
Reliable and Efficient Data Transfer in Wireless Sensor Networks via
Out-of-Sequence Forwarding and Delayed Request for Missing Packets

Damayanti Datta and Sukhamay Kundu
Computer Science Dept, Louisiana State University

Baton Rouge, LA 70803, USA
{ddatta1@lsu.edu, kundu@csc.lsu.edu}

Abstract

We present a new protocol for lossless data transfer
in wireless sensor networks using less time and fewer
messages in comparison to the well-known protocol
PSFQ [1], without compromising the reliability. The
two key features for the better performance of our pro-
tocol are out-of-sequence packet forwarding and
delayed request for missing packets.

1. Introduction
Many applications in wireless sensor networks

require reliable data transfer, e.g., instructions sent
from a sink to a set of destination nodes to execute a
new task. We typically partition the entire data set into
a number of (bounded) fixed size packets pi , 0 ≤ i < n
(n ≥ 1) and then send them packet by packet. The
detection and recovery of missing packets are per-
formed at the destination nodes and also at the inter-
mediate nodes; the latter can reduce the total delivery
time of all packets to the destination nodes and also
decrease the number of messages. The reduction of
number of messages is important due to the energy
constraints of the sensors and the reduction of delivery
time is important for time-critical applications.

A well-known transport layer reliable data transfer
protocol, with near-zero tolerance for data loss, is
Pump Slowly Fetch Quickly (PSFQ) [1]. It is a non-
acknowledgment based method and uses in-sequence
(IS) forwarding, where a node x sends a packet p j

only if it has previously sent each packet pi , i < j, at
least once. This tends to delay the delivery of p j to a
node and to increase the total delivery time. The Reli-
able Multi-Segment Transport protocol (RMST) [2]
implements reliability at both MAC and transport
layer, using a PSFQ-like method for the latter.

Our protocol is also non-acknowledgment based, but
it uses out-of-sequence (OS) forwarding with delayed
request for missing packets (RMP); we call it, in short,
OSDRMP. It has the same reliability as PSFQ. In OS-
forwarding, a node can send a packet p j before send-
ing one or more pi , i < j. In particular, here a node x
can have the complete set of n packets although none
of its neighbors has the complete set; this is not

possible in IS-forwarding. Also, a node x can get all
the packets quicker than in IS-forwarding. A node x
may have a missing packet pi for two reasons: pi has
not been sent to x or each transmission of pi to x from
its neighbors has failed to reach x. We use a minimum
delay of tr time units from the time pi is detected
missing at x till x can send the first RMP for pi to its
neighbors; this allows enough time for pi to reach x
from some of its neighbors. The same delay tr is used
between two successive RMPs from x for a given pi .
This prevents too many unnecessary RMPs for pi in
case none of the neighbors of x currently has pi .

2. Key concepts

2.1. Acknowledgment vs. non-acknowledgment
Both the acknowledgment (ACK) and non-acknowl-

edgment (NACK) based methods use three kinds of
messages: (1) Transmission of a packet pi , (2)
Acknowledgment of a received packet pi in ACK -
based method or Request for Missing Packet pi in
NACK -based method, and (3) Retransmission of a
packet pi . We denote them respectively by T (pi),
ACK (pi), RMP(pi), and RT (pi).

ACK -based method. Here, a node waits for an
ACK (pi) from the receiver for a minimum time period
ta after sending a T (pi). If it does not receive an
ACK (pi), then it sends an RT (pi) and waits again for a
time ta for an ACK (pi), and the process continues till
an ACK (pi) is received.

NACK -based method. Here, with each T (pi) or
RT (pi), we include the total number of packets n so
that a node can detect the missing packets once it
receives a packet and send RMPs. The delay tr dis-
cussed in Section 1 applies to sending of RMPs. A
node in this case does not wait for an ACK (pi) follow-
ing a T (pi); instead, it sends an RT (pi) everytime it
receives an RMP(pi). An RMP(pi) can be regarded as
a neg ative acknowledgment. Unlike the ACK -based
method, the NACK-based method cannot give 100%
reliability if the successful transmission of a message
has probability < 1.

Example 1. Figs. 2(a)-(b) show the timing dia-
grams for the transmission of n = 2 packets {p0, p1}
from node 0 to node 1 in the network in Fig. 1(a) using
ACK and NACK -based methods. We assume that only
the first T (p0) is lost in both cases and all other mes-
sages are successful in the first attempt. The dashed
lines in Fig. 2 show the lost transmissions. In Fig.
2(b), the receiving node 1 does not know the missing
packet p0 until it receives p1. The example shows that
the NACK -based method is better than the ACK -based
method in terms of both the total delivery time and the
total number of messages.

0 1 0
1

2
3

(a) A 2-node network. (b) A 4-node network.

Figure 1. Tw o simple networks.

1 2 3 4 5 6 7Time

Nodes

0

1

T (p0) RT (p0) ACK (p0) T (p1) ACK (p1)

(a) ACK -based method with ta = 1.

1 2 3 4 5 6Time

Nodes

0

1

T (p0) T (p1) RMP(p0) RT (p0)

(b) NACK -based method with tr = 1.

Figure 2. An example of delivery of two packets
{p0, p1} in ACK and NACK -based methods.

2.1.1. Analysis of message efficiency for {p0, p1}

Assume as in above, that p1 is successfully deliv-
ered to node 1 in one attempt. Let P be the probability
of successful transmission of a message from one node
to its neighbor. Hence, the probability that k transmis-
sions are required for one message to be successfully
sent from node 0 to node 1 is P(1 −P)k−1 and the
expected number of transmissions is 1/P. Let TS and
TF denote respectively a successful and a failed trans-
mission of a packet pi; we use similar abbreviations
for successful and failed RT , RMP and ACK .

In the ACK -based method, we have the following
cases for the delivery of p0 and ACK (p0): (1) a TS(p0)
from node 0 to 1 followed by an ACKS(p0) or an
ACKF (p0) from node 1 to node 0, and (2) a TF (p0)
from node 0 to 1 (with no following ACK (p0)).
Except for the case of TS(p0) followed by ACKS(p0),
there will be additional RT (p0)s and ACK (p0)s. Let
E(p0) = the expected number of messages for delivery
of p0 and ACK (p0). Then, E(p0) = P2.2 +

P(1 − P)[2 + E(p0)] + (1 − P)[1 + E(p0)], and hence
E(p0) = (1 + P)/P2. Since we assume node 0 delivers
p1 in one attempt, the expected number of messages
E(p1) in delivering p1 and ACK (p1) is 1/P − 1 less
than that for p0, i.e., E(p1) = (1 + P2)/P2. Hence, the
expected number of messages for delivery of {p0, p1}
and their acknowledgments is (2 + P + P2)/P2.

In the NACK -based method, after TF (p0) and
TS(p1) from node 0, node 1 detects that p0 is missing
and sends an RMP(p0). The computation of the
expected number of messages E′(p0) for the delivery
of p0 is slightly more complex now. With probability
P, p0 is delivered via the initial TS(p0). If the first
T (p0) fails, then this will be followed by an average
1/P many RMP(p0) from node 1 to node 0 till the lat-
ter receives the request for p0 and from that point on
there will be an additional E′(p0) many messages for
the delivery of p0. Thus, E′(p0) = P. 1 +
(1 − P)[1 + 1/P + E′(p0)] and hence E′(p0) = 1/P2.
The expected number of messages for delivery of {p0,
p1} here is 1 + 1/P2.

The ACK -based method therefore sends on the
av erage (1 + P)/P2 extra messages. A similar analysis
shows that the average number of messages received
by nodes 0 and 1 is 2(1 + P)/P for ACK -based method
and (1 + P)/P for NACK -based method. Thus, ACK -
based receives (1 + P)/P extra messages.

2.1.2. Analysis of message efficiency for n ≥ 2

In the case of n ≥ 2 packets, the probability that at
least one packet has been successfully delivered in the
first attempt is Qn = 1 − (1 − P)n and assuming that
this is the case the probability that k ≥ 1 packets are
delivered in the first attempt is p(k) =
1

Qn

n

k

pk(1 − p)n−k . The expected number of mes-

sages sent in ACK -based method for the delivery of all
n packets and their acknowledgments from node 0 to 1
is

k≥1
Σ p(k)[k. E(p1) + (n − k)(1 + E(p0))]. For the

NACK -based method, the expected number of mes-
sages sent for the delivery of all n packets is

k≥1
Σ p(k)[k + (n − k)(1 + 1/P + E′(p0))]. This shows

that the ACK -based method sends n/(PQn) many extra
messages, which can be very large when P is small; it
is close to n when P is close to 1. We leave the analy-
sis of the expected number of messages received for
the general case to the reader.

2.2. Message priority in OS-forwarding
In OS, in general, the preferred priority order at a

node among the message types is T > RT > RMP.
Since a node can send a packet p j without any

constraint on j, it should send the packets as soon as
possible so that a destination node x may get different
p j from its different neighbors at the earliest. The pre-
ferred priority order in IS-forwarding (as in PSFQ [1])
is RMP > RT > T; here, it is better for a node to
request a missing packet pi because it cannot transmit
p j , j > i, before transmitting pi . Unlike PSFQ, a node
x does not delay the sending of Ts and RTs in OS-for-
warding.

Example 2. Figs. 3(a)-(b) show the minimum time
and number of messages for delivering n = 2 packets
{p0, p1} from node 0 to node 3 for the network in Fig.
1(b) using IS and OS. We assume that in both cases
the only lost messages are T (p0) from node 0 to 2 and
T (p1) from node 0 to 1, as indicated by the dashed
lines. Here, we use tr = 0 for simplicity. It shows how
OS can achieve a better performance than IS.

1 2 3 4 5 6 7Time

Nodes

0

1

2

3

T (p0)

T (p0)

T (p1)

T (p1)

RMP(p0)

RMP(p0)

RT (p0)

RT (p0)

T (p0)

T (p0)

T (p1)

T (p1)

(a) The use of 7 time units and 12 messages in IS.

Time 1 2 3 4 5

Nodes

0

1

2

3

T (p0)

T (p0)

T (p1)

T (p1)

T (p0)

T (p0)

T (p1)

T (p1)

(b) The use of 5 time units and 8 messages in OS.

Figure 3. Comparison of IS and OS forwarding.

2.3. NodeTTL and TTL in a message
Each node x which has received at least 1 message

maintains a nodeTTL, which equals the maximum
TTL (Time To Liv e) associated with those messages.
Each message sent by x to its neighbors includes n,
nodeTTL(x)−1, the message type (T, RT, or RMP), and
one of the following: (1) the packet sequence number i
and the data for pi , for T and RT messages, and (2) the
sequence number i of a missing packet pi , for RMP
messages. For the source node s, nodeTTL(s) is ini-
tialized to d and it does not change. We refer to the
component nodeTTL(x)−1 in a message associated
with pi from x as packetTTL(pi).

As a packet pi travels away from the source s along
various paths, the packetTTL(pi) associated with the T
and RT messages for pi typically goes down by 1 with
each step; it can also occasionally go up when it
reaches a node that has previously received other mes-
sages along shorter paths. A node x with current
nodeTTL(x) = 0 is considered a destination node,
except that if at some later time nodeTTL(x) becomes
greater than 0 then from that point onwards x remains
permanently labeled as an intermediate node.

3. The New Protocol

3.1. Local data at a node
Each node x with nodeTTL(x) ≥ 0 has a Data Cache

DC(x) = {pi: pi received by x}, a Transmission Queue
TQ(x), a ReTransmission Queue RTQ(x) and a
Request-for-Missing-Packet Queue RMPQ(x). At
each node x, the following properties holds:

• DC(x) and RMPQ(x) are disjoint, TQ(x) and
RTQ(x) are disjoint subsets of DC(x), and
|DC(x)∪RMPQ(x)| = n. None of TQ(x), RTQ(x)
and RMPQ(x) contains any duplicate item.

• The packets pi in TQ(x) are ordered in the order of
their arrival via Ts or RTs, and those in RTQ(x) are
ordered in the order of their arrival via RMPs.
RMPQ(x) is maintained as a circular list, ordered by
the packet sequence numbers.

Example 3. Fig. 4 shows DC(x) of a node x for n =
9 and the arrivalTime of each pi in DC; in particular,
the packets arrived in the order p1, p4, p5, p0, and p7.
The packetTTL(pi) is shown in parentheses next to
each pi in DC. Each of TQ(x), RTQ(x) and RMPQ(x)
points to the first packet in the corresponding queue
and the arrows from one packet to another show the
sequence of packets in the queue. We also show the
updates to nodeTTL(x) as each pi ∈ DC is received.

arrivalTime 13 3 8 11 17

nodeTTL 3 1 2 2 3

DC 0(3) 1(1) 2 3 4(2) 5(1) 6 7(1) 8

RTQ RMPQ TQ

Figure 4. Illustration of DC, TQ, RTQ, RMPQ, and
updating of nodeTTL at a node.

3.2. Message processing at a node
In one time unit, a node x can do one of the follow-

ing: (1) receive a message from one of its neighbors
and process it, (2) send a message to each of its neigh-
bors, and (3) remain idle.

3.2.1. Nodes selected for message transmission

Tw o nodes can send a message at time t only if the
hop-distance between them ≥ 3. The set of candidate
nodes that are eligible to send a message at time t is
given by S′(t) = {x: TQ(x) ∪ RTQ(x) ≠ ∅ or
RMPQ(x) ≠ ∅ and x can send RMP(pi) at time t for
some pi ∈ RMPQ(x)}. We can exclude a node x with
nodeTTL(x) = 0 from S′(t) for sending T and RT mes-
sages; this tends to reduce the number of messages
slightly without significantly affecting the total deliv-
ery time in spite of the fact two destination nodes may
be adjacent to each other and that a nodeTTL(x) may
become positive at a future time.

Any protocol that prevents message collision at a
node from two or more of its neighbors may be used to
decide the group of nodes S(t) ⊆ S′(t) that sends mes-
sages at time t. In our simulation (see Section 4), we
select S(t) as a random maximal subset of S′(t) such
that no two nodes in S(t) are within hop-distance 2 of
each other. A node in S(t) transmits a message from
one of its TQ, RTQ or RMPQ in that priority order. A
node x sends RMP(pi) for the first pi ∈ RMPQ(x)
which satisfies tr delay requirement. For each pi , a
node can send T(pi) only once but it can send
RMP(pi) and RT(pi) multiple times. At time t=0,
S′(0) = S(0) = {s}. (Note that we cannot give priority
to certain nodes x, say, based on nodeTTL(x) > 0 for
selection in S(t) since this would require a complex
protocol in itself for the determination of S(t).)

3.2.2. Processing of input

In addition to the update of nodeTTL(x), the data-
cache and various queues at x are updated as follows
when a node x receives an input. A node x processes
an input message if and only if it is the first message to
x with packetTTL ≥ 0 or nodeTTL(x) ≥ 0. If the first
message with packetTTL ≥ 0 is a packet pi (via T (pi)
or RT (pi)), x initializes DC(x) = {pi} = TQ(x),
RTQ(x) = ∅, and RMPQ(x) = {p j : j ≠ i and j ≤
n − 1}. If the first message with packetTTL ≥ 0 is an
RMP(pi), x initializes RMPQ(x) with p0 and DC(x) =
TQ(x) = RTQ(x) = ∅. When nodeTTL(x) ≥ 0, if the
input is T(pi) or RT(pi) and pi ∉ DC(x), then pi is
added to both DC(x) and TQ(x) and is removed from
RMPQ(x), if necessary, RMPQ(x) is updated with all
p j where p j ∉ DC(x)∪RMPQ(x); if pi ∈ DC(x) then
no other updates take place. If the input is RMP(pi)
then pi is added to RTQ(x) provided pi ∈ DC(x) and
pi ∉ TQ(x)∪RTQ(x); otherwise, no other updates
occur.

4. Simulation
We simulate the OSDRMP and PSFQ protocols on

the network in Fig. 5 for n = 10 for different source
node s to evaluate their performance based on the total
delivery time (delivTime) and the total number of mes-
sages sent and received (numMess). When a node x
sends a message (T , RT , or RMP) to its neighbors, we
count this as one message in numMess irrespective of
the number of neighbors of x in order to reflect its
impact on the energy consumption at x; each message
received by x is also counted as one message in
numMess. A simulation run is considered successful
if at least one destination node x (i.e., nodeTTL(x) =
0) is found and each node x with nodeTTL(x) = 0 has
|DC(x)| = n and TQ(x) = RTQ(x) = ∅; the condition
TQ(x) = RTQ(x) = ∅ reduces the probability that there
are other potential destinations nodes that have not
received any pi yet.

We consider two variations of RMPs described
below. The second one applies only to OSDRMP.

(1) Restricted RMP (rRMP): Let mx be the highest
packet sequence number in DC(x) of a node x;
we let mx = −1 if DC(x) = ∅. Here, x can send
an RMP(p j) at time t only if j < mx ; the other
restrictions that p j ∈ RMPQ(x) and x satisfies
the delay requirement tr still apply. If there is no
p j ∈ RMPQ(x) with j < mx and RMPQ(x) ≠ ∅
(i.e., mx < n − 1), then x can send RMP(p j) for j
= mx + 1.

(2) Unrestricted RMP (urRMP): This is the normal
case without the restrictions in rRMP.

We compute the minimum delay tr for a node x
according to tr = degree(x)×RMPdelayFactor, where
degree(x) is the number of neighbors of x and RMPde-
layFactor is a constant = δ. A time point t is consid-
ered an idleTime if S′(t) = ∅.

We show below the results of simulation of
OSDRMP (both rRMP and urRMP) and PSFQ for the
network in Fig. 5 for P = 0.3, 0.6 and 0.9 using differ-
ent RMPdelayFactor. We also show the results for the
same network using s = 0 and TTL = 14.

4.1. Simulation results for s = 40 and TTL = 5
Figs. 6(a)-(f) show the variation of delivTime and

numMess with RMPdelayFactor for OSDRMP(rRMP
and urRMP) and PSFQ at P = 0.3, 0.6 and 0.9, s = 40
and TTL = 5. For higher P, we use a larger range of
RMPdelayFactor to better represent the trend of varia-
tion of delivTime and numMess.

Both versions of OSDRMP perform better than
PSFQ in terms of both delivTime and numMess when
P = 0.6 and 0.9. For P = 0.3, numMess for PSFQ are

84 95

72 83

60 71

48 59

36 47

24 35

12 23

0

96

1

97

2

98

3

99

4

100

5

101

6

102

7

103

8

104

9

105

10

106

11

107

s

Figure 5. A 12x9 grid network; the intended
destination nodes are marked for s = 40 and TTL = 5.

1 2 3 4 5 6 7 8 9 10

delivTime

700
960
1220
1480
1740
2000
2260
2520
2780
3040

RMPdelayFactor
(a) P: 0.3

1 2 3 4 5 6 7 8 9 10

numMess

7200
8290
9380
10470
11560
12560
13740
14830
15920
17010

RMPdelayFactor
(b) P: 0.3

1 3 5 7 9 11 13 15 17 19

delivTime

190
260
330
400
470
540
610
680
750
820

RMPdelayFactor
(c) P: 0.6

1 3 5 7 9 11 13 15 17 19

numMess

2800
3610
4420
5230
6040
6850
7660
8470
9280
10090

RMPdelayFactor
(d) P: 0.6

1 6 11 16 21 26 31 36 41 46

delivTime

100
130
160
190
220
250
280
310
340
370

RMPdelayFactor
(e) P: 0.9

1 6 11 16 21 26 31 36 41 46

numMess

2000
2710
3420
4130
4840
5550
6260
6970
7680
8390

RMPdelayFactor
(f) P: 0.9

OSDRMP(rRMP) OSDRMP(urRMP) PSFQ

Figure 6. Comparison of OSDRMP and PSFQ
for the network in Fig. 5.

initially higher than that for OSDRMP(urRMP) but as
RMPdelayFactor increases, PSFQ performs better than
OSDRMP(urRMP) but this comes only with a very

large increase in delivery time.

4.1.1. Analysis: delivTime vs. RMPdelayFactor

Consider Figs. 6(a), (c), and (e) for different Ps. In
each case, the delivTime of PSFQ first decreases and
then increases as we increase the RMPdelayFactor = δ.
When δ is small, the higher priority of RMP in PSFQ
does not give enough opportunities for a node x to
send Ts and RTs to its neighbors, which can result in
more RMPs for some of the neighbors of x. Even if
RMPQ(x) = ∅, the frequent competition for RMP
from the neighbors of x decreases x being selected for
T or RT, and this too can lead to more RMPs from the
neighbors. The result is higher delivTime. On the
other hand, when δ is increased beyond a certain value
it results in increased idleTime and this increases the
delivTime. For a given δ, the increase in P causes
fewer RMPs and this decreases the delivTime. Note
that the minimum delivTime occurs at a higher δ as P
increases.

In OSDRMP, T and RT hav e priority. So for low δ,
the delay of Ts and RTs due to frequent transmission
of RMPs is very low and hence initial increase in δ
benefits OSDRMP’s delivTime much less than that of
PSFQ. Like PSFQ, at higher P, increase in δ benefits
propagation of successful Ts and RTs through the net-
work and hence, idleTime contributes to increase in
delivTime at higher δ in comparison to that at lower P.

For P = 0.3, there are a large number of unsuccess-
fully transmitted RMPs and hence the delay between
RMPs can be effectively utilized by sending more
RMPs as in case of OSDRMP(urRMP). But as P
increases, more RMPs are successfully transmitted and
hence it is good to wait for corresponding RTs instead
of sending more RMPs. So the difference in deliv-
Time between OSDRMP with rRMP and with urRMP
decreases as P increases, and for P = 0.9 the two ver-
sions of OSDRMP have similar delivTime.

4.1.2. Analysis: numMess vs. RMPdelayFactor

For a low δ, highest priority to RMP and frequent
transmission of RMPs in PSFQ with delayed Ts and
RTs leading to more RMPs, add up to a high numMess
for all P. With increase in δ, Ts and RTs have enough
time to reach nodes thus reducing the number of RMPs
and the numMess for PSFQ. For low δ, both versions
of OSDRMP perform better than PSFQ as T and RT
have higher priority in OSDRMP. For P = 0.3, unsuc-
cessful transmissions coupled with urRMP and nodes
requesting packets which none of their neighbors have
(due to OS) contribute to the high numMess for
OSDRMP(urRMP) compared to that for PSFQ where
there is rRMP and if a node requests a packet pi , i < m

(m is the highest packet sequence number in the node’s
DC), at least one of its neighbors has it. For large δ
and small P = 0.3, the rRMP in OSDRMP(rRMP)
eliminates any potential disadvantage of OS and thus
the numMess becomes almost equal to that of PSFQ.
For P = 0.6 and 0.9, OS combined with successful
transmissions result in destinations receiving n packets
much faster than PSFQ reducing RMPs and RTs and
duplicate Ts to the same node and hence, the numMess
required for both versions of OSDRMP with increas-
ing δ is almost equal and at times better than that
required for PSFQ.

There is a δ at each P for each protocol after which
the numMess will not change with increase in δ. The
reason is that all Ts and RTs have been transmitted and
it is not time for an RMP from any node. Increase in δ
does not benefit this situation and only contributes to
idleTime. The δ after which numMess becomes con-
stant increases with increase in P for both
OSDRMP(rRMP) and PSFQ. This is because there are
more successful transmissions at higher P and increase
in δ helps in propagation of successful transmissions.
In case of OSDRMP(urRMP), urRMP, unsuccessful
transmissions and requests from nodes for packets not
present at any of their neighbors at lower P(= 0.3)
result in a large number of RMPs and the δ after which
numMess do not change is large compared to that at
higher P. Howev er as P(= 0.6 and 0.9) increases, the
behavior of OSDRMP(urRMP) is similar to that of
OSDRMP(rRMP).

4.2. Simulation results for s = 0 and TTL = 14
Figs. 7(a)-(f) show the variations of delivTime and

numMess with δ for OSDRMP(rRMP and urRMP) and
PSFQ for P = 0.3, 0.6 and 0.9. Here, the same conclu-
sions as those in Fig. 6 hold, except that there are more
messages in Fig. 7 (because of larger TTL) which also
causes the increase in idleTime start at a higher δ.

5. Conclusions

Our simulations demonstrate the superiority of
OSDRMP over PSFQ in terms of both the total num-
ber of messages and the total delivery time. Indeed,
the improvements depend on the network structure and
the probability of a successful message transmission.
Our future work will consider different priority orders
at different nodes based on their nodeTTL (say); it is
also possible that nodeTTL can be used more effec-
tively in responding to requests for a packet.

References
[1] C.-Y.Wan, A.T.Campbell and L. Krishnamurthy, "PSFQ:
A reliable transport protocol for wireless sensor networks",

1 2 3 4 5 6 7 8 9 10

delivTime

900
1140
1380
1620
1860
2100
2340
2580
2820
3060

RMPdelayFactor
(a) P: 0.3

1 2 3 4 5 6 7 8 9 10

numMess

12400
15050
17700
20350
23000
25650
28300
30950
33600
36250

RMPdelayFactor
(b) P: 0.3

1 3 5 7 9 11 13 15 17 19

delivTime

230
280
330
380
430
480
530
580
630
680

RMPdelayFactor
(c) P: 0.6

1 3 5 7 9 11 13 15 17 19

numMess

4700
6290
7880
9470
11060
12650
14240
15830
17420
19010

RMPdelayFactor
(d) P: 0.6

1 6 11 16 21 26 31 36 41 46

delivTime

100
130
160
190
220
250
280
310
340
370

RMPdelayFactor
(e) P: 0.9

1 6 11 16 21 26 31 36 41 46

numMess

3000
4400
5800
7200
8600
10000
11400
12800
14200
15600

RMPdelayFactor
(f) P: 0.9

OSDRMP(rRMP) OSDRMP(urRMP) PSFQ

Figure 7. Comparison of OSDRMP and PSFQ
for the network in Fig. 5 with s = 0 and TTL = 14.

in Proc. 1st Intl. Workshop on Wireless Sensor Networks and
Appl., GA, 2002.

[2] F. Stann and J. Heidemann, "RMST: Reliable data trans-
port in sensor networks", in Proc. 1st IEEE Intl. Workshop
on Sensor Network Protocols and Appl., Alaska, May 2003.

[3] Y. Sankarsubramaniam, O. Akan, I. Akyildiz, "ESRT:
Event-to-sink reliable transport in wireless sensor networks"
in Proc. ACM Mobihoc 2003, Maryland, June 2003.

[4] A. DeSimone, M.C. Chuah and O.-C. Yue, "Throughput
performance of transport-layer protocols over wireless
LANs", Proc. of IEEE Globecom, Dec 1993.

[5] A. Woo, T. Tong, and D. Culler, "Taming the underlying
challenges of reliable multihop routing in sensor networks",
ACM Sensys, November 2003.

[6] R. Iyer and L. Kleinrock, "QoS control for sensor net-
works", IEEE Intl. Conf. on Comm., May 2003.

