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Abstract11

Two strings are order isomorphic iff the relative ordering of their characters is the same at all positions.12

For a given text T [1, n] over an ordered alphabet of size σ, we can maintain an order-isomorphic suffix13

tree/array in O(n log n) bits and support (order-isomorphic) pattern/substring matching queries14

efficiently. It is interesting to know if we can encode these structures in space close to the text’s size15

of n log σ bits. We answer this positively by presenting an O(n log σ)-bit index that allows access16

to any entry in order-isomorphic suffix array (and its inverse array) in tSA = O(log2 n/ log σ) time.17

For any pattern P given as a query, this index can count the number of substrings of T that are18

order-isomorphic to P (denoted by occ) in O((|P | log σ + tSA) log n) time using standard techniques.19

Also, it can report the locations of those substrings in additional O(occ · tSA) time.20
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1 Introduction24

An index of a text T [1, n] is a data structure that is capable of counting/reporting all those25

substrings of T that “match” (as per the problem specific definition of match) with any given26

pattern P . We use Σ to denote the alphabet set (of size σ) from which the characters in27

T are drawn from. WLOG, we assume that T [n] = $, a special character that does not28

appear anywhere else in T . Two fundamental indexes for exact pattern matching are the29

suffix tree (ST) [21] and the suffix array (SA) [16]. Both takes Θ(n log n) bits of space, which30

could be much larger than the n⌈log σ⌉ bits needed to store T optimally. The first succinct31

indexes that use close to n log σ bits are the Compressed Suffix Array (CSA) [12] and the32

FM-index [6]. The crucial component of FM Index is Burrows-Wheeler Transform (BWT) [2]33

and its associated operation called the Last-to-Front (LF) mapping. The subsequent work34

lead to fully functional suffix trees in succinct space [20]. See [18] for further reading.35

The parameterized ST [1, 17] and the order-isomorphic ST [4] are two popular ST variants36

under the class known as suffix trees with missing suffix links [3]. As they do not hold some37

critical structural properties of the original ST, their compression is challenging. Recently,38

Ganguly et al. showed that it is indeed possible to compress the parameterized suffix arrays.39

They implemented LF mapping using a BWT-like transformation called the parameterized40

BWT [9]. However, such a transformation is hard to define for order-isomorphic ST because41

LF mapping could lead to multiple changes in the (encoding of) associated suffixes. To that42

end, we present a novel technique for implementing the LF mapping (named LF Successor),43

leading to the first compact space index for order-isomorphic pattern matching.44
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66:2 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

1.1 Generalizing the Philosophy of BWT and LF Mapping45

We present an overview of our approach using three problems: (i) traditional/exact matching,46

(ii) parameterized matching, and (iii) order-isomorphic matching, in that order, to show47

gradation and successive generalization of the LF mapping approach.48

Indexing for Traditional Matching: The classic solution is the suffix tree (ST), a compact49

trie over all the suffixes of T . In a ST, each edge is labeled by some substring of T such50

that the concatenation of the edge labels on each root to leaf path represents a particular51

suffix of T . Based on the lexicographic order of the suffixes, a suffix array SA[1, n] (whose52

entries correspond to each leaf in the suffix tree in left to right order) marks the starting53

index (in T ) of the suffix corresponding to the ith leftmost leaf ℓi. Thus, SA[i] = t and the54

inverse suffix array entry SA−1[t] = i iff the suffix corresponding to ℓi is T [t, n]. Inverse55

suffix array associates each position i in the text with leaf position (rank) of suffix T [i..n] in56

the suffix tree. Also, for t > 1, LF(i) = j iff the leaf ℓj corresponds to the suffix T [t − 1, n],57

i.e., SA[j] = t − 1. Formally, LF(i) = SA−1[SA[i] − 1] (for the special case of SA[i] = 1, we58

take SA−1[0] = SA−1[n]). The Burrows-Wheeler Transform is an array BWT[1, n], such that59

BWT[i] = T [SA[i] − 1]. Computing LF mapping is central to BWT based pattern matching,60

and in some sense, the BWT enables efficient computation of LF mapping. A fundamental61

result is that once we store the BWT, and its associated counting structures, we can replace62

the costly (space-wise) suffix array by a (cheaper) sampled suffix array [6].63

Indexing for Parameterized Matching: Here, P matches with T at position i iff there64

is one-to-one correspondence between the characters of P and T [i, i + |P | − 1]. For example,65

xwyx can match with abca as x can be mapped to a, b to w, and c to y. However, abca does66

not match with xyxw because both a and c cannot be mapped to x. Baker [1] presented67

an encoding called prev(S) which encodes every character in the string by replacing it by68

its distance to the previous occurrence of the same character and using 0 if the character69

has not occurred before. For example, prev(xwxyywx) = 0020144. It is not hard to see that70

two strings X and Y are a parameterized match iff prev(X) = prev(Y ). The parameterized71

suffix tree is a compact trie over all strings in {prev(T [i, n − 1]) ◦ $ | 1 ≤ i < n}, where ◦72

denotes concatenation. Then, the parameterized matching of P in T can be performed via73

traditional matching of prev(P ) in this suffix tree. The same notion of LF-mapping can be74

defined and implemented in succinct space using a BWT-like transform [9].75

Indexing for Order-isomorphic Matching: This problem has received significant at-76

tention since its inception [4, 13, 15], not only due to its simple and elegant formulation,77

but also due its to ability to model string matching problems in other domains (e.g., music78

retrieval, analysis of time series data, etc) where the relative ordering of characters has to be79

matched rather than the string itself. Here, there is a total ordering between the symbols in80

Σ. The pattern P matches with text T [1, n] at position i if for any j, k in [1, |P |], P [j] < P [k]81

iff T [i + j − 1] < T [i + k − 1]. Similar constraints apply for P [j] > P [k] and P [j] = P [k].82

For example, 1423 can match with 2957 but not with 2657 because 6 < 7 and 4 > 3. A new83

encoding “pred” works in this case. This is a slight modification of the scheme in [4].84

▶ Definition 1 (pred encoding). Given a character S[i] in string S, its predecessor is a85

character q which occurs in S[1, i − 1] such that q ≤ S[i] and there is no other character r86

in S[1, i − 1] such that q < r ≤ S[i]. Given a string S, pred(S)[i] is defined as follows: let87

alphabet symbol q be the predecessor of S[i] in S[1, i − 1] and let position j be the rightmost88

occurrence of q in S[1, i−1]. Then, pred(S)[i] = (i−j) if q ̸= S[i], (i−j)′ if q = S[i], and 0 if q89

does not exist. Thus pred(S) is a string over the alphabet {0, 1, 1′, 2, 2′, . . . , |S| − 1, (|S| − 1)′}.90
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Thus, in pred encoding, every position (character) in T points to its closest predecessor91

on the left. For e.g., pred(0869514371) = 0 1 2 2 4 5 1 2 6 4′. We refer to primed characters92

as an equality version of their non-primed counterparts. For example, 2′ is equality variant93

of 2. It is easy to see that two strings X and Y are order-isomorphic iff pred(X) = pred(Y ).94

The order-isomorphic suffix tree [4] of T is the compacted trie over all strings in95

{pred(T [i, n − 1]) ◦ $ | 1 ≤ i < n}. We order the encoded characters as: 0 < 1 < 1′ < 2 <96

2′ < · · · < n − 1 < (n − 1)′ < $. The order-isomorphic suffix array is such that its ith entry97

denotes the starting location of the suffix corresponding to ith leaf ℓi. Again, as in earlier98

cases, the LF mapping operation for an order isomorphic suffix tree where j = LF(i) maps99

leaf ℓi to leaf ℓj . The suffix j is obtained by prepending to suffix i the character which occurs100

just before the starting location of suffix i in T .101

1.2 Challenges in Implementing (Generalised) LF Mapping Compactly102

The challenge here is in deciding what needs to be precomputed and stored, so that LF(i) for103

any i can be computed efficiently. At its root, we need to solve the following: given two leaves104

ℓi and ℓj with i < j, how quickly can we decide whether LF(i) < LF(j) or LF(i) > LF(j).105

In the case of traditional matching, the order between LF(i) and LF(j) will stay the106

same if the corresponding suffixes have the same previous character (which are BWT[i] and107

BWT[j]). It will flip iff the previous character of the suffix corresponding to j is smaller than108

that of i in the lexicographic order. Therefore pair-wise comparison between such i and j109

can be computed in “bulk” for i against all j’s, enabling “quick" computation of LF(i) [6].110

In the case of parameterized matching, this order determination is more sophistic-111

ated [9]. Here, it becomes essential to see how prepending the previous character changes the112

canonical encoding of a suffix and how can this information be stored compactly. For example,113

consider T [1, n] = abcabbadcb and the suffix T [4, n] = abbadcb. Its previous character T [3] is114

c. When we prepend this character, the suffix (in traditional ST) becomes cabbadcb. The115

string corresponding to T [4, n] in the parameterized suffix tree is prev(T [4, n]) = 0013004.116

When T [4, n] is prepended with c and prev is applied, apart from the insertion (of 0) at117

the beginning, there is one change within prev of T [4, n], which is at the first occurrence118

of c in T [4, n]. Thus, the second last character in the encoding switches from 0 to 6, i.e.,119

prev(T [3, n]) = 00013064. Ganguly et al. [9] show how to record this change-location for120

each suffix succinctly using the paramaterized-BWT, which supports LF mapping. Again, as121

in the case of traditional pattern matching, we can compare two suffixes in terms of their122

LF mapping by comparing which suffix changes first – in case at least one of them changes123

before their longest common prefix (LCP). See [10, 14, 8] for some related results.124

We now illustrate order-isomorphic matching using an example T [1, n] = 20869514371.125

Then, T [2, n] = 0869514371 and pred(T [2, n]) = 0 1 2 2 4 5 1 2 6 4′. However, pred after126

prepending T [1] = 2, i.e., pred(T [1, n]) is 0 0 2 3 2 5 5 7 8 6 4′. Observe how the encoding127

changes when we go from T [2, n] to T [1, n]. Apart from the obvious 0 in front, there are128

“five" other entries whose predecessor changed due to the newly inserted 2. Both earlier129

problems, traditional and parameterized, incurred only a constant (1 or 2) number of changes130

per suffix, and hence it was possible to record this information compactly. However, the131

number of changes here can be as large as σ, which makes it challenging and the existing132

techniques do not seem adequate.133

Our approach: Even though many positions change, and they cannot be explicitly134

stored, the structural properties of this problem show that the last point of change (the135

rightmost value which changes) during LF is what matters. In the example above, the136

rightmost character which changes its encoding is 3 and its encoding changes from 2 to 8.137
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Figure 1 Geometric interpretation of the change in pred encoding of 0869514371 when prepended with 2.

The good part is that once we know this, we can deterministically pinpoint which other138

previous (to the left) locations changed their encoding. Thus, we can register/store one139

particular value and all previous changes can be captured based on that. Yet this only gives140

us existential dependency and not an algorithmic tool.141

1.3 Our Contribution142

The existing results on this topic are partial and conditional. For example, the O(n log log n)-143

bit by Gagie et al. [7] can answer only counting queries, that too for short patterns of size144

O(logO(1) n). Another result by Decaroli et al. [5] is based on heuristics. We show:145

▶ Theorem 2. Let T [1, n] be any text over an ordered alphabet of size σ. By maintaining an146

O(n log σ)-bit index, we can decode any entry in the order-isomorphic suffix array of T , as147

well as in its inverse array, in O(log2 n/ log σ) time.148

At the heart of proving Theorem 2 lies a novel way of implementing LF mapping. We149

call this as LF Successor. It goes one step beyond the current approach of simulating Suffix150

Array using LF mapping.151

2 Structural Properties of the Order Isomorphic Suffixes152

In this section we introduce two key lemmas explaining the structural properties of the pred153

encoding. In other words, we see where the changes occur when a new character is prepended154

to the suffix. Firstly, we formally define a change point as follows,155

▶ Definition 3 (Change Point). Given a string T [r, z] along with its pred encoding pred(T [r, z]),156

point i ∈ [r, z] is a change point if pred(T [r − 1, z])[i − r + 2] ̸= pred(T [r, z])[i − r + 1].157

In other words, when a character is prepended to T [r, z] (making it T [r − 1, z]) the158

encoding of the character T [i] changes. Here point i means position in the text.159

▶ Definition 4 (Skyline). A point i in text substring T [r, z] covers a point j iff i < j and160

T [i] ≤ T [j]. γ-skyline of T [r, z] is set of all points i ∈ [r, z] such that T [i] ≥ γ and it is not161

covered by any point j ∈ [r, i − 1] such that T [i] ≥ T [j] ≥ γ. When γ = T [r − 1], we simply162

refer to this as skyline of T [r, z]. Given a point d ∈ T [r, z], the skyline induced by d is same163

as T [d]-skyline of T [r, z] (i.e., the one obtained by setting γ = T [d]).164

Lemma 5 proves that all the change points of T [r, z] are exactly the ones that are on the165

skyline (See Figure 1 for geometric interpretation). Secondly, as mentioned earlier, although166
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there are many change points in the order isomorphic setting, given the rightmost or last167

change point we can uniquely determine all the previous change points (see Figure 1). More168

formally, it can be stated as follows.169

▶ Lemma 5 (Skyline Lemma). Given a text substring T [r, z] and it rightmost change point170

d of the substring, all the change points in T [r, z] can be determined based on d. These are171

precisely the points in T [d]-skyline of T [r, z].172

Proof. Firstly, let’s consider any change point i ∈ T [r, z]. Since its pred-encoding changes173

due to prepending of T [r − 1] the new predecessor of point i in T [r − 1, z] must be r − 1 (i.e.,174

pred(i) = i − r + 1). This means T [i] ≥ T [r − 1]. Also if point i was covered by point j such175

that j < i and T [j] ≥T[r-1], then predecessor of i in T [r − 1, z] would still be j.176

For the other way around, consider any point i on the skyline of T [r, z]. The predecessor177

of i in T [r, z] cannot be any point j such that T [j] ≥ T [r − 1] (by definition of cover), Thus,178

when T [r − 1] gets prepended, this will become the new predecessor of i. Hence, i is a change179

point.180

◀181

Next, given two suffixes and their last common change points, all their previous change182

points will be the same. We state this as a lemma below. Here we define rank(x, T [r, z]) as183

the number of values in T [r, z] that are less than or equal to x.184

▶ Lemma 6 (Last Common Point of Change (LCPC) Lemma). Given two text substrings185

T [r, r + l − 1] and T [s, s + l − 1] such that pred(T [r, r + l − 1]) = pred(T [s, s + l − 1]), let d be186

the greatest value such that r + d − 1 and s + d − 1 are the change points in T [r, r + l − 1] and187

T [s, s + l − 1] respectively. Thus, the dth point is the last common change point of substrings188

T [r, r + l − 1] and T [s, s + l − 1]. Then for every e ∈ [1, d − 1], r + e − 1 is a change point in189

T [r, r + l − 1] if and only if s + e − 1 is a change point in T [s, s + l − 1].190

Proof. Firstly, w.l.o.g, let rank(T [r−1], T [r, r+l−1]) < rank(T [s−1], T [s, s+l−1]). Now, there191

is no point p such that r < p < d and rank(T [r−1], T [r, r+l−1]) < rank(T [p], T [r, r+l−1]) <192

rank(T [s − 1], T [s, s + l − 1]). This is because if there was such a point p, then d cannot be a193

change point of T [r, r + l − 1], because d will be covered by point p. Secondly, if e ∈ [1, d − 1]194

is a change point of T [r, r + l − 1] and suppose q was the predecessor of e before prepending195

of the new point, then rank(T [r + q + 1], T [r, r + l − 1]) < rank(T [r − 1], T [r, r + l − 1]) <196

rank(T [r +e+1], T [r, r + l −1]). Therefore, we can say that rank(T [r +q +1], T [r, r + l −1]) <197

rank(T [r−1], T [r, r+l−1]) < rank(T [s−1], T [s, s+l−1]) < rank(T [r+e+1], T [r, r+l−1]). Here198

if we just consider the ranking orders of T [s, s+ l −1], then rank(T [s+q +1], T [s, s+ l −1]) <199

rank(T [s − 1], T [s, s + l − 1]) < rank(T [s + e + 1], T [s, s + l − 1]) because pred(T [r, r + l − 1]) =200

pred(T [s, s + l − 1]) . This implies that T [s − 1] is the new predecessor of T [s + e + 1], which201

means e is also a change point of T [s, s + l − 1].202

The encoding of characters which are not change points will stay the same in pred(T [r −203

1, r + d − 1]) and pred(T [s − 1, s + d − 1]). On the characters which are change points,204

their pred(·) values point to T [r − 1] (resp. T [s − 1]). Since pred encodes distance to the205

predecessor character, these pred values will be the same for corresponding change points in206

T [r − 1, r + d − 1] and T [s − 1, s + d − 1]. Thus, pred(·) encoding for both agree up to the207

first d + 1 characters. ◀208

3 LF Successor and Order-Isomorphic Text Indexing209

Recall our encoding scheme pred (Definition 1) and the lexicographic order of encoded210

symbols: 0 < 1 < 1′ < 2 < 2′ < · · · < n − 1 < (n − 1)′ < $. We will now introduce a few211
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more terminologies related to the order-isomorphic suffix tree (ST). We shall refer to any212

character on any substring representing an edge label as a “point” in ST. An edge is labeled213

by a substring represented by that edge in ST. For any point c in ST, let path(c) denote the214

concatenation of labels from the root until c. We shall denote char(c) as an (pred encoded)215

character represented by point c. We will also refer to nodes in ST as points. In this case, the216

node will be represented by the character just above it (i.e., the last character of the label217

of its parent edge). For any point c, depth(c) is length of path(c) and αDepth(c) = number218

of distinct symbols in T [r, r + depth(c) − 1], where T [r, n] is any suffix passing through c.219

Note that this αDepth indeed refers back to the original text instead of encoded text (in220

terms of encoded text this would be the number of non-primed characters). We call this221

the alphabet depth of point c. We shall generalize this notion as alphabet length for any222

string S as α(S) = number of unique alphabet symbols in S. For any two suffixes i and j223

(i.e., suffixes corresponding to leaves ℓi and ℓj), let point v = lca(i, j) be the lowest common224

ancestor (LCA) of ℓi and ℓj . Then, the length of longest common prefix LCP(i, j) = depth(v)225

and αLCP(i, j) = αDepth(v).226

The locus of a pattern P is the highest node u such that pred(P ) is a prefix of path(u).227

Every leaf ℓi in the sub-tree of u corresponds to an occurrence of P at a position in T given228

by SA[i]. Let [sp, ep] be the suffix range of P , where ℓsp (resp. ℓep) is the leftmost (resp.229

rightmost) suffix in the subtree of u. We note that in order to support pattern matching, we230

need to (a) compute the suffix range [sp, ep] of P and (b) decode suffix array values SA[i],231

i ∈ [sp, ep]. Using a standard binary search on the suffix array along with the text, we can232

find the suffix range. Storing SA[i] for every leaf ℓi is too costly as it will take Θ(n log n)233

bits. The goal is to encode suffix array values in compact space so that they can be decoded234

efficiently. We show how to achieve this using a sampled suffix array and LF mapping.235

Recall that LF mapping is defined as: j = LF(i) iff SA[j] = SA[i] − 1. We explicitly store
SA[·] values belonging to the set {1, 1 + ∆, 1 + 2∆, . . . , n}, where ∆ is a tunable parameter
to be set later. For any suffix i, where SA[i] has not been stored, we repeatedly apply LF
mapping operation (starting from i) until we reach j such that SA[j] has been sampled.
Then, SA[i] = SA[j] + k, where k is the number of LF operations applied; note that k ≤ ∆.
Thus, we have reduced the problem to that of computing LF(·). To this end, we introduce
LF successor, defined as:

i′ is called the LF-successor of i iff LF(i′) = LF(i) + 1

We denote it as i′ = LFS(i). Throughout this paper, we use i′ to denote LFS(i) for any suffix i.236

Thus, the leaves ℓi and ℓi′ are mapped by using LF operation to leaves ℓj and ℓj+1 respectively.237

To compute LF mapping, we again use a sampling technique. Specifically, we explicitly store238

LF(·) values in the set {1, 1 + ∆, 1 + 2∆, . . . , n}, thereby reducing the problem of computing239

LF mapping to that of computing at most ∆ number of LF successors. In Section 4, we240

show how to compute LF successor in time tLFS = O(log σ) by using an O(n log σ)-bit index.241

Therefore, LF can be computed in time tLF = ∆ · tLFS and tSA = O(∆ · tLF). Theorem 2242

follows immediately by fixing ∆ = logσ n.243

4 Computing LF Successor in Time O(log σ) Using Compact Space244

In this section, we shall describe what additional information should be augmented to each245

leaf of the suffix tree, so that given ith leaf ℓi, we can quickly identify which leaf is its LF246

successor LFS(i). We shall first describe the data structure and then the query algorithm for247

computing LFS(i). We saw earlier that we will be writing SA values and LF values only for248
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n/∆ positions. Thus, this takes O(n log σ)-bit space by choosing ∆ = logσ n. What remains249

to be seen is how to compute LF successor for a given suffix associated with the leaf ℓi. If250

we explicitly write it at all the leaves, it will take Θ(log n) bits per leaf. Since there is no251

sampling here, this will lead to Θ(n log n) bits which will defeat our purpose. Thus, our252

approach here is to store only O(log σ) bits of information in each leaf and yet be able to253

compute the LF successor quickly.254

4.1 Four Cases for Suffix and its LF Successor255

For the discourse in this section, we use the following terminology. Let i′ be LFS(i). Let the256

starting position in the text for suffix denoted by leaf ℓi be r (i.e, r = SA[i]), and that of ℓi′257

be r′. Let d denote the length of longest common prefix (LCP) of these suffixes pred(T [r, n])258

and pred(T [r′, n]). Thus, T [r, r + d − 1] and T [r′, r′ + d − 1] are order isomorphic. Inevitably,259

we will also focus on suffixes LF(i) and LF(i′) which are encodings of text suffixes T [r − 1, n]260

and T [r′ − 1, n] respectively.261

Now, we distinguish two cases with respect to leaf ℓi (and its LF successor ℓi′) – case262

(1) if T [r − 1, r + d − 1] is not order isomorphic with T [r′ − 1, r′ + d − 1], and case (2)263

T [r − 1, r + d − 1] is order isomorphic with T [r′ − 1, r′ + d − 1] i.e., prepending of character264

T [r − 1] (resp., T [r′ − 1]) to the left still maintains order-isomorphism until the LCP i.e.,265

pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).266

First, we shall talk about case (1). In this case, let us consider all the change points267

of T [r, r + d − 1] and T [r′, r′ + d − 1]. Let e be their last common change point. If268

T [r′ − 1] ̸= T [r′ + e − 1] then we call it case (1a) - the breakaway case. Else, we call it case269

(1b) - the equality case. In case (1a), let g be the first change point after e for T [r′, r′ + d − 1].270

We now define LF-image, which generalizes the concepts of Wiener links and LF mapping.271

▶ Definition 7 (LF-image). Let c be any point in the suffix tree and point p above c be such272

that for at least one of the suffixes T [r, n] passing through c, p is the last change point before273

c. The LF-image of c with respect to a change point p, denoted by LF(c, p, EQBT) is a point274

representing the position of (pred encoding of ) T [r − 1, r + depth(c) − 1]. EQBT is called275

the equality bit and is set to 1 if p is an equality change point and 0 otherwise.276

For any such suffix i passing through c with change point p being the last one above c,277

LF(i) passes through LF(c, p, EQBT). So if q = LF(c, p, EQBT), path(q) = pred(T [r − 1, r +278

depth(c) − 1]). Note that the same point c can have multiple LF-images based on which279

change point above c is taken as the last one and also if that is equality change point or not.280

If leaf ℓi falls under case 2, we shall again break this case into cases (2a) and (2b). In case281

(2a) we consider i < i′ (we call this ordered case) and in case (2b) we consider i′ < i (we call282

this inverting case). We say that a suffix l inverts over suffix k iff l < k and LF(l) > LF(k).283

▶ Lemma 8. If suffixes i and i′ = LFS(i) fall in case 2 then they have the same change284

points (and also the same type of change points - equality or not) until lca(i, i′). Then i285

cannot have a change point immediately after lca(i, i′). Moreover, if they fall in case (2b)286

then i′ must have a change point immediately after lca(i, i′).287

Proof. Let the point c = lca(i, i′). For case (2) we know that T [r − 1, r + d − 1] is order288

isomorphic with T [r′ − 1, r′ + d − 1] i.e. pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).289

This means that i and i′ have all the same change points until c.290

Now let p be the last common change point of i and i′ i.e. p = LCPC(i). Here,291

LCPC(i) denotes the last common point of change of i and its LFS i′. Additionally, suppose292
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b = LF(c, p, EQBT ). So this means that LF(i) and LF(i′) will pass through b. As per the293

definition of LF successor we know that, LF(i) < LF(i′). More specifically, LF(i′) = LF(i) + 1.294

Firstly, lets say that i has a change point right after c (note that both i and i′ cannot295

change immediately after c). Now if we see all the branches under b, then LF(i) will fall296

under the rightmost branch (or just previous branch depending on whether that change297

point is of equality type or not). This leads to LF(i′) < LF(i) which is not possible as per298

the definition of LF successor. Thus, i cannot have a change point immediately after c.299

Now, if we take the case (2b), then i′ inverts over i because LF(i′) must be greater than300

LF(i). For this to happen i′ must have a change point immediately after c. ◀301

The proof of the lemma above also leads us to the following fact.302

▶ Fact 1. Let c be a point immediately above any node v. Let b = LF(c, p, EQBT ) where p303

is a point on path(c) and is the last common change point (of type equality or non-equality)304

for two suffixes i and i′ = LFS(i), passing through c and lying in case 2b. Then, i′ has a305

change point immediately after v. Moreover, there cannot be another pair of case (2b) suffixes306

j and j′ = LFS(j), which have the same last common point of change p, and j′ changes307

immediately after v.308

Proof. If any two of the suffixes i′ and j′, where i′ = LFS(i) and j′ = LFS(j), passing through309

v have a change point right after the node v and their last common change point is p, then310

under the point b = LF(c, p, EQBT ) only one of their LF values (either LF(i′) or LF(j′)) can311

be next to their respective LF(i) or LF(j). That implies only one of either LF(i′) = LF(i) + 1312

or LF(j′) = LF(j) + 1 can be true. This is a contradiction, implying the fact is true. ◀313

4.2 Storing Augmenting Information for each Leaf314

We shall describe this section in terms of augmenting information stored with each leaf.315

However, one can easily see them as arrays that run parallel to the suffix array. We shall316

show that each of these augmenting fields in all the cases can be stored in O(log σ) bits. For317

each leaf ℓi, we can write in 2 bits which of the above 4 cases it belongs to. We denote this318

by CASE[i]. We also store the same value with i′ and in this case we shall call it CASE[i′].319

If ℓi belongs to case (1b), then we intend to store e which we will denote as LCPC[i] = e.320

Recall that e is defined as the rightmost (maximum value) common change point for321

T [r, r + d − 1] and T [r′, r′ + d − 1], and LCPC stands for last common point of change. Thus,322

LCPC is an array whose ith entry corresponds to leaf ℓi. However, storing the value e directly323

will require log n bits. Therefore, instead of e, we store number of distinct alphabet symbols324

in T [r, r + e − 1]) (i.e., α(T [r, r + e − 1])). We will call this value αLCPC[i]. It is worth noting325

that since change points only occur at new (first occurence) alphabets in the string, e can be326

uniquely decoded from αLCPC. We also store a complementary array of αLCPC denoted as327

αLCPC such that αLCPC[i′] = αLCPC[i]. Thus, this value is not only stored with leaf i but328

also replicated in leaf i′ = LFS(i) - albeit under a differently named field.329

Recall that for case (1a), g is the first change point after e for T [r′, r′ + d − 1]. For the330

case (1a), we store g which we call the first point of break FPB[i]. Again, we will not store331

the value g directly but an encoding α(T [r, r + g − 1]) which takes log σ bits. We will call332

this value αFPB[i]. Similarly, we store this value with i′ as αFPB[i′] = αFPB[i].333

For the case (2a), we maintain αLCPC and αLCPC as in case (1b). We also maintain an334

extra-bit EQBT indicating which type of change point LCPC is - whether equality change335

point (indicated by EQBT = 1) or not. Similarly, we also store EQBT . We also store336

α(T [r, r + d − 1]) that is the number of distinct alphabet symbol occurring until LCP(i, i′).337
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We shall call it αLCP[i]. Again, we store the same value at leaf ℓi′ so that αLCP[i′] = αLCP[i].338

Additionally to this, we store FPC[i] (read as first point of change post LCA) which in339

this case will be defined as the first change point of T [r, n] after T [r + d − 1]. Note that340

this point of change cannot be right after LCA at T [r + d] because otherwise i will invert341

over i′ (this would then be case (2b) Lemma 8) during LF mapping operation and LF(i)342

will be greater than LF(i′). Once again we define FPC[i′] = FPC[i] and define αFPC[i] and343

αFPC[i′] in similar vein. In summary, we maintain αLCPC, EQBT, αLCP and αFPC for each344

such leaf which falls in case (2a). We also store these values at their corresponding LF345

successors. One point to note here is that FPC, LCPC, FPB are all uniquely decodable from346

αFPC, αLCPC, αFPB since they necessarily fall on the new alphabet which is yet unseen in347

the suffix. However, the same is not true of αLCP.348

As an example, let us look at T [r − 1, n] = caghhfbab... and T [r′ − 1, n] = cagjjebae....349

Then, pred(T [r, n]) = 0111′456′2′... and pred(T [r′, n]) = 0111′456′3′.... Their LCPC is at350

depth 5 which is encoded as 4 in the encodings of both the suffixes. Their αLCPC = 4, since351

there are 4 distinct alphabets in both the strings until that point (4 non-prime characters in352

their pred encoding). Length of their LCP = 7, however the character a which occurs their as353

encoded character 6′ is not a new character. Hence, αLCP = 5 which points to character b in354

both the original strings. If we try to decode αLCP, it will lead us to position 6 rather than355

7. Finally, after the LF mapping, the encoded strings are 00211′556′2′ and 00211′556′3′.356

For case (2b), our solution is more intricate so we only give a brief overview and defer357

details to Case (2b) section of the proof of correctness. In this case, i′ inverts over i. Thus,358

i′ has a change point right after the lca(i, i′) at T [r′ + d]. Just storing additional augmenting359

values to the leaves of the suffix tree is not sufficient. Like before, we shall store αLCPC and360

αLCP values. But we shall construct additional data structures called mini-trees and search361

for i′ in an appropriate mini-tree identified by αLCPC and αLCP values of i. We will denote362

this mini-tree as ταLCPC[i],αLCP[i].363

4.3 Query Algorithm364

Now, we outline the pseudo-code for our query algorithm.365

Computing LFS(i)

If ℓi falls in case (1a),
ℓi′ is the unique leaf under u s.t. CASE[i′] = CASE[i] and αFPB[i′] = αFPB[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αFPB[i]

ElseIf ℓi falls in case (1b)
ℓi′ is unique leaf under u s.t. CASE[i′] = CASE[i] and αLCPC[i′] = αLCPC[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αLCPC[i]

ElseIf ℓi falls in case (2a)
Let c = point above FPC[i] on suffix T [r, n] in the suffix tree. Then ℓi′ is leftmost

leaf after ℓi in the (subtree of αLCP[i]) \ (subtree of c) s.t. CASE[i′] = CASE[i],
αLCP[i] = αLCP[i′], αLCPC[i] = αLCPC[i′] and EQBT[i] = EQBT[i′]

Else
i′ = findSucc

(
i, αLCPC[i], αLCP[i]

)
, which is to be defined later

366
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Note that all the arrays mentioned above can be represented in O(n log σ) bits, and367

the implementation uses standard succinct-data-structure techniques (see Section 4.5); the368

difficulty lies in proving the correctness of the algorithm, which is our focus next.369

4.4 Proofs of Correctness370

We shall show correctness of each case. In each case, we need to ensure that we would not371

end up with a wrong answer. This could happen if there is another pair j, j′ such that372

j′ = LFS(j) and this pair shares the same characteristics with the pair i, i′. In this case, pair373

j, j′ may interfere in the search for i′ leading to false answer j′.374

4.4.1 Case (1a)375

Let c be the first point (the character within an edge of ST) on path(ℓi) such that T [r, r +376

depth(c) − 1] has exactly αFPB[i] distinct characters. Thus, this is the first (encoded)377

character where pred(T [r − 1, n]) and pred(T [r′ − 1, n]) differ; in other words, path(ℓLF(i))378

and path(ℓLF(i′)) bifurcate at the position given by depth(c) + 1. Let ĉ be the point in379

ST such that path(ĉ) = pred(T [r − 1, r + depth(c) − 1]) and ĉ′ be such that path(ĉ′) =380

pred(T [r′ − 1, r′ + depth(c) − 1]). These points are on sibling edges going down from the same381

node. Let v be the node just above ĉ and ĉ′. For example, consider T [r − 1, n] = jeabdh...382

and T [r′ − 1, n] = gfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This383

makes path(ĉ) = pred(jeabdh) = 000114. However, path(ĉ′) = pred(gfabdh) = 000115.384

Note that 5 is the highest encoded character (with an exception of 5′) which branches out of385

the node v.386

▶ Lemma 9. There is only one pair of leaves i, i′ in the subtree of c, such that αFPB[i] =387

αFPB[i′] = α(T [r, r + depth(c) − 1]).388

Proof. Consider LF mapping of i and i′. path(ℓLF(i)) and path(ℓLF(i′)) first bifurcate at points389

ĉ and ĉ′ respectively. Since i′ = LFS(i), char(ĉ) < char(ĉ′). Moreover, char(ĉ′) is precisely390

depth(c) or its equality version i.e. (depth(c))′. This is the highest (encoded) character, and391

thus the branch with ĉ′ will be one of the two rightmost branches among branches (depending392

on whether the change point c for suffix i′ was based on “equality” or not). However, the393

point ĉ will certainly be before the two rightmost branches at v. If there was any other pair j394

and j′ of case (1a) under the subtree of c such that j′ = LFS(j) and FPB(j) = FPB(i), then395

both LF(i′) and LF(j′) will fall under the subtree of ĉ′ because as per the LCPC lemma all396

the change points of i′ and j′ are the same until c (including c). On the contrary, LF(i) and397

LF(j) cannot fall under this subtree as they are under the subtree of ĉ. Thus, depending on398

whether LF(i′) < LF(j′) or not, only one pair out of (LF(i), LF(i′)) or (LF(j), LF(j′)) can be399

adjacent. Since, i′ is indeed the LF successor of i, such a pair j, j′ cannot exist. ◀400

4.4.2 Case (1b)401

Let c be the first point in ST on path(ℓi) such that T [r, r + depth(c) − 1] has αLCPC[i]402

distinct characters. In this case, c is a change point for both i and i′. For i′, it is the403

equality change point while for i it is not (i.e., T [r′ − 1] = T [r′ + depth(c) − 1] and T [r − 1] ̸=404

T [r+depth(c)−1]). Let point ĉ correspond to path(T [r−1, r+depth(c)−1]) and ĉ′ correspond405

to path(T [r′ −1, r′ +depth(c)−1]). Let v be the node right above ĉ (and also ĉ′) which can be406

identified by path(v) = T [r−1, r+depth(c)−2]. In this case, ĉ′ will fall in the rightmost branch407

at node v and ĉ will fall in the branch previous to that. The character at point ĉ′ is precisely408
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Figure 2 Illustration of case (2a)

the equality (prime) version of the character at ĉ. For example, consider T [r−1, n] = geabdh...409

and T [r′ − 1, n] = hfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This410

makes path(ĉ) = pred(geabdh) = 000115. However, path(ĉ′) = pred(hfabdh) = 000115′.411

Here 5′ is the highest encoded character. Again, as in the case (1a), if there were any other412

pair j, j′ falling in case (1b) under subtree of c such that LCPC(j) = LCPC(i), then LF(j′)413

will also fall in the rightmost branch at v while LF(j) will fall in the previous one. Again, by414

applying simple interval logic as in case (1a), we can show that only one of the pairs can415

satisfy the LF-successor definition.416

4.4.3 Case (2a)417

In this case, post lca(i, i′), branch with ℓi is to the left of the branch with ℓi′ . Let c be the418

point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. Note that since419

FPC[i] is not immediately after the lca(i, i′), the subtree of c does not include i′. Therefore,420

the order between i and i′ will not be inverted after taking LF mapping. Let f be the first421

point in ST on suffix T [r, n] such that α(path(f)) = αLCP[i]. The actual LCP[i] will be422

somewhere in the subtree of f because LCP[i] is not uniquely decodable from αLCP[i]. Here423

LCP[i] denotes the lcp(i, i′). Let j, j′ be another pair in the subtree of f such that j′ = LFS(j)424

and αLCP[j] = αLCP[i] and LCPC[j] = LCPC[i]. All four leaves LF(i), LF(i′), LF(j), LF(j′)425

will be in the subtree of f̂ which is the LF-image LF(f, LCPC[i], EQBT). In other words, f̂426

is the locus of pred(T [r − 1, r + depth(f) − 1]) in ST.427

▶ Lemma 10. There does not exist a pair (j, j′) such that j′ = LFS(j), αLCP[j] = αLCP[i],428

αLCPC[j] = αLCPC[i] and j′ lies in between k and i′.429

Proof. Consider any other pair j, j′ in the subtree of f and with the same αLCPC, EQBT430

and αLCP values such that k < j′ < i′. We will show by contradiction that such a j′
431

cannot exist. Firstly, since i < k < j′ and ℓk being the rightmost leaf in the subtree of c,432

i cannot invert over j′ after taking LF mapping. This is because c is the point just above433

FPC[i]. Hence LF(i) < LF(j′). Also, since LF(i′) = LF(i) + 1, LF(j′) must be greater than434

LF(i′). Secondly, the pair j, j′ falls under case (2a) where j < j′ and LF(j) < LF(j′). Thus,435

LF(i′) ≤ LF(j) < LF(j′) which means both j and j′ invert over i′ after LF operation.436

Next, j < j′ < i′ means lca(j, i′) is equal to or above lca(j′, i′). Since j and j′ invert over i′,437

it must be at lca(j, i′) and lca(j′, i′) respectively. If lca(j, i′) is above lca(j′, i′), then j inverts438
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Figure 3 Illustration of case (2a) (left) and case (2b) (right). Red underline shows the character
encoding that changes after taking LF.

above j′ and it implies LF(j) > LF(j′) which is a contradiction. Now if lca(j, i′) = lca(j′, i′),439

then there are two cases. The first case is where j and j′ invert from a common branch440

connecting path of i′. Here, j and j′ will have a common change point at this branch which441

is post lca(j′, i′). It implies that there is another common change point for j, j′ which leads442

to LCPC[j] > LCPC[i] (a contradiction). In the second case, j and j′ branch out at lca(j′, i′)443

but fall in different branches. However, according to Lemma 8, only one of j or j′ can have a444

change point right after the lca(i, i′). Hence, this case also leads to contradiction. Thus, j′
445

does not lie in between k and i′ (See Figure 3). ◀446

4.4.4 Case (2b)447

For the case (2b), we know that suffix i′ comes before suffix i in the suffix tree, i.e. i′ < i.448

Additionally, for the case (2b), i′ has a change point right after the node representing the449

lca(i, i′). Moreover, under lca(i, i′) the branch containing the suffix i′ will be the only one450

that will have a change point tied with the same LCPC (See Fact 1). Since i′ = LFS(i), after451

the LF mapping i′ will invert over i making LF(i′) = LF(i) + 1.452

As mentioned in Section 4.2, for the case (2b) we store αLCPC[i] and αLCP[i] values for453

each leaf ℓi as augmenting information. Additionally, we store their complements αLCPC[i′]454

and αLCP[i′] for each leaf ℓi′ . Now we consider an additional data structure called mini-455

trees that will help us in finding i′ given i. Specifically, a particular mini-tree τa,b has456

set of all leaves ℓi and their corresponding LF successors ℓi′ from the suffix tree that has457

αLCPC[i] = αLCPC[i′] = a and αLCP[i] = αLCP[i′] = b. A particular leaf ℓi will not be in458

any mini-tree if that leaf does not fall under the case (2b). Thus, a leaf can be present in459

a mini-tree if it falls under case (2b) or it is an LF-successor of some other leaf which falls460

under the case (2b). Therefore, each leaf in the suffix tree will be in at most two mini-trees461

and some mini-trees are possibly empty. In other words, a mini-tree is a compacted subtrie462

of the suffix tree containing only those leaves selected for that mini-tree. Hence, overall size463

of all the mini-trees combined is O(n).464

To draw a correspondence between the leaves of the suffix tree and the leaves of the465

mini-trees, we use a bit-vector B[1, n], where B[i] = 1 iff leaf i falls in case (2b) or leaf i is an466

LF-successor of the leaf which falls in case (2b). In other words, B[i] = 1 if a leaf from the467

suffix tree is present in at least one of the mini-trees, and B[i] = 0 otherwise. Next, we create468

two character vectors C and C as follows. If B[i] = 0, then C[i] = C[i] = 0. Otherwise,469

1. C[i] stores an encoding of the pair αLCPC[i], αLCP[i] as a combined character from an470

alphabet of size σ2; essentially C[i] = (σ − 1) · αLCPC[i] + αLCP[i]471

2. C[i] = −C[i] if αLCPC[i] = αLCPC[i] and αLCP[i] = αLCP[i], and C[i] = (σ − 1) ·472

αLCPC[i] + αLCP[i] otherwise.473
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Now given a particular leaf ℓi in the suffix tree, for finding the corresponding leaf in the474

mini-tree, we first check if B[i] = 1. Since a = αLCPC[i] and b = αLCP[i], we can quickly475

identify the mini-tree τa,b it belongs to as augmenting information αLCPC[i] and αLCP[i]476

is stored for the leaf ℓi. To find out which leaf in τa,b corresponds to ℓi, all we have to do477

is figure out the number of leaves j ≤ i that satisfy a = αLCPC[j] = a and b = αLCP[j]478

or αLCPC[j] = a and αLCP[j] = b; this is the same as the number of entries j ≤ i in the479

character vectors C such that C[j] = C[i] plus the number of entries k ≤ i in the character480

vectors C such that C[k] = C[i]. This is because the mini-tree is just a compacted subtrie481

of the original suffix tree consisting of only those leaves present in a particular mini-tree.482

To map a leaf from the mini-tree back to the leaf of the original suffix tree, we need to483

store a character vector for each mini-tree over the leaves of the mini-tree. Let Ca,b be the484

character vector for the mini-tree τa,b. This character array indicates whether the leaf has485

a = αLCPC[i] and b = αLCP[i] or a = αLCPC[i] and b = αLCP[i] or both. In other words, it486

simply specifies how the leaf was selected for that mini-tree using techniques similar to that487

described above. It is to be noted that all character vectors combined need O(n log σ) bits.488

4.4.4.1 Identifying i′
489

We know that αLCPC[i] = a and αLCP[i] = b. Let pa be the first point in suffix tree where490

α(T [r + depth(pa) − 1])) = a and pb be the first point such that α(T [r + depth(pb) − 1]) = b.491

Thus, pa and pb are the points in suffix tree where αLCPC[i] and αLCP[i] are located. Note492

that pa is above or the same as pb. Now consider the mini-tree τa,b. Let another pair j, j′
493

where j′ = LFS(j) fall under the same mini-tree (i.e., ℓj and ℓ′
j are also descendants of pb494

and αLCPC[j] = αLCPC[i] and αLCP[j] = αLCP[i]). Here j′ will be on the left of j because495

they fall under the case (2b). We will focus here on searching i′ as the first qualifying leaf to496

the left of i. Another pair j, j′ could interfere with our process of searching if j′ falls between497

i′ and i. Formally, we say498

▶ Definition 11. A pair j, j′ interferes with i, i′ if i′ < j′ < i and αLCPC[j] = αLCPC[i] and499

αLCP[j] = αLCP[i]. Here, i′ = LFS(i) and j′ = LFS(j)500

There are two cases of ‘interference’ that can occur with respect to these two pairs –501

case (2b′) is where both j′ and j are in between i′ and i i.e. i′ < j′ < j < i and case (2b*)502

where j is on the right of i i.e. i′ < j′ < i < j. As we know that αLCPC[i] = αLCPC[j] = a503

and pa is the first point in the suffix tree where α(T [r + depth(pa) − 1])) = a. Suppose504

x = LF(lca(i, i′), pa, EQBT ) and y = LF(lca(j, j′), pa, EQBT ). Here EQBT is set to 1 if i′
505

has an equality change point and 0 otherwise. Now in the case (2b′), after taking LF-mapping,506

j′ inverts over j under y and i′ inverts over all three of j, j′, i under x – we call this the nested507

case. In case (2b*), j′ and i both together (maintaining same order) invert over j under y508

and then i′ inverts over all of them under x – we call this the bulk-invert case. Additionally,509

we will need to augment this mini-tree further so that we can distinguish the pair i, i′ from510

the pair j, j′.511

▶ Lemma 12. If a pair j, j′ interferes with i, i′, then lca(i′, i) occurs above lca(j′, j) in the512

suffix tree. Additionally, if i < j, then lca(j′, i) is below lca(j, j′).513

Proof. Note that in bulk invert case since j′ and i both invert together over j, lca(j′, i) must514

be below lca(j, j′). Even though αLCP[i] = αLCP[j], it cannot happen that LCAs of both515

the pairs are on the same node in the suffix tree (i.e. lca(i′, i) = lca(j′, j)). This is because516

from any node only one branch can have a change point at the next character below the517

node (see Fact 1). But we know that i′ has a change point just below the node representing518
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Figure 4 Mini-trees for case (2b)

lca(i, i′). Therefore, the branch containing j′ cannot have a change point just below that519

node. This implies j′ ̸= LFS(j) since j falls under the case (2b). This holds a contradiction.520

Therefore, for the case (2b′), it must be the case that lca(j′, j) is below lca(i′, i), implying521

that suffixes j′ and j belong to the subtree at lca(i′, i). In case (2b*), it cannot happen522

that lca(i′, i) is below lca(j′, j) because that would mean j′ has a change point right below523

lca(j′, j) which falls above lca(i′, i). This would make αLCPC[i] different than αLCPC[j]524

because the suffixes i and i′ will have an extra change point above lca(i, i′) and below the525

lca(j, j′). Hence, for the case (2b*) this leads to a contradiction and lca(j, j′) cannot be526

above the lca(i, i′). ◀527

If lca(i′, i) and lca(j′, j) are not on the same root-to-leaf path (neither above nor below528

nor same as each other), then pairs i, i′ and j, j′ are non-interfering. So we need not consider529

that case as in some sense for i, our algorithm looks at the closest suffix to the left of i that530

has the same αLCP and αLCPC as the qualifying suffix for LFS(i).531

Finally, from Fact 1 we can say that there exists a unique suffix i′ marked with case (2b)532

under the point at 1 + depth(lca(i′, i)) depth such that αLCP[i] = αLCP[i′] and αLCPC[i] =533

αLCPC[i′], with the constraint that i′ has a change point at 1 + depth(lca(i′, i)) depth.534

4.4.4.2 Searching in Minitree535

For any i, if we can identify lca(i′, i) precisely, then i′ is the leaf which has the same αLCPC536

and αLCP values (as that of i) and i′ is in the subtree of a branch of lca(i′, i) whose leading537

character in that branch is a change point. For this, we mark some nodes in the tree. More538

precisely, for each mini-tree, we mark a node v if a point at (depth(parent(v)) + 1) depth is a539

change point for a suffix i′ (in case (2b)) in the subtree of v. Note that only one child of540

a node can get marked (refer to Fact 1). Also note that there is only one marked node in541

a path from the root to a leaf because if there were another marked node w for a suffix j′,542

then αLCPC[i′] ̸= αLCPC[j′]. But we know that all the leaves in a mini-trie have the same543

αLCPC[i], αLCP (or their complement) values.544
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Now lets say that a node x in the mini tree ταLCPC[i],αLCP[i] is the node corresponding545

to lca(i′, i) in the suffix tree. Therefore, given i, our task simply becomes locating the leaf546

ℓ in the mini-tree that corresponds to i. Then, find the lowest ancestor of ℓ that has a547

marked child before ℓ in pre-order; observe that this lowest ancestor is precisely the node548

x corresponding to lca(i′, i). Let y be the marked child of x. Within the subtree of y, we549

can find the unique leaf ℓ′ corresponding to i′, which can be mapped back to the original550

suffix tree. To find this unique leaf, we store a unary encoding at the marked node indicating551

which leaf we looking for; more precisely, if the desired leaf is the zth leftmost leaf under552

the marked node, then store z in unary at the marked node. Since there is only one marked553

node from a leaf to root path in a mini-tree, the total length of all such unary encodings554

combined is bounded by the size of the mini-tree. The mapping to and from the suffix tree to555

a mini-tree can be carried out using the bit-vector and the character vectors defined earlier.556

For the sake of completion, we summarize the discussion in the following findSucc method,557

which was used by pseudo-code in Section 4.3.558

findSucc(i, a, b)

Use the bit-vector B and the character vectors C and C to identify the leaf ℓ in
τa,b that corresponds to ℓi

Find the lowest ancestor x of ℓ that has a marked child y before x in pre-order
Use the unary encoding stored at y to locate the leaf ℓ′ in τa,b corresponding to ℓi′

Finally, use the character vector Ca,b to map ℓ′ back to i′

559

4.5 Implementation and Complexity Analysis560

We will rely on the following well-known data structures of Fact 2 and Fact 3.561

▶ Fact 2 (Wavelet Tree [11]). Given an array A[1, t] over Σ, by using a t log |Σ| + o(t log |Σ|)-562

bit structure, we can compute the following in O(log |Σ|) time:563

A[i]564

rankA(i, x) = number of occurrences of x in A[1, i]565

selectA(i, x) = i-th occurrence of x in A566

prevValueA(i, y) = rightmost position j < i such that A[j] ≤ y567

We drop the subscript A when the context is clear.568

▶ Fact 3 (Fully-Functional Succinct Tree [19]). The topology of order-isomorphic suffix tree569

can be encoded in O(n) bits to support the following operations in O(1) time.570

pre-order(u)/post-order(u): pre-order/post-order rank of node u571

parent(u): parent of node u572

nodeDepth(u): number of edges on the path from the root to u573

child(u, q): qth leftmost child of node u574

sibRank(u): number of children of parent(u) to the left of u575

lca(u, v): lowest common ancestor (LCA) of two nodes u and v576

sp(u)/ep(u): leftmost/rightmost leaf in the subtree of u577

levelAncestor(u, d): ancestor of u such that nodeDepth(u) = d578

Moving forward, we assume that any array has been pre-processed using Fact 2. We579

maintain the topology of the order-isomorphic suffix tree and the mini-trees (Case 2b) using580

Fact 3. Finally, we explicitly store αDepth(u) for every node u in the order-isomorphic suffix581
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tree. For the purpose of locating the node immediately below FPB or LCPC, we will rely on582

the following lemma.583

▶ Lemma 13. By maintaining an O(n log σ) bit data structure, given a leaf ℓi and an integer584

W , we can find the highest ancestor w of ℓi satisfying αDepth(w) ≥ W in O(log σ) time.585

Proof. Create an array A such that A[k] = αDepth(w), where w is the node with pre-order586

rank k. Maintain A as a wavelet tree. Given ℓi, find the rightmost entry r < pre-order(ℓi) in A587

such that A[r] < W using prevValueA(pre-order(ℓi), W − 1). Let v′ = lca(ℓi, v), where v is the588

node with pre-order rank r. Then, w = levelAncestor(ℓi, nodeDepth(v′)+1). To see why this is589

correct, observe that αDepth(v′) ≤ αDepth(v) < W . If αDepth(w) < W , the prevValue-query590

should have returned w instead of v (since pre-order(v) < pre-order(w) ≤ pre-order(ℓi)). ◀591

4.5.1 Case (1a) and Case (1b)592

In case (1a), i′ is the only leaf marked with case (1a) in the sub-tree of FPB(i) that satisfies593

αFPB[i′] = αFPB[i]. The first task is to find the subtree of FPB(i), i.e., the node just below594

FPB(i). This node, say v, can be found in O(log σ) time using Lemma 13 and by using595

αFPB[i]. Within the subtree of v, we simply find the only leaf i′ marked with 1a such that596

FPB[i′] = FPB[i] using Fact 2. Since αFPB and αFPB entries for case (1a) suffixes are at597

least one, in order to identify a valid case (1a) suffix, we simply set the αFPB and αFPB598

entries for non case (1a) suffixes to zero.599

In case (1b), the idea is the same, with the difference that we use αLCPC and αLCPC600

arrays (instead of FPB and αFPB arrays) for finding the node v and then i′. As in the601

previous case, we set the αLCPC and αLCPC entries for non case (1b) suffixes to zero.602

Note that the wavelet trees for the four arrays need O(n log σ) bits, and a wavelet tree603

query needs O(log σ) time.604

4.5.2 Case (2a)605

Let c be the point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. By606

Lemma 10, it is evident that i′ is the leftmost leaf such that i′ > k, αLCP[i′] = αLCP[i],607

αLCPC[i′] = αLCPC[i], and EQBT[i′] = EQBT[i]. To properly identify a case (2a) suffix,608

we maintain a summary vector X defined as follows. For any suffix i lying in case (2a),609

X[i] = (σ −1) ·αLCP[i]+αLCPC[i] if EQBT[i] = 1, and X[i] = −(σ −1) ·αLCP[i]−αLCPC[i]610

if EQBT[i] = 0. For any suffix j not in case (2a), we let X[i] = 0. Likewise, we define X611

based on αLCP, αLCPC, and EQBT.612

Note that any entry in X and X is from the set [0, 2σ2]; hence, a wavelet over them613

needs O(n log σ) bits and supports queries in O(log σ) time. Thus, if we can find out the leaf614

ℓk, we can locate i′ by using the wavelet-tree over the two summary vectors X and X in615

additional O(log σ) time.616

To find ℓk, we use Lemma 13 and αFPB to first find the highest node v such that617

αDepth(v) ≥ αFPB[i]. Note that ℓk is the rightmost leaf in the subtree of parent(v) if FPB[i]618

is the first character of the edge on which it lies, and is the rightmost leaf in the subtree of v619

otherwise. We explicitly store a bit-vector to distinguish between the cases. Using these, ℓk620

is located in O(log σ) time.621

4.5.3 Case (2b)622

In our previous discussion, we have already addressed how to map a case (2b) leaf i in the623

suffix tree to its corresponding leaf in the mini-tree. (Refer to Section 4.4.4.) We have also624
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addressed that given the desired marked node (corresponding to i) in the mini-tree, how we625

can find the leaf in the mini-tree corresponding to the LF-successor i′. Finally, we also know626

how to map-back to i′ from the mini-tree. Note that all of these can be achieved by storing627

the character vectors and the bit vector as a wavelet tree, and by using a succinct encoding628

of the mini trees. What is left to discuss is how to find the marked node. To this end, we629

present Lemma 14. Using this we can find the desired marked node in O(1) time given the630

leaf corresponding to i in the mini-tree.631

▶ Lemma 14. Consider a tree having t nodes, where each non-leaf node has at least two632

children. Also, each node is marked or unmarked. By using an O(t)-bit data structure, given633

a leaf x, in O(1) time, we can find the rightmost leaf y < x such that the child of lca(y, x) on634

the path to y is marked.635

Proof. Let u be a node. We associate 1 with u iff parent(u) has a child v before u in pre-order,636

where v is marked. Pre-process the tree with Lemmas 15 and 16.637

Given the query x, use Lemma 15 to locate the lowest ancestor u of x associated with a 1.638

We find the marked sibling v of u to its left using Lemma 16. The time needed is O(1). ◀639

▶ Lemma 15. Consider a tree having t nodes, where each non-leaf node has at least two640

children. Also, each node is associated with a 0 or 1. By using an O(t)-bit data structure, in641

O(1) time, we can find the lowest ancestor of a leaf that is associated with a 1.642

Proof. Starting from the leftmost leaf, every g = c⌈log t⌉ leaves form a group, where c is a643

constant to be decided later. (The last group may have fewer than g leaves.) Mark the lca of644

the first and last leaf of each group. At each marked node, write the node-depth of its lowest645

ancestor which is associated with a 1. The space needed is O( t
g log t) = O(t) bits. Let τu be646

the subtree rooted at a marked node u. Since each node in τu is associated with a 0 or 1, the647

number of possible trees is at most 2g (because τu has fewer than g non-leaf nodes). We store648

a pointer from u to τu. The total space needed for storing all pointers is O( t
g log 2g) = O(t)649

bits. For each possible τu, store the following satellite data in an additional array. Consider650

the kth leftmost leaf ℓk in τu. Let v be the lowest node on the path from u to ℓk associated651

with a 1. If v exists, store the node-depth of v relative to u, else store −1. The space needed652

for each τu is O(g log g) = O(g log log t) bits. Therefore, the total space for all such trees is653

O(2gg log log t). By choosing c = 1/2, this space is bounded by o(t) bits. Thus, the total654

space is bounded by O(t) bits.655

Given a query leaf ℓk, we first locate the lowest marked node u∗ = lca(1+g⌊k/g⌋, max{t, g(1+656

⌊k/g⌋)}) of ℓk. Let d∗ be the depth stored at u∗. Let k′ = k − g⌊k/g⌋. Check the k′th657

entry of the satellite array of u∗, and let it be d. If d = −1, then assign D = d∗, else658

assign D = nodeDepth(u∗) + d. The lowest ancestor of ℓk associated with a 1 is given by659

levelAncestor(ℓk, D). ◀660

▶ Lemma 16. Consider a tree of t nodes, where some nodes are marked. By using an661

O(t)-bit data structure, in O(1) time, given a node v, we can find a node u (if any) such662

that u is the rightmost marked child of parent(v) and pre-order(u) < pre-order(v).663

Proof. For each node w, we store a bit-vector Bw[tw], where tw is the number of children664

of w. Assign Bw[i] = 1 iff the ith leftmost child of w, given by child(w, i), is marked. The665

total space needed is O(t) bits. Given the query node v, we go to the bit vector Bv′ , where666

v′ = parent(v). Let r = rankBv′ (sibRank(v), 1). If r = 0, then u does not exist; otherwise,667

u = child(v′, selectBv′ (r, 1)). ◀668
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