then pLF(i) >
pLF(j) iff

• pBWT[i] = z + 1,

• the leading character on the u to `i path
is 0, and

• the leading character on the u to `j path
is not an s-character.

Proof. (a) and (b): Follows immediately from Conven-
tion 1 and Observation 1.
(c) Recall that fi and fj are the first occurrences of the
characters L[i] and L[j] in the circular suffixes TpSA[i]

and TpSA[j] respectively. Let d = |path(u)|. Clearly, the
conditions (1)–(4) can be written as: (1) Both fi, fj ≤ d,
(2) fi ≤ d and fj > d, (3) fi > d and fj ≤ d, and (4)
Both fi, fj > d.

Then the claims (1)–(3) are immediate from Ob-
servation 1 and Convention 1. For proving (4), first
observe that if TpSA[j][d + 1] is an s-character, then
TpSA[j]−1[d+ 2] > TpSA[i]−1[d+ 2], and pLF(i) < pLF(j).
So, assume otherwise. Let ei and ej be the (d + 1)th
characters of prev(TpSA[i]) and prev(TpSA[j]) respectively.
Since the suffixes i and j separate after u, fi 6= fj .
Also, i < j implies 0 ≤ ei < ej ≤ d. Note that if
pBWT[i] = z + 1 and ei = 0, then L[i] = TpSA[i][d + 1]
i.e., fi = d+1, and prev(TpSA[i]−1)[d+2] = d+1 > ej =
prev(TpSA[j]−1)[d+2]. Otherwise, prev(TpSA[i]−1)[d+2] =
ei < ej ≤ prev(TpSA[j]−1)[d+ 2]. �

Theorem 4. We can compute pLF(i) in O(log σ) time
using n log σ +O(n) bits.

4 Implementing pLF Mapping

We prove Theorem 4 in this section.

4.1 Data Structure Toolkit
Following are the key components of the data structure.

4.1.1 Wavelet Tree over pBWT
Grossi, Gupta, and Vitter [22] introduced the wavelet
tree (WT) data structure, which generalizes the well-
known rank and select queries over bit-vectors.1 Specif-
ically, given an array A over an alphabet Σ, by using a
data structure of size |A| log |Σ|+ o(|A| log |Σ|) bits, the
following queries can be supported in O(log |Σ|) time:

(a) A[i].

(b) rankA(i, x) = number of occurrences of x in A[1, i].

(c) selectA(i, x) = ith occurrence of x in A.

(d) rangeCountA(i, j, x, y) = number of elements in
A[i, j] that are at least x and at most y.

We drop the subscript A when the context is clear.
The pBWT is a string of length n over an alphabet
set Σ′′ = Σs ∪ {1, 2, . . . , σp} of size σ = σs + σp. By
maintaining a WT over pBWT in n log σ + o(n log σ)
bits, we can support the above operations over the
pBWT. Using generalized WT [16], we can improve
the query time to tWT = O(1 + log σ/ log log n) for the
above operations. As noted by Navarro [38], we can
apply the technique of Golynski et al. [21] to reduce the
redundancy of o(n log σ) bits to o(n) bits. The time to
answer the above queries remains unaffected.

1Given a bit-vector B and c ∈ {0, 1}, rank(i, c) = |{j | j ≤
i and B[j] = c}| and select(i, c) = min{j | rank(j, c) = i}.



4.1.2 Succinct representation of pST
We rely on the following result of Navarro and
Sadakane [40]. Any tree having m nodes can be rep-
resented in 2m + o(m) bits, such that if each node is
labeled by its pre-order rank, the following operations
can be supported in O(1) time (note that m < 2n in
our case):

(a) pre-order(u)/post-order(u) = pre-order/post-order
rank of node u.

(b) parent(u) = parent of node u.

(c) nodeDepth(u) = number of edges on the path from
root to u.

(d) child(u, q) = qth leftmost child of node u.

(e) lca(u, v) = lowest common ancestor (LCA) of two
nodes u and v.

(f) lmostLeaf(u)/rmostLeaf(u) = leftmost/rightmost
leaf in the subtree rooted at u.

(g) levelAncestor(u,D) = ancestor of u such that
nodeDepth(u) = D.

Also, we can find the pre-order rank of the ith leftmost
leaf in O(1) time. Moving forward, we will use `i to de-
note the leaf corresponding to the ith lexicographically
smallest prev-encoded suffix.

4.2 ZeroDepth and ZeroNode
For a node u, zeroDepth(u) is the number of 0’s
in path(u). For a leaf `i with pBWT[i] ∈ [1, σp],
zeroNode(`i) is the highest node z on the root to `i
path such that zeroDepth(z) ≥ pBWT[i]. Thus, z is the
locus of path(`i)[1, fi]. Note that z necessarily exists as
zeroDepth(`i) ≥ pBWT[i]. Moving forward, whenever
we refer to zeroNode(`i), we assume pBWT[i] ∈ [1, σp].
We present the following important lemma (proof de-
ferred to Section 4.5).

Lemma 2. Using an additional O(n)-bit structure, we
can find zeroNode(`i) in O(log σ) time.

We remark that the following additional functionalities:
leafLeadChar(·), fSum(·) and pCount(·) will be defined
later. Each of these can be computed in O(1) time using
an O(n)-bit structure.

4.3 Computing pLF(i) when pBWT[i] ∈ [σp + 1, σ]

In this case, L[i] = pBWT[i] is an s-character. Using
Lemma 1, we conclude that pLF(i) > pLF(j) iff either
j ∈ [1, n] and pBWT[j] < pBWT[i], or j ∈ [1, i − 1]
and pBWT[i] = pBWT[j]. Then, pLF(i) = 1 +
rangeCount(1, n, 1, c−1)+rangeCount(1, i−1, c, c), where
c = pBWT[i].

4.4 Computing pLF(i) when pBWT[i] ∈ [1, σp]
In this case, L[i] is a p-character. Let z = zeroNode(`i)
and v = parent(z). Then, fi = (|path(v)|+1) if the lead-
ing character on the edge from v to z is 0 and pBWT[i] =
(zeroDepth(v) + 1); otherwise, fi > (|path(v)|+ 1). For
a leaf `j in pST, leafLeadChar(j) is a boolean variable,
which is 0 iff fj = (|path(parent(zeroNode(`j)))|+1). Us-
ing this information, in constant time, we can determine
which of the following two cases the suffix corresponding
to `i satisfies (see Figure 2).

4.4.1 Case 1 (fi = |path(v)|+ 1)
In this case, z is the leftmost child of v. Let w be the
parent of v. We partition the leaves into four sets:

(a) S1: leaves to the left of the subtree of v.

(b) S2: leaves in the subtree of z.

(c) S3: leaves to the right of the subtree of v.

(d) S4: leaves in the subtree of v but not of z.

In case, v is the root node r, we take w = r; conse-
quently, S1 = S3 = ∅.

4.4.2 Case 2 (fi > |path(v)|+ 1)
We partition the leaves into three sets:

(a) S1 (resp. S3): leaves to the left (resp. right) of the
subtree of z.

(b) S2: leaves in the subtree of z.

We first compute z = zeroNode(`i) (using Lemma 2),
and then locate v = parent(z). Using leafLeadChar(i)
and the lmostLeaf(·)/rmostLeaf(·) tree operations, we
find the desired ranges. Let [Lx, Rx] denote the range of
leaves in the subtree of any node x. In order to compute
pLF(i), we first compute N1, N2, and N3, which are
respectively the number of leaves `j in the ranges S1,
S2, and S3 such that pLF(j) ≤ pLF(i). Likewise, we
compute N4 (w.r.t S4) if we are in the first case. Then,
pLF(i) = N1 +N2 +N3 +N4.

4.4.3 Computing N1

For any leaf `j ∈ S1, pLF(j) < pLF(i) iff fj >
1 + |path(lca(z, `j))| and L[j] ∈ Σp. Therefore, N1

is the number of leaves `j , L[j] ∈ Σp, which comes
before z in pre-order with fj > 1 + |path(lca(z, `j))|.
Define, fCount(x) of a node x as the number of leaves
`j in x’s subtree such that |path(y)| + 2 ≤ fj ≤
|path(x)| + 1, where y = parent(x). If x is the root
node, then fCount(x) = 0. Define fSum(x) of a node x
as

∑
fCount(y) of all nodes y which come before x in

pre-order and are not ancestors of x. By this definition,
N1 = fSum(z) is computed as follows.
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Figure 2: Illustration of vari-
ous suffix ranges when the suf-
fix TpSA[i] is preceded by a p-
character

Lemma 3. By maintaining an O(n)-bit structure, we
can compute fSum(x) in O(1) time.

Proof. Traverse the pST in DFS order, and write
fCount(v) of a node v in unary when exiting the
node in the traversal, i.e., fCount(v) is associated with
post-order(v). Maintain a rank-select structure on this
bit-string B. Since

∑
v fCount(v) ≤ n, |B| ≤ 3n, and

the space needed is 3n+o(n) bits. Note that fSum(x) is
same as the number of 1s in B up to the position corre-
sponding to y, where y is conceptually found as follows.
Traverse from x to root until we get a node y′ which has
a child to the left of the path. Then y is the rightmost
child of y′ that lies to the left of the path. If Lx = 1,
then y is not defined and fSum(x) = 0. Otherwise, y =
levelAncestor(Lx−1, nodeDepth(lca(Lx, Lx−1))+1) and
fSum(x) = rankB(selectB(post-order(y), 0), 1). Clearly,
the time required is O(1). �

4.4.4 Computing N2

Note that for any leaf `j ∈ S2, pLF(j) ≤ pLF(i)
iff L[j] ∈ Σp and either fj > fi or fj = fi and
j ≤ i. Therefore, N2 is the number of leaves `j in
S2 which satisfy one of the following conditions: (a)
pBWT[i] < pBWT[j] ≤ σp, or (b) pBWT[i] = pBWT[j]
and j ≤ i. Then, N2 = rangeCount(Lz, Rz, c + 1, σp) +
rangeCount(Lz, i, c, c), where c = pBWT[i].

4.4.5 Computing N3

For any leaf `j ∈ S3, pLF(j) > pLF(i). Thus, N3 = 0.

4.4.6 Computing N4

Note that pBWT[i] is same as (zeroDepth(v) + 1). Con-
sider a leaf `j ∈ S4 with L[j] ∈ Σp. Since the suffix j
deviates from the suffix i at the node v, we have fj 6= fi.
Therefore, pLF(j) < pLF(i) iff fj > fi, and the leading
character on the path from v to `j is not an s-character.
For a node x, pCount(x) is the number of children y
of x such that the leading character from x to y is
not an s-character. Note that

∑
x pCount(x) = O(n).

Therefore, we encode pCount(·) of all nodes in O(n)
bits using unary encoding, such that pCount(x) can be
retrieved in constant time. Let u be the pCount(v)th
child of v. Then, N4 is the number of leaves `j in S4
such that j ≤ Ru and σp ≥ pBWT[j] ≥ pBWT[i] i.e.,
N4 = rangeCount(Rz + 1, Ru, pBWT[i], σp).

We summarize the LF mapping procedure in Al-
gorithm 1. Once zeroDepth(`i) is known, N1 is
computed in O(1) time, and both N2 and N4 are
computed in O(1 + log σ/ log log n) time. Combining
these results with Lemma 2, we arrive at Theorem 4.

4.5 Proof of Lemma 2
For any node x on the root to `i path π, define
α(x) = the number of leaves `j ∈ leaf(x) such
that L[j] ∈ Σp and fj ≤ |path(x)|, and β(x) =
rangeCount(Lx, Rx, 1, pBWT[i]). Here, leaf(x) is the
range of leaves in the subtree of x. Consider a node
uk on π. Observe that zeroNode(`i) is below uk iff
β(uk) > α(uk). Therefore, zeroNode(`i) is the shal-
lowest node uk′ on this path that satisfies β(uk′) ≤
α(uk′). Equipped with this knowledge, now we can bi-
nary search on π (using nodeDepth and levelAncestor
operations) to find the exact location. The first ques-
tion is to compute α(x), which is handled by Lemma 4.
A normal binary search will have to consider n nodes
on the path in the worst case. Lemma 5 shows how
to reduce this to dlog σe. Thus, the binary search
has at most dlog log σe steps, and the total time is
log log σ × d log σ

log logne = O(log σ), as required.

Lemma 4. By maintaining an O(n)-bit structure, we
can find α(x) in O(1) time.

Proof. Let A[1, n] be a bit-array such that A[i] = 1
iff L[i] ∈ Σp. Maintain a rank-select structure over
A. Define γ(v) as the number of leaves `j ∈ leaf(v)
that satisfy L[j] ∈ Σp and |path(parent(v))| < fj ≤
|path(v)|}|. Traverse pST in DFS order, and write γ(v)



Algorithm 1 computes pLF(i)

1: c← pBWT[i]
2: if (c > σp) then pLF(i)← 1 + rangeCount(1, n, 1, c− 1) + rangeCount(1, i− 1, c, c)
3: else z ← zeroNode(`i), v ← parent(z), Lz ← lmostLeaf(z), Rz ← rmostLeaf(z)
4: N1 ← fSum(z), N2 ← rangeCount(Lz, Rz, c+ 1, σp) + rangeCount(Lz, i, c, c)
5: if (leafLeadChar(i) is 0) then
6: u← child(v, pCount(v)), N4 ← rangeCount(Rz + 1, rmostLeaf(u), c, σp)

7: pLF(i)← N1 +N2 +N4

in unary when entering v’s subtree. Maintain a rank-
select structure on this bit-vector B. Since

∑
v γ(v) ≤ n,

|B| ≤ 3n. The total space needed is 4n+ o(n) bits. Let
α′(x) be the number of leaves `j ∈ leaf(x) such that
L[j] ∈ Σp and fj > |path(x)|. Then,

α′(x) = rankB(selectB(pre-order(`Rx
), 0), 1)

− rankB(selectB(pre-order(x), 0), 1)

α(x) = rankA(Rx, 1) − rankA(Lx − 1, 1) − α′(x)

Clearly, the space-and-time bounds are met. �

Lemma 5. Using an additional O(n)-bit structure, in
O(log σ) time, we can find an ancestor wi of `i such
that zeroDepth(wi) < pBWT[i] and wi is at most dlog σe
nodes above zeroNode(`i).

Proof. Let g = dlog σe be a sampling factor. We
first mark all those nodes v in the pST such that
nodeDepth(v) is a multiple of g and the subtree of v has
at least g nodes. Also, mark the root node. It is easy to
see that (i) between any two closest marked nodes (or a
lowest marked node and a leaf in its subtree) there are
at most g nodes, and (ii) the number of marked nodes
is O(n/g). Maintain a bit-array B such that B[k] = 1
iff the node with pre-order rank k is a marked node.
Also, maintain a rank-select structure on B. The space
needed is O(n) bits. We also maintain an array D,
such that D[k] equals the zeroDepth of the marked node
corresponding to the kth 1-bit in B. Given a marked
node with pre-order rank k′, its corresponding position
in D is given by rankB(k′, 1). We do not maintain D
explicitly; instead, we maintain a wavelet tree over it.
The space needed is O(ng log σ) = O(n) bits.

Given a leaf node `i, in O(log σ) time, first locate
its lowest marked ancestor u by traversing the tree
upwards. Then, find the position j corresponding to u in
the array D. If zeroDepth(u) < pBWT[i], then wi = u,
and we are done. Otherwise, locate the rightmost
position j′ < j in D such that D[j′] < pBWT[i].
Using the wavelet tree over D, this predecessor search
takes O(log σ) time. (Since the root node is marked,
and its zeroDepth equals 0, the position j′ necessarily

exists.) Obtain the marked node v corresponding to
the j′th 1-bit in B via a selectB(j′, 1) operation. Then,
wi = lca(u, v). The time required is O(log σ). To see
the correctness, observe that lca(u, v) is an ancestor of
`i. For a node x, zeroDepth(x) ≥ zeroDepth(parent(x)).
Thus, zeroDepth(lca(u, v)) ≤ zeroDepth(u) < pBWT[i].
If lca(u, v) is not the desired node, then it has a
marked descendant u′ 6= u on the path to u such that
zeroDepth(u′) < pBWT[i]. But u′ appears after v and
before u in pre-order, a contradiction. �

5 Pattern Matching via Backward Search

We modify the backward search algorithm in the FM-
index [16]. In particular, given a proper suffix Q of
P , assume that we know the suffix range [sp1, ep1] of
prev(Q). Our task is to find the suffix range [sp2, ep2] of
prev(c◦Q), where c is the character previous to Q in P .

If c is static, then prev(c ◦ Q) = c ◦ prev(Q). The
backward search in this case is similar to that in FM-
index. Specifically,

sp2 = 1 + rangeCount(1, n, 1, c− 1)+

rangeCount(1, sp1 − 1, c, c)

ep2 = rangeCount(1, n, 1, c− 1)+

rangeCount(1, ep1, c, c)

Now, we consider the scenario when c is parameterized.
By maintaining a bit-vector B[1, σp], in O(|P |) time, we
first identify all positions j, where P [j] ∈ Σp is not in
P [j + 1, |P |]. We have the following two cases.

5.1 Case 1 (c does not appear in Q)
Note that pLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1], L[i] is a
p-character and fi > |Q|. This holds iff i ∈ [sp1, ep1]
and pBWT[i] ∈ [d + 1, σp]. Here, d is the number of
distinct p-characters in Q, which can be obtained in
O(1) time by initially pre-processing P in O(|P |) time.
Then, (ep2 − sp2 + 1) = rangeCount(sp1, ep1, d + 1, σp).
Now, pLF(i) < sp2 iff i < sp1, L[i] ∈ Σp, and fi >
1 + |path(lca(u, `i))|, where u = lca(`sp1 , `ep1). Finally,
we compute sp2 = 1 + fSum(u) in constant time (refer
to Lemma 3).



5.2 Case 2 (c appears in Q)
Note that pLF(i) ∈ [sp2, ep2] iff i ∈ [sp1, ep1], L[i] is a p-
character, and fi is the same as the first occurrence of c
in Q. This holds iff i ∈ [sp1, ep1] and pBWT[i] = d.
Here, d is the number of distinct p-characters in Q
until (and including) the first occurrence of c. We can
compute d in constant time by initially pre-processing
P in O(|P | log σ) time2.

Consider i, j ∈ [sp1, ep1] such that i < j and
pLF(i), pLF(j) ∈ [sp2, ep2]. Now, both fi and fj equals
the first occurrence of c in Q. Based on Observation 1,
we conclude that pLF(i) < pLF(j). Therefore, sp2 =
pLF(imin) and ep2 = pLF(imax), where

imin = min{j | j ∈ [sp1, ep1] and pBWT[j] = d}
= select(rank(sp1 − 1, d) + 1, d)

imax = max{j | j ∈ [sp1, ep1] and pBWT[j] = d}
= select(rank(ep, d), d)

We have tpLF = O(log σ) and tWT = O(1 +
log σ/ log log n). Therefore, we find the suffix range in
O(|P | log σ) time. Theorem 1 follows from Theorem 4
and by choosing ∆ = dlog ne in Theorem 3.

6 Dictionary Matching

Let us first look at the index of Idury and Schäffer [29].
For simplicity, we only consider p-characters, and defer
the complete details to the full-version. We begin by
obtaining prev(Pi) for every Pi in D, and then create a
trie T for all the encoded patterns. The number of nodes
in the trie is m ≤ n + 1. For each node u in the trie,
denote by path(u) the string formed by concatenating
the edge labels from root to u. Mark a node u in the
trie as final iff path(u) = prev(Pi) for some Pi in D.
Clearly, the number of final nodes is d. For any prev-
encoded string prev(S) of a string S, and an integer j ∈
[1, |S|], we obtain a string ζ(S, j) as follows. Initialize
ζ(S, j) = prev(S)[j, |S|]. For each j′ ∈ [1, |S| − j + 1],
assign ζ(S, j)[j′] = 0 iff ζ(S, j)[j′] ≥ j′. Conceptually,
ζ(S, j) = prev(S[j, |S|]). Each node u is associated with
the following 3 links:

(a) next(u, c) = v iff the label on the edge from the
node u to v is labeled by the character c,

(b) failure(u) = v iff path(v) = ζ(path(u), j), where
j > 1 is the smallest index for which such a node v
exists, and

2 Maintain an array F [1, σp], all values initialized to 0, and a

balanced binary search tree T (initially empty). Scan the string
from right to left, and when a p-character cp is encountered at a
position x, check F [cp]. If F [cp] = 0, insert cp in T keyed by x.

Otherwise, the count at x is the number of nodes in T with key
at most F [cp]. Update F [cp] and the key of cp to x. Since the

size of T is O(σp), search, insertion, and update time is O(log σ).

(c) report(u) = v iff v is a final node and path(v) =
ζ(path(u), j), where j > 1 is the smallest index for
which such a node v exists.

If no such j exists, then failure(u)/report(u) points to
the root. We first modify the label of each edge in the
trie as follows. If any edge is labeled by 0 we assign it
a new p-character. Otherwise, if it has value x, then it
gets the character assigned to the edge that is x levels
above it on the path to root. Each state u is conceptually
labeled by the lexicographic rank of ←−−prev(u) in the set
{←−−prev(v) | v is a node in the trie}, where ←−−prev(u) is the
string obtained by prev-encoding the path from u to
root. For any e = (w, x), we define Z(x) = the number
of 0’s in ←−−prev(w)[1, fx], where fx is the first occurrence
of the p-character labeling e in the string from w to
root. (Note that Z(x) ≤ σp.) If fx is not defined, we
let Z(x) equal the number of 0’s in ←−−prev(x). For any
two distinct nodes u and v in T , we denote u ≺ v iff←−−prev(u) is lexicographically smaller than ←−−prev(v). Since←−−prev(u) 6=←−−prev(v), the relation u ≺ v is well-defined.

We create a compressed
←−T as follows. Initially

←−T
is empty. For each non-leaf node u in T and for each

child ui of u, we add the string ←−−prev(u) ◦ $u,i to
←−T .

Clearly, each string corresponds to a leaf, say `u,i, in←−T . We order the leaves according to the (lexicographic)
rank of the string they represent. For any two nodes
u, v ∈ T , the rank of a string←−−prev(u)◦$u,i is smaller than←−−prev(v)◦$v,j iff u ≺ v. On the other hand, the rank of a
string ←−−prev(u) ◦ $u,i is smaller than that of ←−−prev(u) ◦ $u,j
iff Z(ui) > Z(uj). (Note that Z(ui) 6= Z(uj), as ui and
uj share the same parent.) If two leaves have distinct
parents, then their order is defined by the relation ≺ on
their parents. In both the cases, the rank of the two
strings corresponding to any two leaves is well defined.

The key idea to perform the next-transition is
presented in the following lemma.

Lemma 6. Consider two non-leaf nodes u and v (not
necessarily distinct) and its respective children ui and
vj in T . Let the respective characters (from Σ) on the
edges be ci and cj. Assume either u ≺ v or u = v. Let
x = lca(u, v), and z be the number of 0’s in prev(x).

(a) If Z(ui),Z(vj) ≤ z, then next(u, ci) ≺ next(v, cj) iff
Z(ui) ≥ Z(vj).

(b) Z(ui) ≤ z < Z(vj), then next(v, cj) ≺ next(u, ci).

(c) Z(vj) ≤ z < Z(ui), then next(u, ci) ≺ next(v, cj).

(d) If Z(ui),Z(vj) > z, then next(v, cj) ≺ next(u, ci) iff

• Z(ui) = z + 1, and

• the leading character on the path from x to `u,i
is 0.



The above lemma is closely reminiscent of Lemma 1,
and by employing similar strategies as in Section 4, we
can perform a next-operation in O(log σ) time using
m log σ + O(m) bits. For any two nodes u and v, if
failure(u) = v, then it ←−−prev(v) is the longest prefix of←−−prev(u) that appears in T . Similar remarks hold for
report(u) = v, where v is a final node. Therefore, these
behave exactly in the same manner as in the case of
traditional pattern matching, and we can re-use the
idea of Belazzougui [9] to perform these transitions in
O(1) time using O(m + d log(n/d)) bits. Putting these
together we obtain Theorem 2.

7 Discussion

We leave a few questions unanswered. The first one,
concerning the space consumption, is “Can we convert
O(n) term to o(n) in our space requirements?”. The
second one is related to construction of the index.
Given the p-suffix tree, our index can be constructed
in O(n log σ) time using O(n log n) bits. Therefore, by
first creating pST using Kosaraju’s algorithm [32], we
have an O(n log σ) time and O(n log n) bit construction
algorithm. An immediate question is “Does there
exist a (possibly randomized) algorithm for constructing
a compressed index for the parameterized matching
problem that uses O(n log σ) bits of working space and
attains (nearly) the same bounds of the best-known
algorithms for constructing p-suffix trees [10, 32]?”. An
important direction in compressed text indexing is to
achieve entropy bounds. In this regard, an obvious
question is “Can we design an index, whose size is
bounded by nHk(T), whereHk(T) denotes the kth order
entropy of the text T?”. Even for k = 0, this seems
challenging as the 0th order entropy of pBWT can either
be smaller or greater than that of T.
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