
EasyMAC: A New and Simple Protocol for Slot Assignment

Jerrolyn Brees and Sukhamay Kundu
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803, USA

Abstract

We give a new distributed algorithm EasyMAC
for the slot assignment for media access control (MAC)
of nodes in a sensor network. Our algorithm reduces
both the number of messages and the time required
to complete the slot assignment compared to existing
algorithms. We achieve this by maintaining additional
information at each node about the collisions that it
detects and sending that information to its neighbors.
Keywords: slot assignment, wireless MAC protocol

1 Introduction

We consider a sensor network composed of in-
dividual nodes which communicate through wireless
broadcast transmission. We assume that every node
has a distinct id, which is included in every message it
sends. Two nodes are neighbors (adjacent) if they can
receive each other’s messages, i.e., if they are within
their broadcast range.

If two or more messages reach a node at the same
time, then a message collision occurs at the node, and
the node fails to decipher any of the colliding mes-
sages. Since these messages will have to be rebroad-
cast by the senders in order to transmit their data,
the collision amounts to wasted power, and as sensor
nodes have limited available power, collisions should
be avoided. Media access control (MAC) algorithms
reduce or eliminate collisions.

A particular form of MAC is to assign each node
x a slot sx in a frame, where a frame consists of a
consecutive set of, say, f slots (i.e., as a form of Time
Division Multiple Access (TDMA) [6]). Given a net-
work N , a slot assignment x→sx is valid if every node
in N can send a message in the same frame during
its assigned slot without causing a collision. That is,
sx 6=sy whenever x and y are at distance ≤ 2. Note
that collisions occur when two adjacent nodes or two
nodes who share a neighbor (i.e., hidden terminal [8])
attempt to send a message during the same slot.

If we think of the slots as a resource, then the slot
assignment problem for MAC can be regarded as a dis-

tributed mutual exclusion problem [4] for the modified
network N ′ which has the same nodes as N with two
nodes x and y considered adjacent if they are within
distance 2 from each other in N . However, we cannot
use the algorithms in [4, 5] for our purpose because
those algorithms assume the existence of an underly-
ing communication mechanism (such as MAC slot as-
signment) so that messages can be transmitted from a
node to a neighbor without interference and message
loss. The MAC slot assignment problem considered
here is also different from the distributed graph color-
ing problem [3] for the same reason.

Our main contribution is a new slot assignment
algorithm EasyMAC, which is simpler and more ef-
ficient than the LooseMAC algorithm [2] in terms of
both the number of messages sent and the number of
time slots used. In both EasyMAC and LooseMAC, we
begin with a random slot assignment that is gradually
modified via the exchange of collision (and other) mes-
sages until a valid assignment is reached. Some other
slot assignment algorithms include [1, 7, 9].

2 Definitions

Table 1 summarizes the notations used in this pa-
per. When a sensor node x sends (broadcasts) a mes-
sage, all of the neighbors N1

x of x receive that message.
The two-neighbors of node x are the nodes z that are
not neighbors of x but are able to send and receive mes-
sages directly to and from neighbors of x, i.e., z ∈ N2

x

if and only if ∃y ∈ N1
x ∩N1

z and z /∈ N1
x . In Figure 4,

N2
x=y. Clearly, y ∈ N i

x implies x ∈ N i
y.

We assume that time is discretized into equal
sized slots and that each successive set of f slots are
grouped together into frames. We refer to the i-th
frame as Fi and refer to the j-th slot in Fi as ti,j .
See Figure 1. We use a simpler notation tj for the
j-th slot when the frame number is implied. We as-
sume that frames are synchronized across all nodes,
i.e., each frame begins at the same time for all nodes.
The problem of unsynchronized frames can be handled
by techniques discussed in [2].

It is known that there is always a valid slot as-

Table 1: EasyMAC Algorithm Notation with nodes x and y ∈ N1
x

during Fi.

Notation Description

N1
x Nodes that receive messages directly from x, i.e., the

neighbors of x.
N2

x Nodes that receive messages directly from some y ∈ N1
x

but not directly from x, i.e., the nodes at a distance 2
from x or two-neighbors of x.

N1,2
x N1

x ∪N2
x (disjoint union).

Fi ith frame (see Section 2 and Figure 1).
ti,j Time slot j in Fi.
mx,i Message sent by x during Fi (based on data gathered

by x during Fi−1).
sx,i Slot chosen by x during Fi.
sx,y,i Slot that x believes y has chosen for Fi based on mes-

sages my,j received by x in frames Fj , j ≤ i.

Figure 1: Frames with f=6 slots.

signment when the frame size f ≥ 1 + ∆2, where ∆2

= max{|N1
x | + |N2

x |}, for all nodes x. Figure 2 shows
a network with ∆2 = 4 and a valid slot assignment for
f = 3 < ∆2. On the other hand, Figure 4 shows a
network with ∆2 = 3 where the minimum f to allow
a valid slot assignment is 4 = 1 + ∆2.

Figure 2: A network with ∆2 = 4 and a valid slot assignment for
f = 3. Next to each node x is shown its assigned slot sx.

At any point in time, a node x has a particular
slot selected, and it sends messages only during that
slot (once per frame, if any). We say that a node x
receives a message (clearly), without collision, from
y ∈ N1

x during a slot if no other neighbor of x nor x
itself sends a message in the same slot.

2.1 Collisions

A message collision occurs at a node x when two
or more messages reach that node at the same time,
i.e., during the same slot. When this happens, x de-
tects the presence of multiple messages but cannot de-
cipher the content of the messages. Additionally, x
cannot determine the identity of the nodes sending the
colliding messages. As shown in Figure 3, a collision
can happen at x in two ways:

1. A node x and one of its neighbors y ∈ N1
x send

messages during the same slot. Here, both x and
y detect the collision during that slot.

2. Two nodes y, z ∈ N1
x send messages during the

same slot. The collision is detected at node x
during that slot; and if y and z are not adjacent,
then they will not detect the collision.

In the second case, x broadcasts a message (in the
next frame) to inform its neighbors about the collision.

Figure 3: Example of collisions at a slot s. The arrows indicate
the directions of colliding messages sent during s.

Since the collision message from x to a node w might
collide with another message at w, w assumes that any
collision it hears is potentially a message about a col-
lision that it has caused. This assumption is necessary
to avoid the problematic situation shown in Figure 4.

If all nodes send a message in Fi, nodes
w and z detect the collision at slot ti,2
caused by nodes x and y, and nodes
x and y detect the collision caused at
slot ti,1 by nodes w and z. The col-
lision messages that are sent in Fi+1
also collide. If the nodes do not pick
new slots after hearing the collisions,
their messages will continue colliding.

Figure 4: Problem that can occur if colliding messages are ig-
nored.

2.2 Conflict

Node x recognizes a conflict when it detects that
there is a potential for future message collisions. Con-
sider two nodes y, z ∈ N1

x . Suppose in frame Fi node
x receives a message from y during slot ti,m. Now
suppose in frame Fj j > i, x receives a message from
z during the slot tj,m, which was previously claimed
by y, while y does not send a message in Fj . Node x
recognizes that message collisions could occur between
y and z if they both send a message during the same
frame Fk, k > j. Thus, x takes a preventative action
by broadcasting a conflict-message in Fj+1. See Figure
5.

Since the purpose of both conflict and collision
messages is to inform other nodes to change their cur-
rent slots, we use collision messages to warn about
both collisions and conflicts.

- x1 sends a message to x2 dur-
ing t1,1 of F1.
- x3 sends a message to x2 dur-
ing t2,1 of F2.
- If x1 and x3 send a message
during the same frame, a colli-
sion would occur at x2.

Figure 5: Simple example of how a conflict can occur given the
three node network.

2.3 Ready Node

A node x is considered ready when it determines
that it has picked a slot that has not been chosen by
any y ∈ N1,2

x = N1
x ∪ N2

x . In EasyMAC, x can de-
termine this if it is able to keep the same slot for two

consecutive frames. The details of this are discussed
in Section 3.4.

Once x is ready, it keeps its chosen slot regard-
less of future collisions heard or collision-messages re-
ceived; however, it continues to participate in the slot
selection for other nodes by informing its neighbors of
any collisions or conflicts that it hears. When a node
determines that all of its neighbors are ready, it can
then quit the algorithm. At any point in time, all
ready nodes in N1

x , including x if ready, have distinct
slots.

3 EasyMAC Algorithm

The basic structure of the EasyMAC algorithm
at a node x is as follows:

1. In the beginning of frame F0, select a random slot
sx,0 from frame F0 and let mx,0 = bcn(x).

2. Now do the following for each frame F0, F1, ...

(a) Send the message mx,i in slot sx,i for the
current frame Fi.

(b) Collect information on all collisions detected
by x and all the messages received by x from
its neighbors N1

x during Fi.
(c) Based on the information collected in 2(b),

choose a new slot sx,i+1 for frame Fi+1 as
described in Section 3.2, if necessary; other-
wise, keep the same slot, i.e., sx,i+1 = sx,i.

(d) Choose the message mx,i+1 to be sent, if any,
in the next frame Fi+1 based on 2(b) as de-
scribed in Section 3.3.

(e) For all y ∈ N1
x , update sx,y,i based on the

message received from y in Fi or from sx,y,i−1

if no messages were received from y in Fi.
(f) Determine whether x can consider itself

ready based on the information collected in
2(b) during Fi and Fi−1 as in Section 3.4.

(g) If x is ready and no beacon or collision mes-
sages have been received and no collisions
have been heard for two consecutive frames,
then terminate. This implies that all neigh-
bors of x and x itself are ready; thus, x no
longer needs to participate.

EasyMAC begins with each node x selecting a
random slot sx,0 in the first frame F0. In each succes-
sive frame Fi+1, a node x may either keep its current
slot sx,i from frame Fi or choose a new slot sx,i+1

based on the collisions detected by x itself and the
other collision-messages received by x from its neigh-
bors during the previous frame Fi.

On termination of EasyMAC in frame Fj , each
node x has a slot sx,j which is collision-free, i.e., sx,j

6= sy,j for all y ∈ N1,2
x .

3.1 Message Types

EasyMAC uses two types of messages: a bcn
(beacon) message and a col (collision) message; see
Table 2. A node x broadcasts bcn(x) in Fi if it has
chosen a new sx,i for Fi and neither heard a collision
nor detected a conflict during Fi−1. Assuming that
the bcn-message is received clearly, it lets each y ∈ N1

x

know that the slot sx,i has been chosen by one of its
neighbors.

Table 2: EasyMAC messages sent by node x during Fi.

Message Description
Beacon bcn(x): x has chosen a new slot for Fi

Collision col(x, min, max): x detected one or more
message collisions and/or conflicts during Fi−1,
where min is the earliest slot of colli-
sions/conflicts detected and max is the latest slot

The node x sends a collision-message during Fi

when it detects collisions and/or conflicts during Fi−1.
Since x knows when the collisions occurred (i.e., during
which time slots) but does not know which of its neigh-
bors were involved, the collision-message format allows
x to report the range of slots in which collisions or con-
flicts occurred (as in Table 2). In col(x,min,max), min
is the earliest time slot in the previous frame where x
heard a collision or conflict, while max is the latest.

Although the collision-message is primarily used
to alert others of collisions, it can also serve as a beacon
if x chooses a new slot for Fi because the collision-
message would be sent during the new time slot.

3.2 Picking a New Time Slot

At the beginning of frame Fi+1, each node x
which is not ready chooses a new slot sx,i+1 for the
frame Fi+1 based on messages received from neigh-
bors N1

x and collisions detected by x itself during Fi;
to be specific, if x determines during Fi that it is pos-
sible that for some y ∈ N1,2

x , sx,i = sy,i, then it will
choose a new slot for Fi+1. If y ∈ N1

x , then x discovers
this when it receives a message from y or hears a colli-
sion during sx,i. If y ∈ N2

x , then x can only determine
this possibility by receiving a collision-message from a
node z ∈ N1

x ∩N1
y .

Since it is possible for the collision-message from
z to collide with a message from another neighbor of x
(as in Figure 4), x assumes that if it hears a collision
then the colliding message was about a collision caused
by x. If x sent a message during the previous frame
Fi, then x determines that there is a possibility that
sx,i = sy,i for some y ∈ N2

x ; and (if x /∈ Ready) x picks
a new slot sx,i+1 for Fi+1.

If x has picked a new slot sx,i in Fi, then the
only event that will cause x to pick a new slot for
Fi+1 is hearing a collision during the slot sx,i. This

is because the collision-messages received by x in Fi

refer to collisions that occurred in Fi−1, when x had a
different slot.

When a node x makes the decision to change its
slot in Fi, it chooses a random slot sx,i 6= sx,y,i−1 for all
y ∈ N1

x . For ease of discussion in subsequent sections,
we will assume that sx,i 6= sx,i−1 when x picks a new
slot for Fi (in practice, there is no need for this).

3.3 Node Behavior

The following section describes the actions taken
by nodes upon receiving a message or hearing a colli-
sion.

3.3.1 Upon Receiving a Message at x in Fi

Upon the successful reception of a message my,i

(for some y ∈ N1
x) during ti,j (sy,i = j), node x

performs the following actions and updates sx,y,i and
its own message mx,i+1 for Fi+1 as necessary. When
my,i=bcn(y) or my,i=col(y,miny, maxy):

• [Determine whether my,i causes a conflict]:
If (∃z ∈ N1

x such that (sx,z,i−1 = j and z 6= y))
or sx,i = j

– [Set collision-message for Fi+1]:
If mx,i+1 = null or mx,i+1 = bcn(x), then
let mx,i+1 = col(x, j, j)
Else if mx,i+1=col(x, minx, maxx), let
mx,i+1=col(x, min{minx, j}, max{maxx, j})

– [Determine if conflict is caused with x]:
If sx,i = j and x /∈ ready, pick a new random
slot sx,i+1 for Fi+1

Else [No conflict caused; x stores y’s claim of j]
let sx,y,i = j

• [Determine whether collision-message effects x]:
If my,i = col(y,miny, maxy) and miny ≤
sx,i−1 ≤ maxy and sx,i−1 = sx,i

– Pick a new random slot sx,i+1 for Fi+1

– If mx,i+1 = null, let mx,i+1 = bcn(x)

3.3.2 Upon Hearing a Collision during Fi

When node x hears a collision during ti,j , x de-
termines if it needs to choose a new slot for Fi+1 and
prepares to inform its neighbors of the collision during
Fi+1 by taking the following actions and updating its
own message mx,i+1 for Fi+1 as necessary.

• [Determine if x must choose a new slot for Fi+1]:
If x /∈ ready and sx,i = sx,i−1

– Pick a new slot sx,i+1 for Fi+1.
– If mx,i+1 = null, let mx,i+1 = bcn(x)

• [Determine if x must report the collision in Fi+1]:
If ti,j 6= sx,i or (ti,j = sx,i and mx,i 6= null)

– If mx,i+1 = null or mx,i+1 = bcn(x), then
let mx,i+1 = col(x, j, j)
Else if mx,i+1=col(x, minx, maxx), let
mx,i+1=col(x, min{minx, j}, max{maxx, j})

3.4 Determining Readiness

A node x is ready in Fi when x determines that
sx,i−2 6= sy,i−2 for all y ∈ N1,2

x . When the following
three conditions apply, x can consider itself ready:

• x does not detect a collision with one of its neigh-
bors during sx,i−2 in Fi−2

• x does not receive col(y,min,max) with min ≤
sx,i−2 ≤ max in Fi−1

• x does not hear messages colliding or detect a con-
flict at sx,i−1 in Fi−1

Any direct collisions with y ∈ N1
x are detected

in Fi−2; and any collisions or conflicts with z ∈ N2
x

are reported by neighbors during Fi−1. Thus, if these
three conditions occur, node x will be able to keep the
same slot for two full, consecutive frames (sx,i−2 =
sx,i−1 = sx,i) and can consider itself ready.

If a conflict or collision occurs between a ready x
and node z ∈ N1,2

x during Fj (j ≥ i), x would keep its
slot (sx,i−2 = sx,j = sx,j+1) while z picks a new one.

When x becomes ready in Fi, it continues to par-
ticipate in the EasyMAC algorithm until all y ∈ N1

x

also enter the ready state. The only difference in its
participation is that sx,j = sx,j+1 for all j ≥ i. In
future papers, we will discuss what would occur in the
event of node failures and the addition of new nodes
to the system.

4 EasyMAC vs. LooseMAC

In this section, we first examine the differences
in EasyMAC and LooseMAC and then compare their
efficiency by running various simulations.

4.1 Differences in Collision Message

The main difference between LooseMAC and
EasyMAC is in the way we maintain detailed collision
information at each node x about its one and two-
neighbors. EasyMAC processes collision-messages at
x differently, and its collision-messages sent by x are
also different from LooseMAC (as described in Sec-
tions 3.1 and 3.3). We summarize the differences by
examining how the information is gathered and the
format of the messages sent.

4.1.1 Information Gathering Range

With the LooseMAC algorithm, a node x that
sends a collision message in Fi is indicating that it

heard one or more collisions or conflicts some time
between x’s previous time slot sx,i−1 and x’s current
slot sx,i. If x changed its slot for Fi, the collisions or
conflicts could have occurred during a single slot (if
sx,i−1 = f and sx,i = 1), within a range of 2f −1 slots
(if sx,i−1 = 1 and sx,i = f), or any number of slots in
between. This variance in the range of the information
gathered during LooseMAC leads to some difficulty in
analyzing the algorithm as well as some unnecessary
slot changes by the nodes.

With EasyMAC, the information on collisions
and conflicts reported in Fi was gathered in Fi−1.
Thus, if a node changed its slot for Fi, it can ignore
any collision-messages sent in Fi since that collision
information does not apply to its new slot. This is one
way that EasyMAC can save some time and messages
sent by avoiding some unnecessary slot changes.

4.1.2 Message Format

The format for collision-messages is also dif-
ferent between LooseMAC and EasyMAC. Since a
LooseMAC collision-message sent by node x in Fi does
not indicate which slots the collisions or conflicts oc-
curred in (beyond being between sx,i and sx,i−1), all
neighbors N1

x of x that receive this message and are
not yet ready must pick new slots for Fi+1.

As discussed in Section 3.1, an EasyMAC
collision-message indicates the range of slots between
which the collisions or conflicts occurred. Upon receiv-
ing a collision-message col(x, minx, maxx) from node
x in Fi, a node y can determine whether or not it needs
to pick a new slot by comparing sy,i−1 to minx and
maxx. If sy,i−1 < minx or sx,i−1 > maxx, then node y
does not need to pick a new slot given the information
received from the collision-message. This change can
also save time and messages by avoiding some unnec-
essary slot changes.

4.2 Simulation Scenarios

We compare EasyMAC to LooseMAC [2] via
simulations using different frame sizes f = 1+∆2,
1.5*(1+∆2), and 2*(1+∆2) and different network
sizes. As Figures 7 and 8 indicate, EasyMAC reduces
both the amount of time and the number of messages
needed for all nodes to become ready, i.e., to arrive at
a valid slot assignment, by reducing some unnecessary
slot changes.

The performance of both EasyMAC and
LooseMAC improves with the increase in frame size
f . We show that EasyMAC performs better than
LooseMAC both for tight fit (f close to 1+∆2) and
loose fit (f much larger than 1+∆2) scenarios.

The algorithms were simulated on grid networks
such as the one in Figure 6 ranging in size from 5x5

(25 nodes) to 15x15 (225 nodes). In these types of
grid networks, 1+∆2=13. Separate simulations were
run for both the EasyMAC and LooseMAC algorithms
with frame sizes of 13, 19, and 26. The averages in
Figures 7 and 8 are for 1,000 runs for each f and each
nxn network for 5 ≤ n ≤ 15.

N1
13={8,12,14,18},

N2
13={3,7,9,11,15,17,19,23},

∆2=|N1,2
13 |=12, and

1+∆2=13.

Figure 6: A 5x5 Grid Network.

4.3 Results

First, we compare EasyMAC and LooseMAC in
terms of the amount of time required for all nodes in
the network to become ready. Since we have simu-
lations with various frame sizes, we use time slots as
our metric for comparison. Figure 7 shows that Easy-
MAC (with all of the frame sizes tested) was able to
complete execution in fewer time slots than either of
the LooseMAC simulations. Interestingly, EasyMAC
with frame size of 1.5*(1+∆2) takes fewer time slots
than EasyMAC with frame size of 2*(1+∆2). Even
though the larger frame size required fewer frames to
complete, after a certain point, the number of frames
for completion is not decreased at a faster rate than
the increasing number of slots within the frame.

Second, we compare the average number of mes-
sages sent until all nodes in the network are ready.

Figure 7: Average number of slots for networks to become ready
over 1,000 runs using EasyMAC and LooseMAC with network sizes
nxn, 5≤n≤15, and frame sizes f = 1+∆2 = 13, 1.5*(1+∆2) = 19,
and 2*(1+∆2) = 26. The LooseMAC data for f=13 and n=15 were
too large (> 2,200) to show here.

This metric is used to determine which algorithm po-
tentially requires the nodes to expend less energy. Fig-
ure 8 shows that EasyMAC once again performed bet-
ter than LooseMAC by sending fewer messages per
node on average.

Figure 8: Average number of messages sent per node for networks
to become ready over 1,000 runs using EasyMAC and LooseMAC
with network sizes nxn, 5≤n≤15 and frame sizes f = 1+∆2=13,
1.5*(1+∆2)=19, and 2*(1+∆2)=26. The LooseMAC data for f=13
were too large to show here (13 for n=5 and 67 for n=15).

In order to determine which of our innovations
discussed in Sections 4.1.1 and 4.1.2 caused the greater
effect, we kept track of the slot changes avoided due
to these changes. Between 60% and 80% of the avoid-
ances were due to the addition of the minimum and
maximum effected slots in the collision-message.

From this, we speculate that even in a situation
with less time synchronization we should still see the
majority of these savings. The min/max used in the
collision-messages can be freed from the synchronized
frame assumption by referring to slots based on how
long ago they occurred as opposed to their slot num-
ber in the previous frame. Its effectiveness should not
be decreased by doing so. On the other hand, since
the information gathering range would need to be al-
tered without the synchronization assumption, we ex-
pect that the savings from that (20% to 40%) would
be decreased as synchronization is lessened.

5 Conclusion

We have described a new slot assignment algo-
rithm EasyMAC and shown it to be more efficient than
LooseMAC [2] in terms of both the number of slots (=
f*the number of frames) used to reach a valid slot as-
signment and the total number of messages sent (hence
energy saved). Our future work will expand EasyMAC
to handle different timing scenarios (such as, unsyn-
chronized frames and nonuniform frame sizes) and add
fault tolerance features to handle the addition and re-
moval of nodes from the network.

We are currently experimenting with several new
methods to reduce the unnecessary slot changes and
thereby make the EasyMAC algorithm more efficient.
First, we let each node transmit the slots held by its
neighbors. This allows a node x to keep track of the
slots claimed by y ∈ N1

x ∪N2
x . Second, we let the colli-

sion message include the slots involved in the conflicts
and/or collisions during the previous frame instead of
simply using a minimum and maximum of those slot
numbers.

References

[1] L. Bao and J.J. Garcia-Luna-Aceves, ”A New
Approach to Channel Access Scheduling for Ad
Hoc Networks,” Mobile Computing and Network-
ing, pp.210-221, 2001.

[2] C. Busch, M. Magdon-Ismail, F. Sinrikaya, and
B. Yener, ”Contention-Free MAC Protocols for
Wireless Sensor Networks,” Proceedings of the
18th Annual Conference on Distributed Computing
(DISC), pp.245-259, 2004.

[3] I. Flocchi, A. Panconesi, and R. Silvestri, ”Ex-
perimental Analysis of Simple Distributed Vertex
Coloring Algorithms,” ACM SODA, pp. 606-615,
2002.

[4] J.J. Jiang, T.-H. Lai, and N. Soundarajan, ”On
Distributed Dynamic Channel Allocation in Mo-
bile Cellular Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 13, pp. 1024-1037, 2002.

[5] S. Kundu, ”Deadlock-free Distributed Relaxed
Mutual Exclusion without Revoke-messages,”
Proc. 7th Intern. Workshop on Distributed Com-
puting, no. 3741, pp. 463-474, 2005.

[6] J. Martin, Communication Satellite Systems, Pren-
tice Hall, New Jersey, 1978.

[7] I. Rhee, A Warrier, J. Min, and L. Xu, ”DRAND:
Distributed Randomized TDMA Scheduling for
Wireless Ad-hoc Networks,” MobiHoc 2006,
pp.190-201, 2006.

[8] F. A. Tobagi and L. Kleinrock, ”Packet Switching
in Radio Channels: Part II - the Hidden Terminal
Problem in Carrier Sense Multiple-Access Modes
and the Busy-Tone Solution,” IEEE Trans. Com-
mun., vol. COM-23, No. 12, pp.1417-1433, 1975.

[9] C. Zhu and M.S. Corson, ”A Five-Phase Reser-
vation Protocol (FPRP) for Mobile Ad Hoc Net-
works,” Wireless Networks 7, Kluwer Academic
Publishers, pp.371-384, 2001.

