
Synthesis of High-Performance Parallel
Programs for a Class of Ab Initio Quantum
Chemistry Models

GERALD BAUMGARTNER, ALEXANDER AUER, DAVID E. BERNHOLDT, ALINA BIBIREATA,
VENKATESH CHOPPELLA, DANIEL COCIORVA, XIAOYANG GAO, ROBERT J. HARRISON,
SO HIRATA, SRIRAM KRISHNAMOORTHY, SANDHYA KRISHNAN, CHI-CHUNG LAM,
QINGDA LU, MARCEL NOOIJEN, RUSSELL M. PITZER, J. RAMANUJAM, P. SADAYAPPAN,
AND ALEXANDER SIBIRYAKOV

Invited Paper

This paper provides an overview of a program synthesis system
for a class of quantum chemistry computations. These computations
are expressible as a set of tensor contractions and arise in electronic
structure modeling. The input to the system is a a high-level spec-
ification of the computation, from which the system can synthesize
high-performance parallel code tailored to the characteristics of the
target architecture. Several components of the synthesis system are

Manuscript received November 17, 2003; revised October 15, 2004.
This work was supported in part by the National Science Founda-
tion under Awards CHE-0121676, CHE-0121706, CCR-0073800, and
EIA-9986052 and in part by the U.S. Department of Energy under Award
DE-AC05-00OR22725.

G. Baumgartner is with the Department of Computer Science, Louisiana
State University, Baton Rouge, LA 70803 USA (e-mail: gb@csc.lsu.edu).

A. Auer is with the Institut für Chemie, Technische Universität
Chemnitz, Chemnitz D-09111, Germany (e-mail: alexander.auer@
chemie.tu-chemnitz.de).

D. E. Bernholdt, V. Choppella, and R. J. Harrison are with Oak Ridge
National Laboratory, Oak Ridge, TN 37831 USA (e-mail: bernholdtde@
ornl.gov; choppellav@ornl.gov; harrisonrj@ornl.gov).

A. Bibireata, D. Cociorva, X. Gao, S. Krishnamoorthy, S. Krishnan,
C.-C. Lam, Q. Lu, and P. Sadayappan are with the Department of Com-
puter Science and Engineering, Ohio State University, Columbus, OH
43210 USA (e-mail: bibireat@cse.ohio-state.edu; cociorva@cse.ohio-state.
edu; gaox@cse.ohio-state.edu; krishnsr@cse.ohio-state.edu; krishnas@
cse.ohio-state.edu; clam@cse.ohio-state.edu; luq@cse.ohio-state. edu;
saday@cse.ohio-state.edu; sibiryak@cse.ohio-state.edu).

S. Hirata is with the Quantum Theory Project, University of Florida,
Gainesville, FL 32611 USA (e-mail: hirata@qtp.ufl.edu).

M. Nooijen is with the Department of Chemistry, University of Waterloo,
Waterloo, ON N2L 6B4, Canada (e-mail: nooijen@uwaterloo.ca).

R. M. Pitzer is with the Department of Chemistry, Ohio State University,
Columbus, OH 43210 USA (e-mail: pitzer.3@osu.edu).

J. Ramanujam is with the Department of Electrical and Computer Engi-
neering, Louisiana State University, Baton Rouge, LA 70803 USA (e-mail:
jxr@ece.lsu.edu).

A. Sibiryakov is with Microsoft, Redmond, WA 98052 USA.
Digital Object Identifier 10.1109/JPROC.2004.840311

described, focusing on performance optimization issues that they
address.

Keywords—Communication minimization, compiler optimiza-
tions, data locality optimization, domain-specific languages,
high-level programming languages, memory-constrained optimiza-
tion, tensor contraction expressions.

I. INTRODUCTION

This paper provides an overview of a project that is de-
veloping a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a
class of scientific computations encountered in chemistry
and physics—electronic structure calculations, where many
computationally intensive components are expressible as a
set of tensor contractions. Currently, manual development
of accurate quantum chemistry models in this domain is
very tedious and takes an expert several months to years
to develop and debug. The synthesis tool aims to reduce
the development time to hours/days, by having the chemist
specify the computation in a high-level form, from which an
efficient parallel program is automatically synthesized. This
should enable the rapid synthesis of high-performance im-
plementations of sophisticated ab initio quantum chemistry
models, including models that are too tedious for manual
development by quantum chemists. Fig. 1 shows a tensor
contraction expression for one of the terms in the coupled
cluster model [43], [47] for ab initio electronic structure
modeling. An optimized parallel Message Passing Interface
(MPI) program to implement such an expression containing
a large number of tensor products typically requires several
thousands of lines of code.

0018-9219/$20.00 © 2005 IEEE

276 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 1. CCSD doubles expression from quantum chemistry.

The computational domain that we consider is also
extremely compute intensive and consumes significant com-
puter resources at national supercomputer centers. Many of
these codes are limited in the size of the problem that they
can currently solve because of memory and performance
limitations. The computational structures that we address
are present in some computational physics codes modeling
electronic properties of semiconductors and metals, and
in computational chemistry codes such as ACES II [69],1

GAMESS [63], Gaussian [15], NWChem [22], PSI [24],
and MOLPRO [71].2 These structures comprise the bulk of
the computation with the coupled cluster approach to the
accurate description of the electronic structure of atoms
and molecules [43], [47]. Computational approaches to
modeling the structure and interactions of molecules, the
electronic and optical properties of molecules, the heats
and rates of chemical reactions, etc., are crucial to the
understanding of chemical processes in real-world sys-
tems. Examples of applications include combustion and
atmospheric chemistry, chemical vapor deposition, protein
structure and enzymatic chemistry, and industrial chemical
processing. Computational chemistry and materials science
account for significant fractions of supercomputer usage at
national centers.

II. COMPUTATIONAL CONTEXT

In the class of computations considered, the final re-
sult to be computed can be expressed in terms of tensor
contractions, essentially a collection of multidimensional

1Integral packages included are VMOL (J. Almlöf and P. R. Taylor);
VPROPS (P. Taylor) ABACUS; (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen,
J. Olsen, and P. R. Taylor.

2MOLPRO is a package of ab initio programs. E-mail: molprosupport@
tc.bham.ac.uk

summations of the product of several input arrays. Due to
commutativity, associativity, and distributivity, there are
many different ways to compute the final result, and they
could differ widely in the number of floating point opera-
tions required. Consider the following expression:

where typical index ranges are on the order of tens to a few
thousands. If this expression is directly translated to code
(with ten nested loops, for indexes), the total number
of arithmetic operations required will be 4 if the range
of each index is . Instead, the same expression can be
rewritten by use of associative and distributive laws:

This corresponds to the formula sequence shown in Fig. 2(a)
and can be directly translated into code as shown in Fig. 2(b).
This form only requires 6 operations. However, addi-
tional space is required to store temporary arrays and

. Often, the space requirements for the temporary arrays
poses a serious problem. For this example, abstracted from
a quantum chemistry model, the array extents along indexes

are the largest, while the extents along indexes
are the smallest. Therefore, the size of temporary array
would dominate the total memory requirement.

Thus, although the latter form is far more economical in
terms of the number of operations, its implementation will
require the use of temporary intermediate arrays to hold the
partial results of the parenthesized array subexpressions.
Sometimes, the sizes of intermediate arrays needed for the

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 277

Fig. 2. Example illustrating use of loop fusion for memory reduction.

“operation-minimal” form may be too large to even fit on
disk.

A systematic way to explore ways of reducing the memory
requirement for the computation is to view it in terms of
potential loop fusions. Loop fusion merges loop nests with
common outer loops into larger imperfectly nested loops.
When one loop nest produces an intermediate array which
is consumed by another loop nest, fusing the two loop nests
allows the dimension corresponding to the fused loop to be
eliminated in the array. This results in a smaller intermediate
array and, thus, reduces the memory requirements. For the
example considered, the application of fusion is illustrated in
Fig. 2(c). This way, can be reduced to a scalar and to
a two-dimensional (2-D) array, without changing the number
of operations.

For a computation comprising a number of nested loops,
there are often many fusion choices that are not all mutually
compatible. This is because different fusion choices could re-
quire different loops to be made the outermost. Enumerating
all fusion choices to find the loop structure that minimizes the
memory requirements is beyond the scope of existing com-
piler techniques, as discussed in Section X.

III. EXAMPLE

In this section, an example from quantum chemistry is
used to illustrate issues pertinent to the synthesis system. We
discuss a component of the so-called CCSD(T) calculation
[58], one of the most computationally intensive components
of many quantum chemistry packages. It is a coupled cluster
approximation that includes single and double excitations
from the Hartree–Fock wave function plus a perturbative es-
timate for the connected triple excitations. For molecules
well described by a Hartree–Fock wave function, this method
predicts bond energies, ionization potentials, and electron
affinities to an accuracy of 0.5 kcal/mol, bond lengths ac-
curate to 0.0005 , and vibrational frequencies accurate to
5 cm . This level of accuracy is adequate to answer many
of the questions that arise in studies of chemical systems.

The following representative equation arises in the
Laplace factorized expression for linear triples perturbation
correction:

Fig. 3. Unfused operation-minimal form.

and are of the form and
, respectively, where indexes that occur twice

in a term are implicitly summed over.
Integrals with two vertical bars have been antisymmetrized

and may be expressed as:
, where integrals with one vertical bar are of the form

and are quite expensive to compute (requiring on the order
of 1000 arithmetic operations). Electrons may have either up
or down (or alpha/beta) spin. Down spin is denoted here with
an over-bar. The indexes , , , , , refer to occupied
orbitals, of number O between 30 and 100. The indexes , ,
, , , refer to unoccupied orbitals of number V between

1000 and 3000. The integrals are written in the molecular
orbital (MO) basis, but must be computed in the underlying
atom-centered Gaussian basis, and transformed to the MO
basis. We omit these details in our discussion here.

A3A is one of many contributions to the energy, and
among the most expensive, scaling as . Here, we
assume that we have already computed the amplitudes ,
and they must be read as necessary, and contracted to form
a block of . The integrals must be recomputed
as necessary, contracted to form a block of corresponding
to , and the two contracted to form the scalar contribution
to the energy.

Fig. 3 shows pseudocode for the computation of one of the
energy components for . Temporary arrays and
are used to store the integrals of form , where the
functions and represent the integral calculations.3 The
intermediate quantities are computed by contracting
over (i.e., summing over products of) input array , while

3In reality, f and f represent the same array/function; but it is more con-
venient to treat them as distinct initially, to simplify our explanation about
the space–time tradeoff problem addressed by the synthesis system

278 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 4. Use of redundant computation to allow full fusion.

the intermediate quantities are obtained by contracting
over and . The final result is a single scalar quantity

, that is obtained by adding together the pairwise
products .

The cost of computing each integral , is represented
by , and in practice is of the order of hundreds or a few
thousand arithmetic operations. The pseudocode form shown
in Fig. 3 is computationally very efficient in minimizing the
number of expensive integral function evaluations and ,
and maximizing the reuse of the stored integrals in and
(each element of and is used times). However,
it is impractical due to the huge memory requirement. With

and , the size of , is
bytes and the size of , is bytes. Fusing together
pairs of producer–consumer loops in the computation may
result in a reduction of the array sizes: given a pair of loops,
storage may be eliminated along the dimension over which
the common indexes iterate. It can be seen that the loop that
produces (with indexes , , ,), the loop that produces
(with indexes , , ,) and the loop that consumes and
to produce (with indexes , , ,) can all be fully fused
together (after some loop permutation to make the nesting
order match between the producer loop and consumer loop),
permitting the elimination of all explicit indexes in and

to reduce them to scalars. Thus, the largest intermediates,
of size , can be reduced to scalars with loop fusion.
However, the loops producing (with indexes , , ,)
and (with indexes , , ,) cannot both also be directly
fused with the other three loops because their indexes do not
match.

Fig. 4 shows how a reduction of space for and can
be achieved by introducing redundant loops around their pro-
ducer loops—add loops with the missing indexes , for
and , for . Now all five loops have common indexes ,
, , that can be fused, permitting elimination of those in-

dexes from all temporaries. Further, by fusing the producer
loops for and with their consumer loop, which pro-
duces , the , indexes can also be eliminated from and

. A dramatic reduction of memory space is achieved, re-
ducing all temporaries , , and to scalars, but the
space savings come at the price of a significant increase in
computation. No reuse is achieved of the quantities derived

Fig. 5. Use of tiling and partial fusion to reduce recomputation
cost.

from the expensive integral calculations and . Since
is of the order of 1000 in practice, the integral calculations
now dominate the total compute time, increasing the oper-
ation count by three orders of magnitude over the unfused
form in Fig. 3.

A desirable solution would be somewhere in between
the unfused structure of Fig. 3 (with maximal memory re-
quirement and maximal reuse) and the fully fused structure
of Fig. 4 (with minimal memory requirement and minimal
reuse). We show such a solution in Fig. 5, where tiling and
partial fusion of the loops is employed. The loops with
indexes , , , are tiled by splitting each of those indexes
into a pair of indexes. The indexes with a superscript
represent the tiling loops and the unsuperscripted indexes
now stand for intratile loops with a range of , the block
size used for tiling. For each tile , blocks of

and of size are computed and used to form
product contributions to the components of , which are
stored in an array of size .

As the tile size is increased, the cost of function com-
putation for , decreases by a factor of , due to the
reuse enabled. However, the size of the needed temporary
array for increases as (the space needed for can be
reduced back to a scalar by fusing its producer loop with the
loop producing , but ’s space requirement cannot be de-
creased). When becomes larger than the size of physical
memory, expensive paging in and out of disk will be required
for . Further, there are diminishing returns on reuse of

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 279

Fig. 6. Tensor Contraction Engine.

and after becomes comparable to , since the loop
producing now becomes the dominant one. So we can ex-
pect that as is increased, performance will improve and
then level off and then deteriorate. The optimum value of
will clearly depend on the cost of access at the various levels
of the memory hierarchy.

The computation considered here is just one component
of the term, which in turn is only one of very many
terms that must be computed. Although developers of
quantum chemistry codes naturally recognize and perform
some of these optimizations, a collective analysis of all these
computations to determine their optimal implementation is
beyond the scope of manual effort. Further, the time required
to develop codes to implement such computational models

is quite large, especially since the tensor expressions can get
quite complex—such as the one shown earlier in Fig. 1.

IV. OVERVIEW OF THE SYNTHESIS SYSTEM

Fig. 6 shows the components of the Tensor Contraction
Engine (TCE), the synthesis system being developed. We
present in this section a brief description of the basic com-
ponents. Some of these components are tightly coupled (for
example, memory minimization and data distribution), and
they are treated together as one combined module in the syn-
thesis system.

High-level language: The input to the synthesis system
is a sequence of tensor contraction expressions (essen-

280 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

tially sum-of-products array expressions) together with
declarations of index ranges and symmetry and sparsity
of matrices. This high-level notation provides essential
information to the optimization components that would
be difficult or impossible to extract out of low-level
code.
Algebraic transformations: Input from the user in the
form of tensor expressions is transformed into a com-
putation sequence. The properties of commutativity
and associativity of addition and multiplication and the
distributivity of multiplication over addition are used
to search for various possible ways of applying these
properties to an input sum-of-products expression. A
combination that results in an equivalent form of the
computation with minimal operation cost is generated.
Memory minimization: The operation-minimal com-
putation sequence synthesized by applying algebraic
transformation might require an excessive amount of
memory due to the need to use large temporary inter-
mediate arrays. The memory minimization step seeks
to perform loop fusion transformations to reduce the
memory requirements. This is done without incurring
any increase on the number of arithmetic operations.
Data distribution and partitioning: This component
determines how best to partition the arrays among
the processors of a parallel system. We assume a
data-parallel model, where each operation in the oper-
ation sequence is distributed across the entire parallel
machine. The arrays are to be disjointly partitioned be-
tween the physical memories of the processors. Since
the data distribution pattern affects the memory usage
on the parallel machine, this component is closely
coupled with the memory minimization component.
Space–time transformation: If the memory mini-
mization step is unable to reduce memory requirements
of the computation sequence below the available disk
capacity on the system, the computation is infeasible
unless a space–time tradeoff is performed. If no satis-
factory transformation is found, feedback is provided
to the memory minimization module, causing it to seek
a different solution. If the space–time transformation
module is successful in bringing down the memory
requirement below the disk capacity, the data locality
optimization module is invoked.
Data locality optimization: If the space requirement
exceeds physical memory capacity, portions of the ar-
rays must be moved between disk and main memory as
needed, in a way that maximizes reuse of elements in
memory. The same considerations are involved in min-
imizing cache misses—blocks of data are moved be-
tween physical memory and the space available in the
cache.
Code generation: The back end of the synthesis
system provides the output as pseudocode, Fortran,
or C code. The generated code can be either serial or
parallel, using MPI or Global Arrays (GA) [54], [55].
Depending on the circumstances, the synthesized code
could also call highly tuned, machine-specific Basic

Linear Algebra Subprograms (BLAS) libraries, or op-
timized low-level functions from the existing quantum
chemistry packages.

In Sections V–XI, we provide some details about the op-
timizations implemented in some of these modules.

V. OPERATION MINIMIZATION

The operation minimization problem encountered in this
context is a generalization of the well known matrix-chain
multiplication problem, where a linear chain of matrices to
be multiplied is given, e.g., ABCD, and the optimal order
of pairwise multiplications is sought, i.e., ((AB)C)D versus
(AB)(CD), etc. In contrast, for computations expressed as
sets of matrix contractions, there is additional freedom in
choosing the pairwise products. For the example of Fig. 2,
instead of forcing a single chain order, e.g., ABCD, other
orders are possible, such as the BDCA order shown for the
operation-reduced form.

The problem of determining the operator tree with
minimal operation count is NP-complete, and an efficient
pruning search procedure has been developed [40], [41].
Given a sum-of-products term, the following procedure
can be used to exhaustively enumerate all valid sequences
of matrix summation or matrix product (as defined below;
different from the standard notion of matrix-matrix product
in linear algebra) operations to compute it.

1) Let denote the th product term in the given
sum-of-products expression and dimens the set of
index variables in . Set to zero.

2) Increment . Then, perform either action:

a) Write a product formula
where and are any

two terms in the pool. The indexes for are
dimens dimens dimens. Replace

and from the pool by .
b) If there exists an summation index (say) that

appears in exactly one term (say) in the
list, increment and create a summation for-
mula where dimens

dimens . Replace in the pool
by .

3) When step 2 cannot be performed any more, a valid
formula sequence is obtained. To obtain all valid se-
quences, exhaust all alternatives in step 2 using depth-
first search.

The enumeration procedure above is inefficient in that a
particular formula sequence may be generated more than
once in the search process. This can be avoided by creating an
ordering among the product terms and the intermediate gen-
erated functions (which can be treated as new terms, num-
bered in increasing order as they are generated).

A further reduction in the cost of the search procedure can
be achieved by pruning the search space by use of the fol-
lowing two rules.

1) When a summation index appears in only one term,
perform the summation over that index immediately,
without considering any other possibilities at that step.

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 281

Fig. 7. Expression tree and fusion graph for unfused operation-minimal form of loop in Fig. 3.

2) If two or more terms have exactly the same set of in-
dexes, first multiply them together before considering
any other possibilities.

Although the problem of determining minimal operation
count for a sum-of-products expression is NP-complete, the
pruning search procedure above works very effectively in
practice, since the number of nested loops and number of
product terms is typically less than ten.

VI. MEMORY MINIMIZATION AND SPACE–TIME TRADEOFFS

As discussed in Section II, the operation minimization pro-
cedure often results in the creation of intermediate temporary
arrays. For typical computations in computational chemistry,
the space required for storing these temporary arrays can be
several terabytes, which makes the computation impractical.
As shown in Fig. 2(c), the problem with memory require-
ments of large intermediate arrays can be mitigated through
loop fusion. Loop fusion merges loop nests with common
outer loops into larger imperfectly nested loops. When one
loop nest produces an intermediate array that is consumed
by another loop nest, fusing the two loop nests allows the
dimension corresponding to the fused loop to be eliminated
in the array. This results in a smaller intermediate array and,
thus, lowers the memory requirement. The use of loop fusion
can be seen to result in significant potential reduction to the
total memory requirement. For a computation composed of a
number of nested loops, there will generally be a number of
fusion choices that are not all mutually compatible. This is
because different fusion choices could require different loops
to be made the outermost.

A. Fusion Graph

For facilitating the enumeration of all possible loop fusion
configurations for a given expression tree, we define a data
structure we call a fusion graph [37], [39]. The fusion graph
makes the indexes of nodes in the expression tree explicit and
indicates the scopes of fused loops.

Let be an expression tree. For any given node ,
let subtree be the set of nodes in the subtree rooted at

, parent be the parent node of , and indexes be the
set of loop indexes for (including the summation indexes

sumindexes if is a summation node). A fusion graph for
is constructed as follows.

1) Corresponding to each node in a fusion graph
contains a set of vertices, one for each index

indexes .
2) For each Array or Const node in and for each

index indexes parent indexes that is fused
between and its parent, an -index is added to the set
of nodes corresponding to .

3) For each loop of index that is fused between a node
and its parent, the -vertices for the two nodes are con-
nected with a fusion edge.

4) For each index that is shared between a node and
its parent, for which the corresponding loops are not
fused, the -vertices for the two nodes are connected
with a potential fusion edge.

Fig. 7(a) shows the expression tree corresponding to the
computation in Fig. 3. Fig. 7(b) shows the fusion graph for
the unfused form of this computation. Corresponding to each
node in a expression tree, the fusion graph has a set of ver-
tices corresponding to the loop indexes of the node of the
expression tree. The potential for fusion of a common loop
among a producer–consumer pair of loop nests is indicated
in the fusion graph through a dashed potential fusion edge
connecting the corresponding vertices. Leaf nodes in the fu-
sion graph correspond to input arrays or primitive function
evaluations and do not represent a loop nest. The edges from
the leaves to their parents are shown as dotted edges and do
not affect the fusion possibilities.

If a pair of loop nests is fused using one or more common
loops, it is captured in the fusion graph by changing the
dashed potential-fusion edges to continuous fusion edges. If
more than two loop nests are fused together, a chain of fusion
edges results, called a fusion chain. The scope of a fusion
chain is the set of nodes it spans. The fusion graph allows
us to characterize the condition for feasibility of a particular
combination of fusions: the scope of any two fusion chains in
a fusion graph must either be disjoint or a subset/superset of
each other. Scopes of fusion chains do not partially overlap
because loops do not (i.e., loops must be either separate or
nested).

The fusion graph in Fig. 7(b) can be used to determine the
fusion possibilities. On the left side of the graph, the edges

282 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 8. Fusion graphs showing redundant computation and tiling.

corresponding to can all be made fusion edges,
suggesting that complete fusion is possible for the loop nests
producing and consuming , reducing it to a scalar. Simi-
larly, on the right side of the graph, the edges corresponding
to can also be made fusion edges, reducing to
a scalar. Further, by creating fusion edges for indexes ,
the producer loop for can be fully fused with the loop
that consumes it. However, now the producer loop for
cannot be fused, since the addition of any fusion edge (say,
for index) will result in partially overlapping fusion chains
for and .

The fully fused version from Fig. 4 can be represented
graphically as shown in Fig. 8(a). Additional vertices have
been added for indexes and , respectively, at the
nodes corresponding to the producer loops for and .
Now, complete fusion chains can be created without any
partial overlap in the scopes of the fusion chains. From the
figure, it can be seen that in fact the redundant computation
need only be added to one of or to achieve complete
fusion. For example, removing the additional vertices for

at does not violate the nonpartial-overlap condi-
tion for fusion.

The fusion graph was used to develop an algorithm [37],
[39] to determine the combination of fusions that minimizes
the total storage required for all the temporary intermediate
arrays. A bottom-up dynamic programming approach was
used that maintains a set of pareto-optimal fusion configu-
rations at each node, merging solutions from children nodes
to generate the optimal configurations at a parent. The two
metrics used are the total memory required under the subtree
rooted at the node, and the constraints imposed by a configu-
ration on fusion further up the tree. A configuration is inferior
to another if it is more or equally constraining with respect
to further fusions than the other, and uses no less memory. At
the root of the tree, the configuration with the lowest memory
requirement is chosen.

The complexity of the algorithm is exponential in the
number of index variables and the number of solutions could
in theory grow exponentially with the size of the expression
tree. However, since in practical applications the number of
dimensions of tensors and the number of tensors in a term
are in the single digits, the number of index variables remain
small enough and the pruning is effective in keeping the
size of the solution set at each node manageable. If needed,

heuristics can be used to further reduce the size of solution
sets.

If the storage requirements still exceed the disk capacity
after memory minimization, we can choose to recompute
some (parts of) temporary arrays in order to further reduce
the space requirements. We have developed a space–time
tradeoff algorithm [9] that employs a combination of fusion
and tiling to achieve a good balance between recomputa-
tion and memory usage. The first step of the space–time
tradeoff algorithm uses a dynamic programming approach
similar to the memory minimization algorithm that maintains
a set of pareto-optimal fusion/recomputation configurations,
in which the recomputation cost is used as a third metric.
Solutions exceeding the memory limit are pruned out. The
result of the search is a set of loop structures with different
combinations of space requirements and recomputation cost.

In the second step of the algorithm, recomputation in-
dexes are split into tiling and intratile loop pairs, as shown in
Fig. 8(b). By making intratile loops the innermost loops, any
recomputation only needs to be performed once per iteration
of the tiling loop in exchange for increasing the storage
requirements for temporaries in which the dimension cor-
responding to the tiled loop had been eliminated. For each
solution from the first step of the algorithm, we then search
for tile sizes that minimize the recomputation cost, and take
the solution that results in the lowest recomputation cost.

VII. DATA LOCALITY OPTIMIZATION

Once a solution is found that fits onto disk, we optimize
the data locality to reduce memory and disk access times.
We developed algorithms [7], [8] that, given a memory-re-
duced (fused) version of the code, find the appropriate
blocking of the loops in order to maximize data reuse. These
algorithms can be applied at different levels of the memory
hierarchy—for example, to minimize data transfer between
main memory and disk (disk access minimization) or to
minimize data transfer between main memory and the cache
(cache optimization). In this section, we briefly describe the
main points of our algorithm [8], focusing mostly on the
cache management problem. For the disk access minimiza-
tion problem, the same approach is used, replacing the cache
size by the physical memory size.

We introduce a memory access cost model (Cost), an es-
timate on the number of cache misses, as a function of tile

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 283

sizes and loop bounds. In a bottom-up traversal of the abstract
syntax tree, we count for each loop the number (Accesses) of
distinct array elements accessed in its scope. If this number
is smaller than the number of elements that fit into the cache,
then Cost Accesses. Otherwise, it means that the elements
in the cache are not reused from one loop iteration to the next,
and the cost is obtained by multiplying the loop range by the
cost of its inner loop(s).

Using this cost model, we can compute the total memory
access cost for given tile sizes. The procedure is repeated for
different sets of tile sizes, and new costs are computed. In
the end the lowest possible cost is chosen, thus determining
the optimal tile sizes. We define our tile size search space in
the following way: if is a loop range, we use a tile size
starting from (no tiling), and successively increasing

by doubling it until it reaches . This approach ensures a
slow (logarithmic) growth of the search space with increasing
array dimension for large . If is small enough, an ex-
haustive search is performed instead.

VIII. PARALLELISM: DATA PARTITIONING AND

COMMUNICATION MINIMIZATION

Given a sequence of formulas, we need to find an ef-
fective partitioning of arrays and operations among the
processors and a choice of loop fusions in order to minimize
interprocessor communication, while staying within the
available memory in implementing the computation on a
message-passing parallel computer.

Since primitive tensor contractions are essentially general-
ized multidimensional matrix multiplications, we use a gen-
eralized form of the memory efficient Cannon algorithm [4],
[36]. A logical view of the processors as a 2-D
grid is used, and each array is fully distributed along the two
processor dimensions. We use a pair of indexes to denote the
partitioning or distribution of the elements of a data array on
a 2-D processor array. The th position in a pair , denoted

, where can be either one or two, corresponds to the
th processor dimension. Each position is an index variable

distributed along that processor dimension. As an example,
suppose 16 processors form a 2-D 4 4 logical array. For
the array in Fig. 2(a), the pair spec-
ifies that the first and the third dimensions of are
distributed along the first and second processor dimensions
respectively, and that the second and fourth dimen-
sions of are not distributed. Thus, a processor whose id
is , with and between one and four, will be as-
signed a portion of specified by myrange

myrange , where myrange is
the range to .

A tensor contraction formula can be expressed
as a generalized matrix multiplication

, where , , and represent index
collections, or index sets. This observation follows from a
special property of tensor contractions: all the indexes ap-
pearing on the left-hand side must appear on the right-hand

side only once (index sets and , for and , respec-
tively), and all summation indexes must appear on both
right-hand side arrays (index set). For example, the tensor
contraction
is characterized by the index sets , ,
and .

We generalize Cannon’s algorithm for multidimensional
arrays as follows: a triplet formed by one index from
each index set , , and defines a distribution for the
result array , and distributions and for the input
arrays and , respectively. In addition, one of the three in-
dexes is chosen as the “rotation index,” along which
the processor communication takes place. For example, in
the traditional Cannon algorithm for matrix multiplication,
the summation index plays that role; blocks of the input
arrays and are rotated among processors, and each pro-
cessor holds a different block of and and the same block
of after each rotation step. At every step, processors mul-
tiply their local blocks of and and add the result to the
block of .

Due to the symmetry of the problem, any of the three in-
dexes can be chosen as the rotation index, so it is
always possible to keep one of the arrays in a fixed distribu-
tion and communicate (“rotate”) the other two arrays. There-
fore, the number of distinct communication patterns within
the generalized Cannon’s algorithm framework is given by
3 NI NJ NK, where NI is defined as the number of indexes
in the index set . The communication costs of the tensor
contraction depend on the distribution choice and
the choice of rotation index.

In addition to the communication of array blocks during
the rotation phase of the Cannon algorithm, array redistri-
bution may be necessary between the Cannon steps. For
instance, suppose the arrays and
have initial distributions and , respectively. If
we want to have the distribution when evaluating

, would
have, for example, to be redistributed from to
for the generalized Cannon algorithm to be possible. But
since the initial distribution of is the same
as the distribution required to perform the Cannon rotations,
no redistribution is necessary for array .

The partitioning of data arrays among the processors and
the fusions of loops both affect the total interprocessor com-
munication cost. Fusion generally results in an increase of
communication cost, but can significantly reduce the per-
processor memory requirement. We use a dynamic program-
ming algorithm to search among all combinations of loop
fusions and array distributions to find the one with minimal
total communication cost, that also fits within the available
memory. We omit details here and refer the reader to [10] and
[11].

IX. EXPERIMENTAL RESULTS

As an example, consider the following contraction, used
often in quantum chemistry calculations to transform a set of

284 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

two-electron integrals from an atomic orbital (AO) basis to a
MO basis:

This contraction is referred to as a four-index transform.
Here, is a four-dimensional input array initially
stored on disk, and is the transformed output
array to be placed on disk at the end of the computation. The
arrays through are called transformation matrices. In
practice, these four arrays are identical; we identify them by
different names only in order to be able to distinguish them
in the text.

The indexes , , , and have the same range , denoting
the total number of orbitals. , where denotes
the number of occupied orbitals and denotes the number
of unoccupied (virtual) orbitals. Likewise, the index ranges
for , , , and are the same, and equal to . Typical values
for range from 10 to 300; the number of virtual orbitals
is usually between 50 and 1000.

The calculation of is done in four steps to reduce the
number of floating point operations from in the
initial formula (eight nested loops, for , , , , , , , and

) to

This operation-minimization transformation results in the
creation of three intermediate arrays

Assuming that the available memory on the machine run-
ning this calculation is less than (which for
and double precision arrays is about), none of , ,

, , and can entirely fit in memory. Therefore, the in-
termediates , , and need to be written to disk once
they are produced, and read from disk before they are used in
the next step. Since none of these arrays can be fully stored
in memory, it may not be possible to perform all multiplica-
tion operations by reading each element of the input arrays
from disk only once. This could result in the disk I/O volume
being much larger than the total amount of data on disk.

Three different combinations of optimizations were
used to generate final concrete code, with explicit disk I/O
statements.

1) Fusion Optimized Tiling: The TCE loop fusion and
tiling optimizations were enabled [2], [35].

Table 1
Configuration of the System Whose I/O Characteristics Were
Studied

2) No Fusion,Optimized Tiling: Loop fusion was dis-
abled, but the TCE tiling optimization was enabled.

3) No Fusion, Standard Tiling: Loop fusion was dis-
abled; the tile sizes of all loops were standardized to
one-third of the fourth root of the memory size.

The sizes of the tensors used for the experiments were
and

. The performance of the generated
concrete code was measured on the Itanium 2 cluster at the
Ohio Supercomputer Center. Each node in the cluster has the
configuration shown in Table 1. Since not all of the physical
memory can be used for data, the memory limit for the op-
timizations was set to 2 GB. The TCE source code is shown
in Fig. 9; the generated code was compiled with the Intel Ita-
nium Fortran Compiler for Linux. Figs. 10(a), 10(b), and 11
show the generated codes for the above three combinations
of optimizations. The disk I/O statements in bold face have
redundant loop indexes surrounding them. A loop index is
redundant for a disk I/O statement if that loop does not index
the array being read or written.

As can be seen, the code with standard tiling has the most
redundant disk I/O. This is the state of the art for the code
generators currently used by chemists. Table 2 shows the disk
I/O times and total execution times of the generated code for
all three cases. Our combined fusion and tiling optimizations
result in code that has 80% less disk I/O than the code with
standard tiling.

X. RELATED WORK

Aspects of some of the important problems addressed
in the synthesis system such as operation minimization,
memory reduction, and locality optimization have also re-
ceived some attention in research on compiler optimizations.

Reduction of arithmetic operations has been tradition-
ally done by compilers using the technique of common
subexpression elimination. Much work has been done on
improving locality and parallelism by loop fusion [31], [46],
[64]. However, the synthesis system presented in this paper
considers a different use of loop fusion, which is to reduce
array sizes and memory usage of automatically synthesized
code containing nested loop structures. The contraction of
arrays into scalars through loop fusion is studied in [19] but
is motivated by data locality enhancement and not memory
reduction. Loop fusion in the context of delayed evaluation
of array expressions in APL programs is discussed in [21],
but their work is also not aimed at minimizing array sizes;
in addition, they consider loop fusion without considering
any loop reordering.

Some recent work has explored the use of loop fusion for
memory reduction for sequential execution. Strout et al. [70]
present a technique for determining the minimum amount of

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 285

Fig. 9. TCE source code for four-index transform.

Fig. 10. Codes generated for cases 1 and 2.

memory required for executing a perfectly nested loop with a
set of constant-distance dependence vectors. Fraboulet et al.
[16] use loop alignment to reduce memory requirement be-
tween adjacent loops by formulating the one-dimensional
version of the problem as a network flow problem. Song [66]
and Song et al. [67], [68] present a different network flow
formulation of the memory reduction problem and they in-
clude a simple model of cache misses as well. However, they
do not consider the issue of trading off memory for recom-
putation. Pike and Hilfinger [56] apply tiling and fusion to
a set of consecutive perfectly nested loops (each containing
one statement) of the same nesting depth. Their work does
not apply to the class of loops with complex nestings that are

considered here. There has been some work in the area of de-
sign automation to estimate storage needed for a single per-
fectly nested loop or a sequence of such loops [5], [32], [60],
[61] and references therein. These techniques do not con-
sider tiling and they incur additional runtime memory man-
agement overhead.

Considerable research on loop transformations for lo-
cality in nested loops has been reported in the literature [12],
[44], [49], [73]. Nevertheless, a performance-model-driven
approach to the integrated use of loop fusion and loop tiling
for enhancing locality in imperfectly nested loops has not
been addressed in these works. Wolf et al. [74] consider the
integrated treatment of fusion and tiling only from the point

286 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

Fig. 11. Code generated for case 3: no fusion, standard tiling.

Table 2
Total Disk I/O and Execution Times for Codes Generated for
all Three Cases

of view of enhancing locality and do not consider the impact
of the amount of required memory; the memory requirement
is a key issue for the problems considered in this paper.
Loop tiling for enhancing data locality has been studied
extensively [12], [33], [34], [59], [62], [65], [73], [74],
and analytic models of the impact of tiling on locality in
perfectly nested loops have been developed [20], [42], [52].
Frameworks for handling imperfectly nested loops have
been presented in [1], [45], and [65]. Ahmed et al. [1] have

developed a framework that embeds an arbitrary collection
of loops into an equivalent perfectly nested loop that can be
tiled; this allows a cleaner treatment of imperfectly nested
loops. Lim et al. [45] develop a framework based on affine
partitioning and blocking to reduce synchronization and
improve data locality. Specific issues of locality enhance-
ment, I/O placement and optimization, and automatic tile
size selection have not been addressed in the works that can
handle imperfectly nested loops [1], [45], [65].

The approach undertaken in this project bears similarities
to some projects in other domains, such as the SPIRAL
project, which is aimed at the design of a system to generate
efficient libraries for digital signal processing algorithms
[28], [53], [57], [75]. SPIRAL generates efficient imple-
mentations of algorithms expressed in a domain-specific
language called SPL by a systematic search through the
space of possible implementations.

Other efforts in automatically generating efficient imple-
mentations of programs include FFTW [17], [18], the tele-
scoping languages project [29], [30], ATLAS [13], [72] for
deriving efficient implementation of BLAS routines, and the
PHIPAC [3] project. All these efforts use search-based ap-
proaches for performance tuning of codes. A comparison of
model-based and search-based approaches for matrix-matrix
multiplication is reported in [77] and [78]. In addition, mo-
tivated by the difficulty of detecting and optimizing matrix
operations hidden in array subscript expressions within loop
nests, several projects have worked on efficient code genera-
tion from high-level languages such as MATLAB and Maple
[6], [14], [48], [50], [51].

While our effort shares some common goals with several
of the projects mentioned above, there are also significant
differences. Some of the optimizations we consider, such
as the algebraic optimizations, memory minimization, and
space–time tradeoffs, do not appear to have been previ-
ously explored, to the best of our knowledge. We also
take advantage of certain domain-specific properties of the
computations; for example, since all expressions considered
in this framework are tensor contractions, the loops of the
resulting code are fully permutable, and there are no depen-
dencies preventing fusion. This observation is crucial for the
optimization algorithms of several components (memory
minimization, space–time transformation, data locality).
Also, some of the multidimensional arrays involved in the
computation have certain domain-specific symmetry prop-
erties that can be exploited in order to lower the number of
arithmetic operations, and, thus, total execution time.

While optimization of performance is a significant goal,
more important in our context is the potential for dra-
matically reducing the developmental effort required of a
quantum chemist to develop a new ab initio computational
model. Currently, the manual development and testing of a
reasonably efficient parallel code for a computational model
such as the coupled cluster model typically takes many
months of tedious effort for a computational chemist. We
aim to reduce the time to prototype a new model to under a
day, through use of the synthesis system.

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 287

Table 3
Current Capabilities of the Prototype and Optimizing Tensor Contraction Engines

XI. DOMAIN-SPECIFIC ISSUES IN OPTIMIZATION

One of the most challenging issues in this work has been
the integration of optimizations which arise from the chem-
istry and physics of the particular class of problems we are
targeting with the more general optimizations typical of op-
timizing compilers, which has been the primary focus of the
paper to this point. Clearly presence of domain-specific op-
timizations reduces the generality of the code synthesis en-
vironment, and limits its extensibility to other problems and
domains.

Such domain-specific issues arise in a number of forms. In
some cases, the search space for a given optimization is too
large to examine exhaustively in a reasonable time, so heuris-
tics which encapsulate the experience of the chemist can be
valuable to help restrict the search space. One example of this
approach, which we are currently investigating, is the task
of common subexpression elimination across multiple tensor
contraction expressions in order to find intermediates that can
be evaluated and reused in numerous places. An experienced
quantum chemist knows from experience that certain pair-
ings of tensors are more likely than others to yield useful
factorizations. This is a case where chemistry-based heuris-
tics can be isolated into a particular optimization module, and
so do not limit the extensibility of the environment (in so far
as the module can be replaced with another appropriate to a
new problem or domain).

On the other hand, there are domain-specific issues that cut
across many modules. For example, the prior discussion of
tensors and tensor contractions did not include the fact that
the tensors in this particular class of problems have a number
of symmetry properties which must be utilized in order to
generate the most efficient possible code.

• Permutational symmetry: tensors may be symmetric or
antisymmetric on the interchange of certain indexes.
As the multidimensional generalization of (anti-)sym-
metric matrices, this defines equivalences (within a
sign) for certain portions of the tensor. Permutational
symmetries are associated with the particular type of
tensor, and the formulation of the quantum chemical
method.

• Spatial symmetry: tensors also reflect geometric sym-
metry properties of the molecule on which the cal-
culation is being performed (for example, in benzene
C H , all six carbon atoms are equivalent, as are

all six hydrogen atoms). Spatial symmetry gives ten-
sors a block structure in each index and allows the
problem to be reduced to only the symmetry-unique
blocks. The specifics of the number and sizes of such
symmetry blocks are clearly specific to the molecule
being studied, and so are only known at run time.

• Spin symmetry: is associated with the quantum me-
chanical spin of the electrons. Electronic structure cal-
culations are typically formulated so that electron spin
is among the slowest changing variables in the nested
loop structure that drives these the calculations. So spin
symmetries typically lead to very large blocks of ten-
sors being hard zeros; there are few enough nonzero
blocks that each combination of spins is often imple-
mented in a separate tensor object.

All of these symmetries affect the detailed structure of the
tensors, their natural block structure, and number of unique
elements. Clearly this has a significant impact on code gen-
eration, but it can also factor into the optimizations them-
selves. For example, permutational symmetries affect where
loop fusions can be effectively applied, and spatial symmetry
constrains tile sizes for space–time tradeoffs and data locality
optimization.

Another domain-specific factor that enters into the
problem pertains to the formulation of the quantum chemical
method. Historically, most methods in quantum chemistry
have been expressed in the MO basis, which has certain
implications on the structure and sparsity of the tensors.
More recently, there is increasing use of an alternative
“local/AO” based formulation, in an attempt to produce im-
plementations with better computational scaling properties
(the two approaches are often mixed in different parts of the
quantum chemical method). For example, in the traditional
MO formulation, most of the tensors are relatively dense,
while in the AO formulation, a rank-4 tensor of total size

might have just nonzero elements for large
molecules, with a rather different blocking pattern than in
the MO approach. Though it might have been different 10 or

288 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

15 years ago, today it is not reasonable to develop a general
purpose code synthesis capability in this domain without the
ability to handle both MO and AO-based approaches with
good efficiency.

Our approach to dealing with domain-specific optimiza-
tion issues has been twofold. A “prototype” TCE has been
developed [25], [26], which focuses on systematizing and
automating the approach a chemist might take in writing
the code by hand. Concurrently, we are working on imple-
menting an “optimizing” TCE which starts from a relatively
domain-independent computer science base. In addition to
being extremely functional in its own right, the prototype
TCE augments discussions between the chemists and com-
puter scientists on the team by allowing us to look at concrete
implementations of code generation tools from the chemists’
viewpoint. Once the domain-specific optimizations are un-
derstood in situ, we can more easily move to integrate them
into the optimizing TCE, while retaining as much generality
as possible. We have worked through this process for the
tensor symmetries mentioned above, and appropriate modifi-
cations are now being incorporated into the optimizing TCE.
The prototype TCE is now capable of generating code for
AO-based approaches, and this will be the next domain-spe-
cific optimization to be integrated into the optimizing TCE.

XII. CURRENT STATUS

Both the prototype and optimizing TCE tools are capable
of generating both sequential and parallel code for a wide
range of electronic structure methods in the target domain.
Table 3 summarizes the current capabilities of both tools.

The prototype TCE has been particularly valuable, having
been used already to implement more than 20 different
methods in the coupled cluster family, many of which re-
ceived their first ever parallel implementation in this way.
These new capabilities have been integrated with, and are
distributed as part of the NWChem version 4.5 [23] and
UTCHEM 2003 [76] computational chemistry packages and
have enabled benchmark quantum chemical applications
that were not possible before the development of the TCE
[27].

REFERENCES

[1] N. Ahmed, N. Mateev, and K. Pingali, “Synthesizing transforma-
tions for locality enhancement of imperfectly-nested loops,” pre-
sented at the ACM Int. Conf. Supercomputing, Santa Fe, NM, 2000.

[2] A. Bibireata, S. Krishnan, G. Baumgartner, D. Cociorva, C. Lam,
P. Sadayappan, J. Ramanujam, D. Bernholdt, and V. Choppella
et al., “Memory-constrained data locality optimization for tensor
contractions,” in Lecture Notes in Computer Science, Languages
and Compilers for Parallel Computing, L. Rauchwerger et al.,
Eds. Heidelberg, Germany: Springer-Verlag, 2004, vol. 2958, pp.
93–108.

[3] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel, “Optimizing matrix
multiply using PHiPAC,” in Proc. ACM Int. Conf. Supercomputing,
1997, pp. 340–347.

[4] L. Cannon, “A cellular computer to implement the Kalman filter al-
gorithm,” Ph.D. dissertation, Montana State Univ., Bozeman, 1969.

[5] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele,
and A. Vandecappelle, Custom Memory Management Method-
ology. Norwell, MA: Kluwer, 1998.

[6] R. Choy and A. Edelman, “Parallel MATLAB: Doing it right,” Proc.
IEEE, vol. 93, no. 2, pp. 331–341, Feb. 2005.

[7] D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sadayappan,
and J. Ramanujam, “Loop optimizations for a class of memory-con-
strained computations,” in Proc. 15th ACM Int. Conf. Supercom-
puting, 2001, pp. 103–113.

[8] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ra-
manujam, M. Nooijen, D. Bernholdt, and R. Harrison, “Toward
automatic synthesis of high-performance codes for electronic struc-
ture calculations: Data locality optimization,” in Lecture Notes on
Computer Science, High Performance Computing—HiPC 2001,
2001, vol. 2228, pp. 237–248.

[9] , “Space–time trade-off optimization for a class of electronic
structure calculations,” in Proc. 2002 Conf. Programming Language
Design and Implementation (PLDI), pp. 177–186.

[10] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, and J. Ra-
manujam, “Memory-constrained communication minimization for a
class of array computations,” presented at the Workshop Languages
and Compilers for Parallel Computing, West Lafayette, IN, 2004.

[11] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sa-
dayappan, and J. Ramanujam, “Global communication optimization
for tensor contraction expressions under memory constraints,” pre-
sented at the 17th Int. Parallel and Distributed Processing Symp.
(IPDPS), Nice, France, 2003.

[12] S. Coleman and K. McKinley, “Tile size selection using cache or-
ganization and data layout,” presented at the ACM SIGPLAN Conf.
Programming Language Design and Implementation, La Jolla, CA,
1995.

[13] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.
Vuduc, C. Whaley, and K. Yelick, “Self adapting linear algebra
algorithms and software,” Proc. IEEE, vol. 93, no. 2, pp. 293–312,
Feb. 2005.

[14] L. De Rose and D. Padua, “A MATLAB to fortran 90 translator
and its effectiveness,” in Proc. 10th ACM Int. Conf. Supercomputing,
1996, pp. 309–316.

[15] J. Foresman and A. Frisch, Exploring Chemistry With Electronic
Structure Methods: A Guide to Using Gaussian, Second ed. Pitts-
burgh, PA: Gaussian, Inc., 1996.

[16] A. Fraboulet, G. Huard, and A. Mignotte, “Loop alignment for
memory access optimization,” in Proc. 12th Int. Symp. System
Synthesis, 1999, pp. 71–77.

[17] M. Frigo and S. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proc. Int. Conf. Acoustics, Speech, and Signal Pro-
cessing, vol. 3, 1998, pp. 1381–1384.

[18] , “The design and implementation of FFTW3,” Proc. IEEE, vol.
93, no. 2, pp. 216–231, Feb. 2005.

[19] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath, “Collective loop fu-
sion for array contraction,” presented at the Workshop Languages
and Compilers for Parallel Computing, New Haven, CT, 1992.

[20] S. Ghosh, M. Martonosi, and S. Malik, “Precise miss analysis for
program transformations with caches of arbitrary associativity,” pre-
sented at the 8th ACM Int. Conf. Architectural Support for Program-
ming Languages and Operating Systems, San Jose, CA, 1998.

[21] L. Guibas and D. Wyatt, “Compilation and delayed evaluation in
APL,” in Proc. 5th Annu. ACM Symp. Principles of Programming
Languages, 1978, pp. 1–8.

[22] NWChem, A Computational Chemistry Package for Parallel Com-
puters, Version 3.3, High Perform. Comput. Chem. Group, Pacific
Northwest Nat. Lab., Richland, WA, 1999.

[23] NWChem, A Computational Chemistry Package for Parallel Com-
puters, Version 4.5, High Perform. Comput. Chem. Group, Pacific
Northwest Nat. Lab., Richland, WA, 2003.

[24] C. L. Janssen, E. T. Seidl, G. E. Scuseria, T. P. Hamilton, Y.
Yamaguchi, R. B. Remington, Y. Xie, G. Vacek, C. D. Sherrill,
T. D. Crawford, J. T. Fermann, W. D. Allen, B. R. Brooks, G. B.
Fitzgerald, D. J. Fox, J. F. Gaw, N. C. Handy, W. D. Laidig, T. J. Lee,
R. M. Pitzer, J. E. Rice, P. Saxe, A. C. Scheiner, and H. F. Schaefer,
“PSI 2.0.8,” PSITECH, Inc., Watkinsville, GA, psi@ccqc.uga.edu,
1995.

[25] S. Hirata, “Tensor contraction engine: Abstraction and auto-
mated parallel implementation of configuration-interaction, cou-
pled-cluster, and many-body perturbation theories,” J. Phys. Chem.
A, vol. 107, pp. 9887–9897, 2003.

[26] S. Hirata, A. Auer, and M. Nooijen, Tensor Contraction En-
gine. Richland, WA: Pacific Northwest Nat. Lab., 2003.

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 289

[27] S. Hirata, T. Yanai, W. A. de Jong, T. Nakajima, and K. Hirao,
“Third-order Douglas.Kroll relativistic coupled-cluster theory
through connected single, double, triple, and quadruple substitu-
tions: Applications to diatomic and triatomic hydrides,” J. Chem.
Phys., vol. 120, pp. 3297–3310, 2004.

[28] J. Johnson, R. Johnson, D. Padua, and J. Xiong, “Searching for
the best FFT formulas with the SPL compiler,” in Lecture Notes
in Computer Science, Languages and Compilers for Parallel
Computing. Heidelberg, Germany: Springer-Verlag, 2001, pp.
112–126.

[29] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler,
D. Gannon, L. Johnsson, J. Mellor-Crummey, and L. Torczon,
“Telescoping languages: A strategy for automatic generation of
scientific problem-solving systems from annotated libraries,” J.
Parallel Distrib. Comput., vol. 61, no. 12, pp. 1803–1826, Dec.
2001.

[30] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C.
Koelbel, C. McCosh, and J. Mellor-Crummey, “Telescoping lan-
guages: A system for automatic generation of domain languages,”
Proc. IEEE, vol. 93, no. 2, pp. 387–408, Feb. 2005.

[31] K. Kennedy and K. McKinley, “Maximizing loop parallelism and
improving data locality via loop fusion and distribution,” in Lecture
Notes in Computer Science, Languages and Compilers for Parallel
Computing. Heidelberg, Germany: Springer-Verlag, 1993, vol.
768, pp. 301–320.

[32] P. Kjeldsberg, F. Catthoor, and E. Aas, “Data dependency size es-
timation for use in memory optimization,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 22, no. 7, pp. 908–921, July
2003.

[33] I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric multi-level
blocking,” in Proc. SIGPLAN Conf. Programming Language Design
and Implementation, 1997, pp. 346–357.

[34] I. Kodukula, K. Pingali, R. Cox, and D. Maydan, “An experimental
evaluation of tiling and shackling for memory hierarchy manage-
ment,” presented at the ACM Int. Conf. Supercomputing (ICS ’99),
Rhodes, Greece.

[35] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva,
C. Lam, P. Sadayappan, J. Ramanujam, D. E. Bernholdt, and V.
Choppella, “Data locality optimization for synthesis of efficient
out-of-Core algoritms,” in Lecture Notes in Computer Science,
High Performance Computing—HiPC 2003, 2003, vol. 2913, pp.
406–417.

[36] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Par-
allel Computing. Redwood City, CA: Benjamin Cummings, 1994,
pp. 171–171.

[37] C. Lam, “Performance optimization of a class of loops implementing
multi-dimensional integrals,” Ph.D. dissertation, Ohio State Univ.,
Columbus, 1999.

[38] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan,
“Memory-optimal evaluation of expression trees involving large
objects,” in Lecture Notes in Computer Science, High Performance
Computing. Heidelberg, Germany: Springer-Verlag, 1999, vol.
1745, pp. 103–110.

[39] , “Optimization of memory usage for a class of loops im-
plementing multi-dimensional integrals,” in Lecture Notes in
Computer Science, Languages and Compilers for Parallel Com-
puting. Heidelberg, Germany: Springer-Verlag, 1999, vol. 1863,
pp. 350–364.

[40] C. Lam, P. Sadayappan, and R. Wenger, “On optimizing a class of
multi-dimensional loops with reductions for parallel execution,” Par-
allel Process. Lett., vol. 7, no. 2, pp. 157–168, 1997.

[41] , “Optimization of a class of multi-dimensional integrals on par-
allel machines,” presented at the 8th SIAM Conf. Parallel Processing
for Scientific Computing, Minneapolis, MN, 1997.

[42] M. Lam, E. Rothberg, and M. Wolf, “The cache performance and op-
timizations of blocked algorithms,” in Proc. 4th Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems,
1991, pp. 63–74.

[43] T. Lee and G. Scuseria, “Achieving chemical accuracy with coupled
cluster theory,” in Quantum Mechanical Electronic Structure Cal-
culations With Chemical Accuracy, S. R. Langhoff, Ed. Norwell,
MA: Kluwer, 1997, pp. 47–109.

[44] W. Li, “Compiling for NUMA parallel machines,” Ph.D. disserta-
tion, Cornell University, Ithaca, NY, 1993.

[45] A. Lim, S. Liao, and M. Lam, “Blocking and array contraction across
arbitrarily nested loops using ane partitioning,” in Proc. 8th ACM
SIGPLAN Symp. Principles and Practices of Parallel Programming,
2001, pp. 103–112.

[46] N. Manjikian and T. Abdelrahman, “Fusion of loops for parallelism
and locality,” in Proc. Int. Conf. Parallel Processing, 1995, pp.
II:19–II:28.

[47] J. M. L. Martin, “Benchmark studies on small molecules,” in
Encyclopedia of Computational Chemistry, P. R. Schreiner, N. L.
Allinger, T. Clark, J. Gasteiger, P. Kollman, and H. F. Schaefer III,
Eds. Berne, Switzerland: Wiley, 1998, vol. 1, pp. 115–128.

[48] The Match Project: A MATLAB compilation environment for
distributed heterogeneous adaptive computing systems. [Online].
Available: http://www.ece.nwu.edu/cpdc/Match/Match.html

[49] K. McKinley, S. Carr, and C. Tseng, “Improving data locality with
loop transformations,” ACM Trans. Program. Lang. Syst., vol. 18,
no. 4, pp. 424–453, Jul. 1996.

[50] V. Menon and K. Pingali, “High-level semantic optimization of nu-
merical codes,” in Proc. 13th ACM Int. Conf. Supercomputing, 1999,
pp. 434–443.

[51] , “A case for source-level transformations in MATLAB,” in
Proc. 2nd Conf. Domain-Specific Languages, 1999, pp. 53–65.

[52] N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante, “Quantifying the
multi-level nature of tiling interactions,” Int. J. Parallel Program.,
vol. 26, no. 6, pp. 641–670, Jun. 1998.

[53] J. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, M.
Puschel, and M. Veloso. (1998) SPIRAL: Portable library of
optimized signal processing algorithms. [Online]. Available:
http://www.ece.cmu.edu/~piral

[54] J. Nieplocha and R. Harrison, “Shared-memory programming
in metacomputing environments: The global array approach,” J.
Supercomput., vol. 11, pp. 119–136, 1997.

[55] J. Nieplocha, R. Harrison, and R. Littlefield, “Global arrays: A
portable shared memory model for distributed memory computers,”
in Proc. Supercomputing ’94, 1994, pp. 340–349.

[56] G. Pike and P. Hilfinger, “Better tiling and array contraction for
compiling scientific programs,” in Proc. ACM/IEEE Conf. Super-
computing ’02: High Performance Networking and Computing, pp.
1–12.

[57] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J.
Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. Johnson,
and N. Rizzolo, “SPIRAL: Code generation for DSP transforms,”
Proc. IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

[58] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon,
“A fifth-order perturbation comparison of electron correlation theo-
ries,” Chem. Phys. Lett., vol. 157, pp. 479–483, 1989.

[59] J. Ramanujam and P. Sadayappan, “Tiling multidimensional itera-
tion spaces for multicomputers,” J. Parallel Distrib. Comput., vol.
16, no. 2, pp. 108–120, Oct. 1992.

[60] J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan, “Reducing
memory requirements of nested loops for embedded systems,” in
Proc. 38th ACM/IEEE Design Automation Conf., 2001, pp. 359–364.

[61] , “Estimating and reducing the memory requirements of signal
processing codes for embedded processor systems,” IEEE Trans.
Signal Process., to be published.

[62] G. Rivera and C. Tseng, “A comparison of compiler tiling algo-
rithms,” presented at the 8th Int. Conf. Compiler Construction, Arm-
sterdam, The Netherlands, 1999.

[63] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen,
S. Koseki, N. Matsunaga, K. Nguyen, S. Su, T. Windus, M. Dupuis,
and J. Montgomery, “General atomic and molecular electronic struc-
ture system (GAMESS),” J. Comput. Chem., vol. 14, pp. 1347–1363,
1993.

[64] S. Singhai and K. McKinley, “Loop fusion for data locality and par-
allelism,” presented at the Mid-Atlantic Student Workshop on Pro-
gramming Languages and Systems, New Paltz, NY, 1996.

[65] Y. Song and Z. Li, “New tiling techniques to improve cache temporal
locality,” presented at the 1999 ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI’99), Atlanta, GA.

[66] Y. Song, “Compiler algorithms for efficient use of memory systems,”
Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 2000.

[67] Y. Song, C. Wang, and Z. Li, “Locality enhancement by array con-
traction,” in Proc. 14th Int. Workshop Languages and Compilers for
Parallel Computing, 2001, pp. 132–146.

290 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

[68] Y. Song, R. Xu, C. Wang, and Z. Li, “Data locality enhancement by
memory reduction,” in Proc. 15th ACM Int. Conf. Supercomputing,
2001, pp. 50–64.

[69] J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S.
A. Perera, P. G. Szalay, W. J. Lauderdale, S. A. Kucharski, S. R.
Gwaltney, S. Beck, A. B. D. E. Bernholdt, K. K. Baeck, P. Rozy-
czko, H. Sekino, C. Hober, and R. J. Bartlett, “ACES II. Quantum
Theory Project,” Univ. Florida, Gainesville.

[70] M. Strout, L. Carter, J. Ferrante, and B. Simon, “Schedule-indepen-
dent storage mapping for loops,” in Proc. 8th Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 1998,
pp. 24–33.

[71] H.-J. Werner and P. J. Knowles, “MOLPRO,”, http://www.tc.bham.
ac.uk/.

[72] R. Whaley and J. Dongarra, “Automatically tuned linear algebra soft-
ware (ATLAS),” presented at the Supercomputing Conf. ’98, Reno,
NV.

[73] M. Wolf and M. Lam, “A data locality optimization algorithm,” in
Proc. SIGPLAN’91 Conf. Programming Language Design and Im-
plementation, pp. 30–44.

[74] M. Wolf, D. Maydan, and D. Chen, “Combining loop transfor-
mations considering caches and scheduling,” in Proc. 29th Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO-29), 1996, pp.
274–286.

[75] J. Xiong, D. Padua, and J. Johnson, “Spl: A language and compiler
for DSP algorithms,” in Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, 2001, pp. 298–308.

[76] T. Yanai, M. Kamiya, Y. Kawashima, T. Nakajima, H. Y. N. Nakano,
H. Sekino, J. Paulovic, T. Tsuneda, S. Yanagisawa, and K. Hirao,
“UTCHEM 2003,” Univ. Tokyo, Tokyo, Japan.

[77] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A comparison of
empirical and model-driven optimization,” in Proc. ACM SIGPLAN
2003 Conf. Programming Language Design and Implementation, pp.
63–76.

[78] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P.
Stodghill, “A comparison of empirical and model-driven optimiza-
tion,” Proc. IEEE, vol. 93, no. 2, pp. 358–386, Feb. 2005.

Gerald Baumgartner received the Dipl.Ing. degree in computer science
from the University of Linz, Linz, Austria, in 1988 and the M.S. and Ph.D.
degrees in computer science from Purdue University, West Lafayette, IN, in
1992 and 1996, respectively.

He began his academic career at Ohio State University, Columbus, in
1997 and is currently visiting the Department of Computer Science at
Louisiana State University, Baton Rouge. His research interest includes
compiler optimizations, the design and implementation of domain-specific
and object-oriented languages, desktop grids, and development and testing
tools for object-oriented and embedded systems programming.

Alexander Auer received the Diploma degree in chemistry from the Uni-
versity of Köln, Köln, Germany, in 1998 and the Ph.D. degree in chemistry
from the University of Mainz, Mainz, Germany, in 2002.

He was a Visiting Student at the University of Oslo from August 1998 to
February 1999. From July 2002 to April 2004, he was a Postdoctoral Re-
search Fellow at Princeton University, Princeton, NJ, and the University of
Waterloo, Waterloo, ON Canada. Since April 2004, he has been a “Junior-
professor Theoretische Chemie” at the Technische Universität Chemnitz,
Chemnitz, Germany.

David E. Bernholdt received the B.S. degree in chemistry from the Univer-
sity of Illinois, Urbana, in 1986 and the Ph.D. degree in chemistry with mi-
nors in physics and mathematics from the University of Florida, Gainesville,
in 1993.

He held positions at Pacific Northwest National Laboratory and Syracuse
University before taking his current position at Oak Ridge National Labora-
tory, Oak Ridge, TN, in 2000. His research experience includes significant
experience in the development and implementation of new methods and al-
gorithms for computational quantum chemistry on parallel computers. Since
then, his research interests have shifted to computer science, with a partic-
ular focus on improving performance and productivity of scientific software
through the development of technologies such as component environments,
parallel programming models, and domain-specific high-level programming
languages.

Alina Bibireata received the B.S. degree in computer science from the Uni-
versity of Bucharest, Bucharest, Romania, in 1997 and the M.S. degree in
computer science from Ohio State University, Columbus, in 2004.

Her research interests are in programming languages, software engi-
neering, and design patterns for enterprise applications.

Venkatesh Choppella received the B.Tech. degree in computer science
from the Indian Institute of Technology, Kanpur, in 1985 and the Ph.D.
degree in computer science from Indiana University, Bloomington, in 2002.

He has held research and engineering positions at Xerox Corporation,
Hewlett-Packard Company, Indiana University, and Oak Ridge National
Laboratory. He is currently on the faculty at the Indian Institute of In-
formation Technology and Management, Kerala. His research interests
are in programming languages, compilers for domain specific languages,
automated deduction, and software engineering.

Daniel Cociorva received the B.S. and M.S. degrees in theoretical physics
from the University of Lyon, Lyon, France, in 1995 and 1996, respectively,
and the Ph.D. degree from Ohio State University, Columbus, in 2001.

He started working in computational physics as a graduate student at Ohio
State University, Columbus. As a Postdoctoral Associate, he worked on the
Tensor Contraction Engine project for automatic code generation and op-
timization in quantum chemistry. He is currently employed as a Bioinfor-
matics Analyst in mass spectrometry proteomics at the Scripps Research
Institute, La Jolla, CA. In his Ph.D. dissertation, completed in 2001, he used
advanced numerical methods to study properties of interfaces and defects in
semiconductor structures.

Xiaoyang Gao received the B.S. degree in computer science from Peking
University, Beijing, China, in 1997. She is currently working toward the
Ph.D. degree in the Department of Computer Science and Engineering, Ohio
State University, Columbus.

Her research interests are in distributed systems, compilers for high-per-
formance computer systems, and software optimizations.

BAUMGARTNER et al.: SYNTHESIS OF HIGH-PERFORMANCE PARALLEL PROGRAMS FOR AB INITIO QUANTUM CHEMISTRY MODELS 291

Robert J. Harrison received the B.A. degree in natural sciences and the
Ph.D. degree in theoretical chemistry from Cambridge University, Cam-
bridge, U.K., in 1981 and 1984, respectively.

He worked as a Postdoctoral Research Fellow at the Quantum Theory
Project and the Daresebury Laboratory before joining the staff of the
theoretical chemistry group at Argonne National Laboratory in 1988. In
1992, he moved to the Environmental Molecular Sciences Laboratory of
Pacific Northwest National Laboratory, conducting research in theoretical
chemistry and leading the development of NWChem, a computational
chemistry code for massively parallel computers. Since 2002, he has held a
joint appointment between Oak Ridge National Laboratory (ORNL), Oak
Ridge, TN, and the Chemistry Department of the University of Tennessee,
Knoxville. AT ORNL, he is Leader of the Computational Chemical Sci-
ences Group in the Computer Science and Mathematics Division. He has
over 75 publications in peer-reviewed journals in the areas of theoretical
and computational chemistry, and high-performance computing. In addition
to his SciDAC research into efficient and accurate calculations on large
systems, he has been pursuing applications in molecular electronics and
chemistry at the nanoscale. His interests are in theoretical and compu-
tational chemistry, high-performance computing, electron correlation,
electron transport, relativistic chemistry, and response theory.

Dr. Harrison and the NWChem team received an R&D Magazine
R&D100 award in 1999. In 2002, he received the IEEE Computer Society
Sydney Fernbach award.

So Hirata received the B.S. and M.S. degrees in chemistry from the Univer-
sity of Tokyo, Tokyo, Japan, in 1994 and 1996, respectively, and the Ph.D.
degree in theoretical chemistry from the Graduate University for Advanced
Studies, Okazaki, Japan, in 1998.

He was a Senior Research Scientist at Pacific Northwest National
Laboratory (2001–2004); a Postdoctoral Research Fellow at the University
of Florida (1999–2001); a Visiting Scholar at University of California,
Berkeley (1998–1999); and a Japan Society for the Promotion of Science
Young Scientist (1996–1999). He currently serves as Assistant Professor
in Chemistry at the University of Florida, Gainesville, and an Adjunct
Associate Professor in Chemistry at Hiroshima University, Hiroshima,
Japan. He has authored or coauthored over 40 peer-reviewed journal
articles, one book chapter, and two high-performance quantum chemistry
software suites. His research interests include ab initio MO theory and
density functional theory for electronic structure calculations of atoms,
molecules, and crystalline solids.

Sriram Krishnamoorthy was born in Chennai, India, in 1981. He re-
ceived the B.E. degree from the College of Engineering, Guindy, Anna
University, Chennai, India, in 2002. He is currently working toward the
M.S. degree at Ohio State University, Columbus, under the supervision of
Prof. P. Sadayappan.

His research interests include high-performance computing, out-of-core
algorithms, and optimizations for scientific computing.

Sandhya Krishnan received the B.E. degree in computer engineering from
Bombay University, India in March 2001, and graduated with a Masters
in Computer and Information Science from The Ohio State University,
Columbus, Ohio in September 2003. She continued to work as a Systems
Developer on the same project until May 2004. Her research interests
include high performance computing and development of optimization
algorithms.

Chi-Chung Lam received the Ph.D. degree in computer and information
science from Ohio State University, Columbus, in 1999. The title of his dis-
sertation was “Performance optimization of a class of loops implementing
multi-dimensional integrals.”

Qingda Lu received the B.E. degree in computer science from Beijing Insti-
tute of Technology, Beijing, China, in 1999 and the M.S. degree in computer
science from Peking University, Beijing, in 2002. He is currently working
toward the Ph.D. degree in the Department of Computer Science and Engi-
neering, Ohio State University, Columbus.

His research interests include optimizing compilers and performance
modeling/monitoring.

Marcel Nooijen was born in the Netherlands in 1963. He received the Ph.D.
degree from the Vrije Universiteit Amsterdam, Amsterdam, The Nether-
lands, in 1992, working with E.-J. Baerends and the late J. Snijders.

He continued his research in many-body and coupled cluster theory for
electronically excited states with R. Bartlett at the University of Florida. In
1997, he joined Princeton University as an Assistant Professor and started
work on automated program generation and the Tensor Contraction Engine.
In 2003, he relocated to the University of Waterloo, Waterloo, ON, Canada.
His other research interests concern the coupling of electronic and nuclear
motion and their effect on the description of molecular spectra.

Dr. Nooijen is the recipient of the 2003 Medal of the Academy of
Quantum Molecular Science.

Russell M. Pitzer received the B.S. degree in chemistry from the Cali-
fornia Institute of Technology, Pasadena, in 1959 and the Ph.D. degree from
Harvard University, Cambridge, MA, in 1963.

He has been a member of the faculty of the Department of Chemistry,
Ohio State University, Columbus, since 1968. He is a Cofounder of the
Ohio Supercomputer Center and its attendant statewide academic computer
network. He is one of the authors of the Columbus suite of molecular pro-
grams. His research interests include developing and applying methods and
software for molecular electronic structure and spectroscopy. His current re-
search is on relativistic methods for molecules containing heavy atoms.

J. Ramanujam received the B.Tech. degree in electrical engineering from
the Indian Institute of Technology, Madras, in 1983 and the M.S. and Ph.D.
degrees in computer science from Ohio State University, Columbus, in 1987
and 1990, respectively.

He is currently a Professor in the Department of Electrical and Computer
Engineering at Louisiana State University, Baton Rouge. He has published
over nearly 120 papers in refereed journals and conferences in addition to
several book chapters and a book. His research interests are in compilers
for high-performance computer systems, embedded systems, software opti-
mizations for low-power computing, high-level hardware synthesis, parallel
architectures and algorithms.

Dr. Ramanujam received the National Science Foundation’s Young Inves-
tigator Award in 1994. In addition, he has received the best paper awards at
the 2003 International Conference on High Performance Computing (HiPC
2003) and the 2004 International Parallel and Distributed Processing Sym-
posium (IPDPS 2004) for his work with others on compiler optimizations
for quantum chemistry computations.

P. Sadayappan received the B.Tech. degree in electrical engineering from
the Indian Institute of Technology, Madras, in 1977 and the M.S. and Ph.D.
degrees in electrical engineering from the State University of New York,
Stony Brook, in 1978 and 1983, respectively.

He is currently a Professor in the Department of Computer Science and
Engineering at Ohio State University, Columbus. His research interests in-
clude compile/runtime optimization and scheduling and resource manage-
ment for parallel/distributed systems.

Alexander Sibiryakov received the B.S. degree in physics from Tomsk
State University, Tomsk, Russia, in 1993 and the M.S. degree in physics
and the M.S. degree in computer science and engineering from Ohio State
University, Columbus, in 2002 and 2004, respectively.

He is currently with Microsoft, Redmond, WA. His research interests in-
clude operation minimization and tensor symmetries.

292 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 2, FEBRUARY 2005

	toc
	Synthesis of High-Performance Parallel Programs for a Class of A
	GERALD BAUMGARTNER, ALEXANDER AUER, DAVID E. BERNHOLDT, ALINA BI
	I. I NTRODUCTION

	Fig.€1. CCSD doubles expression from quantum chemistry.
	II. C OMPUTATIONAL C ONTEXT

	Fig.€2. Example illustrating use of loop fusion for memory reduc
	III. E XAMPLE

	Fig.€3. Unfused operation-minimal form.
	Fig.€4. Use of redundant computation to allow full fusion.
	Fig.€5. Use of tiling and partial fusion to reduce recomputation
	Fig.€6. Tensor Contraction Engine.
	IV. O VERVIEW OF THE S YNTHESIS S YSTEM
	V. O PERATION M INIMIZATION

	Fig.€7. Expression tree and fusion graph for unfused operation-m
	VI. M EMORY M INIMIZATION AND S PACE T IME T RADEOFFS
	A. Fusion Graph

	Fig.€8. Fusion graphs showing redundant computation and tiling.
	VII. D ATA L OCALITY O PTIMIZATION
	VIII. P ARALLELISM: D ATA P ARTITIONING AND C OMMUNICATION M INI
	IX. E XPERIMENTAL R ESULTS

	Table 1 Configuration of the System Whose I/O Characteristics We
	X. R ELATED W ORK

	Fig.€9. TCE source code for four-index transform.
	Fig.€10. Codes generated for cases 1 and 2.
	Fig.€11. Code generated for case 3: no fusion, standard tiling.
	Table 2 Total Disk I/O and Execution Times for Codes Generated f
	Table 3 Current Capabilities of the Prototype and Optimizing Ten
	XI. D OMAIN -S PECIFIC I SSUES IN O PTIMIZATION
	XII. C URRENT S TATUS
	N. Ahmed, N. Mateev, and K. Pingali, Synthesizing transformation
	A. Bibireata, S. Krishnan, G. Baumgartner, D. Cociorva, C. Lam,
	J. Bilmes, K. Asanovic, C. Chin, and J. Demmel, Optimizing matri
	L. Cannon, A cellular computer to implement the Kalman filter al
	F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele
	R. Choy and A. Edelman, Parallel MATLAB: Doing it right, Proc. I
	D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sadayappan,
	D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Raman
	D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, and J. Raman
	D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sad
	S. Coleman and K. McKinley, Tile size selection using cache orga
	J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.
	L. De Rose and D. Padua, A MATLAB to fortran 90 translator and i
	J. Foresman and A. Frisch, Exploring Chemistry With Electronic S
	A. Fraboulet, G. Huard, and A. Mignotte, Loop alignment for memo
	M. Frigo and S. Johnson, FFTW: An adaptive software architecture
	G. Gao, R. Olsen, V. Sarkar, and R. Thekkath, Collective loop fu
	S. Ghosh, M. Martonosi, and S. Malik, Precise miss analysis for
	L. Guibas and D. Wyatt, Compilation and delayed evaluation in AP

	NWChem, A Computational Chemistry Package for Parallel Computers
	NWChem, A Computational Chemistry Package for Parallel Computers
	C. L. Janssen, E. T. Seidl, G. E. Scuseria, T. P. Hamilton, Y. Y
	S. Hirata, Tensor contraction engine: Abstraction and automated
	S. Hirata, A. Auer, and M. Nooijen, Tensor Contraction Engine .
	S. Hirata, T. Yanai, W. A. de Jong, T. Nakajima, and K. Hirao, T
	J. Johnson, R. Johnson, D. Padua, and J. Xiong, Searching for th
	K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gann
	K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelb
	K. Kennedy and K. McKinley, Maximizing loop parallelism and impr
	P. Kjeldsberg, F. Catthoor, and E. Aas, Data dependency size est
	I. Kodukula, N. Ahmed, and K. Pingali, Data-centric multi-level
	I. Kodukula, K. Pingali, R. Cox, and D. Maydan, An experimental
	S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C.
	V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Pa
	C. Lam, Performance optimization of a class of loops implementin
	C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan, Memory-o
	C. Lam, P. Sadayappan, and R. Wenger, On optimizing a class of m
	M. Lam, E. Rothberg, and M. Wolf, The cache performance and opti
	T. Lee and G. Scuseria, Achieving chemical accuracy with coupled
	W. Li, Compiling for NUMA parallel machines, Ph.D. dissertation,
	A. Lim, S. Liao, and M. Lam, Blocking and array contraction acro
	N. Manjikian and T. Abdelrahman, Fusion of loops for parallelism
	J. M. L. Martin, Benchmark studies on small molecules, in Encycl

	The Match Project: A MATLAB compilation environment for distribu
	K. McKinley, S. Carr, and C. Tseng, Improving data locality with
	V. Menon and K. Pingali, High-level semantic optimization of num
	N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante, Quantifyin
	J. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, M. Pusc
	J. Nieplocha and R. Harrison, Shared-memory programming in metac
	J. Nieplocha, R. Harrison, and R. Littlefield, Global arrays: A
	G. Pike and P. Hilfinger, Better tiling and array contraction fo
	M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer
	K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon,
	J. Ramanujam and P. Sadayappan, Tiling multidimensional iteratio
	J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan, Reducing mem
	G. Rivera and C. Tseng, A comparison of compiler tiling algorith
	M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jen
	S. Singhai and K. McKinley, Loop fusion for data locality and pa
	Y. Song and Z. Li, New tiling techniques to improve cache tempor
	Y. Song, Compiler algorithms for efficient use of memory systems
	Y. Song, C. Wang, and Z. Li, Locality enhancement by array contr
	Y. Song, R. Xu, C. Wang, and Z. Li, Data locality enhancement by
	J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S
	M. Strout, L. Carter, J. Ferrante, and B. Simon, Schedule-indepe
	H.-J. Werner and P. J. Knowles, MOLPRO,, http://www.tc.bham. ac.
	R. Whaley and J. Dongarra, Automatically tuned linear algebra so
	M. Wolf and M. Lam, A data locality optimization algorithm, in P
	M. Wolf, D. Maydan, and D. Chen, Combining loop transformations
	J. Xiong, D. Padua, and J. Johnson, Spl: A language and compiler
	T. Yanai, M. Kamiya, Y. Kawashima, T. Nakajima, H. Y. N. Nakano,
	K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D
	K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and

