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1 Introduction

Many scientific and engineering applications need to operate on data sets that are
too large to fit in the physical memory of the machine. We focus on the domain of
electronic structure calculations in quantum chemistry [16, 34, 38]. These calcula-
tions require contractions (generalized matrix multiplications) of multi-dimensional
tensors that are often larger than available physical memory. In such situations, it
is necessary to developout-of-corealgorithms that explicitly orchestrate the move-
ment of blocks of data between main memory and secondary disk storage. We are
developing a program synthesis tool called the Tensor Contraction Engine (TCE)
[4, 3] to facilitate the development of parallel programs for this domain, by auto-
matically transforming high-level tensor contraction expressions into efficient par-
allel programs.

In this paper, we address the following problem that arises in the context of the
TCE system. We are given an imperfectly nested loop structure containing a col-
lection of tensor contraction computations expressed in an “abstract” form, that
is, without concern for whether the arrays can fit within available physical mem-
ory. The problem consists of generating a “concrete” form of the code by suitably
tiling the loops and inserting the necessary disk I/O statements so as to minimize
the total cost of disk I/O. In the case of code generation for a parallel system, the
problem also involves distributing the workload among processors and inserting the
required communication. The search space of possible placements of the disk I/O
statements and possible combinations of tile sizes is explosively large. We formu-
late the problem as a non-linear optimization problem and use a general-purpose
discrete constraint solver to generate optimized out-of-core code.

The paper is organized as follows: In Sec. 2, we explain the computational con-
text for which the data locality optimization approach is developed. In Sec. 3, we
review related work in the area. Sec. 4 describes the Discrete Constrained Search
(DCS) solver [8, 49, 50, 51] and outlines the steps used to convert the abstract code
specification into concrete code. Sec. 5 illustrates the code generation process using
a representative example. Our experimental results in Sec. 6 demonstrate that the
DCS-based approach to out-of-core code generation is efficient and effective.

2 The Computational Context

The optimization presented in this paper has been developed in the context of the
Tensor Contraction Engine (TCE) [4, 12], a domain-specific compiler for ab ini-
tio quantum chemistry calculations. The TCE takes as input a high-level spec-

Sadayappan),choppell@iiitmk.ac.in (Venkatesh Choppella).

2



double T(V,N)

T(*,*) = 0
B(*,*) = 0
FOR i = 1, N

FOR n= 1, V
FOR j = 1, N

T(n,i) += C2(n,j) * A(i,j)
END FOR j,n,i

FOR i = 1, N
FOR n= 1, V

FOR m = 1, V
B(m,n) += C1(m,i) * T(n,i)

END FOR m,n,i

(a) Unfused code

double T(V,N)

T(*,*) = 0
B(*,*) = 0
FOR i, n, j

T(n,i) += C2(n,j) * A(i,j)
END FOR j,n,i

FOR i, n, m
B(m,n) += C1(m,i) * T(n,i)

END FOR m,n,i

(b) Compact notation

double T

B(*,*) = 0
FOR i, n

T = 0
FOR j

T += C2(n,j) * A(i,j)
END FOR j

FOR m
B(m,n) += C1(m,i) * T

END FOR m
END FOR n,i

(c) Fused code

Fig. 1. Example of the use of loop fusion to reduce memory requirements. Loopsi andn
are fused to reduceT to a scalar.

ification of a computation expressed as a set of tensor contraction expressions
and transforms it into efficient parallel code. Several compile-time optimizations
are incorporated into the TCE: algebraic transformations to minimize operation
counts [31, 32], loop fusion to reduce memory requirements [28, 30, 29], space-
time trade-off optimization [10], communication minimization [11], and data lo-
cality optimization [12, 13] of memory-to-cache traffic.

A tensor contraction expression is comprised of a collection of multi-dimensional
summations of the product of several input arrays. As an example, consider the
following contraction, used often in quantum chemistry calculations to transform
a set of two-electron integrals from an atomic orbital (AO) basis to a molecular
orbital (MO) basis:

B(a, b, c, d) =
∑
p,q,r,s

C1(s, d)× C2(r, c)× C3(q, b)× C4(p, a)× A(p, q, r, s)

This contraction is referred to as a four-index transform. Here,A(p, q, r, s) is a four-
dimensional input array initially stored on disk, andB(a, b, c, d) is the transformed
output array to be placed on disk at the end of the computation. The arraysC1
throughC4 are called the transformation matrices. In practice, these four arrays
are identical; we identify them by different names in order to be able to distinguish
them in the text.

The indicesp, q, r, ands have the same rangeN , denoting the total number of
orbitals, which is equal toO + V . O denotes the number of occupied orbitals and
V denotes the number of unoccupied (virtual) orbitals. Likewise, the index ranges
for a, b, c, andd are the same, and equal toV . Typical values forO range from 10
to 300; the number of virtual orbitalsV is usually between 50 and 1000.
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The calculation ofB is done in the following four steps to reduce the number of
floating point operations fromO(V 4N4) in the initial formula (8 nested loops, for
p, q, r, s, a, b, c, andd) toO(V N4):

B(a, b, c, d) =
∑
s

C1(s, d)×
(∑

r

C2(r, c)

×
(∑

q

C3(q, b)×
(∑

p

C4(p, a)× A(p, q, r, s)

)))

This operation-minimization transformation results in the creation of three inter-
mediate arrays:

T1(a, q, r, s) =
∑
p

C4(p, a)× A(p, q, r, s)

T2(a, b, r, s) =
∑
q

C3(q, b)× T1(a, q, r, s)

T3(a, b, c, s) =
∑
r

C2(r, c)× T2(a, b, r, s)

Assuming that the available memory less thanV 4 (which forV = 800 and double
precision arrays is about3TB), none ofA, T1, T2, T3, andB can fit entirely in
memory. Therefore, the intermediatesT1, T2, andT3 need to be written to disk on
production, and read from disk before consumption in the next step. Since none of
these arrays can be fully stored in memory, it may not be possible to perform all
multiplication operations by reading each element of the input arrays from the disk
only once. This could result in the amount of disk I/O volume being much larger
than the total volume of the data on disk.

For illustration purposes, we focus on the following contraction (a two-index trans-
form):

B(m,n) =
∑

i,j

C1(m, i)× C2(n, j)× A(i, j)

The operation minimal form of the two-index transform and the corresponding in-
termediate array are as follows:

B(m,n) =
∑

i

C1(m, i)× (
∑

j

C2(n, j)× A(i, j))

T (n, i) =
∑

j

C2(n, j)× A(i, j)

Fig. 1 shows the computation of the arrayB and illustrates how memory require-
ments for the computation ofB may be reduced using loop fusion. Such an “ab-
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stract form” of the computation cannot be directly compiled and executed because
it does not take into account the available physical memory (if the arrays fit within
the virtual memory, execution of the compiled code is possible, but will exhibit
extremely poor performance due to excessive overhead of paging to move vir-
tual memory pages between disk and physical memory). The transformation of
abstract forms into concrete forms that can be efficiently executed is addressed in
Sec. 4. Concrete forms have explicit disk I/O statements to move data between
disk-resident arrays and their in-memory counterparts. Fig. 1(a) shows the abstract
form of the computation before loop fusion. The computation consists of two loop
nests: a first loop that produces the intermediateT (1 : V, 1 : N), and a second loop
that usesT to produce the resultB(1 : V, 1 : V ).

In Fig. 1(b), each loop nest is abbreviated as a single “For” loop with a sequence
of indices. Fig. 1(c) illustrates the result of loop fusion. Note that all loops in each
of the two loop nests in Fig. 1(a) are fully permutable and there are no fusion-
preventing dependences between the loops. Hence, the common loopsi andn,
shown underlined, can be fused. After loop fusion, the storage requirements forT
can be reduced because there is no longer a need for an explicit dimension ofT
corresponding to any loop indices that are fused between the producer ofT and
the consumer ofT — storage elements can be reused over sequential iterations of
fused loops. In this example,T can be contracted to a scalar as shown in Fig. 1(c).
Although the total number of arithmetic operations remains unchanged, the signifi-
cant reduction in size of the intermediate arrayT implies that it may be completely
stored in memory, without the need for any disk I/O for it. In contrast, ifV × N
is larger than the available memory, the unfused version would result inT being
written out to disk after it is produced in the first loop, and then read in from disk
for the second loop.

Given a fusedabstract form of the computation, in the form of an imperfectly
nested loop structure (i.e., a nested loop structure in which at least one loop other
than the inner-most contains more than one statement, as in Fig. 1(c)) the out-of-
core code generation process requires consideration of a number of issues. Each
loop in the imperfectly nested loop structure is split into a tiling and an intra-tile
loop. Given a tiled loop structure, there are a number of different candidate posi-
tions for placing disk I/O statements. Thus, a search space consisting of two di-
mensions, placement of disk read/write statements and the tile sizes, needs to be
explored. A disk I/O statement transfers blocks of data between the disk resident
array and its in-memory counterpart. The size of the in-memory buffer is a function
of the tile sizes and placement of the corresponding disk I/O statement. The task of
the out-of-core code generation algorithm is to tile the loops, determine the optimal
placements of disk I/O statements, and tile sizes that minimize the disk I/O cost
while satisfying the memory limit constraints.
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3 Related Work

We have addressed various issues arising in the synthesis context described above
focusing primarily on minimizing memory-to-cache data movement [13, 12]. In
Cociorva et al. [13], we developed an integrated approach to fusion and tiling trans-
formations for a restricted class of loops arising in the context of our program
synthesis system; these assumed restrictions were subsequently removed [12]. We
developed a tile size search procedure to estimate the total capacity miss cost for
each of a large number of combinations of tile sizes for the various loops of an im-
perfectly nested loop set. After finding the best combination of tile sizes, we made
adjustments to address spatial locality considerations — by adjusting the tile sizes
for any loop indexing the fastest varying dimension of any array to be larger than
the cache line size.

Krishnan [26] extended this approach to the disk-memory hierarchy using a greedy
approach to disk read/write placement. For each set of tile sizes, Krishnan’s al-
gorithm places read/write statements immediately inside those loops at which the
memory limit is just exceeded. In Krishnan et al. [27], we describe an algorithm to
determine effective tile sizes. This algorithm explores the tile size search space us-
ing the set of candidate fusion structures with disk I/O placements as input. The
search space was divided into feasible and infeasible solution spaces and their
boundary was shown to contain the optimal solution. We developed an algorithm to
locate the boundary efficiently and used steepest ascent hill-climbing to determine
an efficient solution for the tile sizes.

There has been some work in the area of software techniques for optimizing disk
I/O. These include parallel file systems, compile time [5, 6, 7, 20, 21, 22, 41, 44]
and runtime libraries and optimizations [47, 9]. Several compiler techniques for op-
timizing out-of-core programs in High Performance Fortran are discussed in [5, 6].
Bordawekar et al. [7] develop a scheduling strategy to eliminate additional I/O aris-
ing from communication among processors. Solutions to choreographing disk I/O
with computation are presented by Paleczny et al. [44]; they organize computations
into groups that operate efficiently on data accessed in chunks. Compiler-directed
pre-fetching is discussed by Mowry et al. [41], which is orthogonal to compiler
transformations discussed in this paper. ViC* (Virtual C*) [15] is a preprocessor
that transforms out-of-core C* programs into in-core programs with appropriate
calls to the ViC* I/O library. Kandemir et al. [20, 21, 22] developed file layout and
loop transformations for reducing I/O. None of these techniques address model-
driven automatic tile size selection for optimizing I/O and all of them deal only
with perfectly nested loops.

Considerable research on loop transformations for locality in nested loops has been
reported in the literature [14, 35, 36, 39, 52]. Nevertheless, a performance-model
driven approach to the integrated use of loop fusion and loop tiling for enhancing
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locality in imperfectly nested loops has not been addressed in these works. Loop
tiling for enhancing data locality has been studied extensively [2, 14, 23, 24, 45,
46, 52, 53], and analytical models of the impact of tiling on locality in perfectly
nested loops have been developed [19, 33, 40]. Mitchell et al. [40] provide analyt-
ical models for multi-level tiling of matrix-matrix multiplication. Ahmed et al. [1]
have developed a framework that embeds an arbitrary collection of loops into an
equivalent perfectly nested loop that can be tiled; this allows a cleaner treatment
of imperfectly nested loops. Lim et al. [37] developed a framework based on affine
partitioning and blocking to reduce synchronization and improve data locality. Spe-
cific issues of locality enhancement, I/O optimization and automatic tile size selec-
tion have not been addressed in the works that can handle imperfectly nested loops
[1, 37, 46].

4 Proposed Approach

We use the Discrete Constrained Search solver to compute the best placement of
disk I/O statements that would minimize the disk access cost while satisfying the
memory limit constraints. Discrete Constrained Search (DCS) [8, 49, 50, 51] is a
software package for determining the constrained global minima (CGM) in the dis-
crete variable space of a single-objective, discrete, constrained non-linear program-
ming problem (NLP). A web interface to the DCS solver is available [48]. It uses
AMPL, A Modeling Language for Mathematical Programming[18], as the prob-
lem input format. Due to the limitations in AMPL in modeling arbitrary discrete
variables, their current implementation can only solve problems with continuous
variables by discretizing them.

The out-of-core code generation process translates the abstract code into concrete
code by loop tiling and placement of disk I/O statements. We fully explore the
search space of disk I/O placements and tile sizes by formulating the search as a
non-linear constrained minimization problem where the objective function is the
disk I/O cost. The solution to be determined is constrained by the memory limit
and minimum I/O block size for efficient disk I/O. We input the formulated non-
linear problem to the DCS system, which determines the optimal combination of
placement of disk I/O statements and tile sizes.

We continue with the two-index transform example introduced in Sec. 2 for trans-
forming atomic orbitals into molecular orbitals. Fig. 2(a) shows an abstract code
for the two-index transform. We assume that the arrays involved are too large to fit
into the physical memory of the machine. The arrays involved in the loop structure
fall into the following three categories: input arrays that initially reside on disk (A,
C1 andC2), intermediate arrays produced and consumed within the computation
and not required on completion (T ), and output arrays that must finally be writ-
ten to disk (B). Fig. 2(b) shows the parse tree corresponding to the abstract code
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FOR m, n
B[m,n] = 0

FOR i, n
T = 0
FOR j

T += A[i,j] * C2[n,j]
FOR m

B[m,n] += T * C1[m,i]

(a) Abstract code for
the 2-index transform

         T * C1[m,i]

B[m,n] += 
T += A[i,j]*

mj

i,n
m,n

T=0B[m,n]=0

C2[n,j]

(b) Parse tree for the 2-index transform

Fig. 2. Example of abstract code and corresponding parse tree for 2-index transform.

1. FOR mT, nT
2. FOR mI, nI
3. B[mT+mI,nT+nI] = 0
4. FOR iT, nT
5. FOR iI, nI
6. T[iI,nI] = 0
7. FOR jT, iI, nI, jI
8. T[iI,nI] += A[iT+iI,jT+jI]

* C2[nT+nI,jT+jI]
9. FOR mT, iI, nI, mI
10. B[mT+mI,nT+nI] += T[iI,nI]

* C1[mT+mI,iT+iI]

(a) Abstract code for the tiled
2-index transform

  nT+nI]= 0
B[mT+mI,

iT,nT

jT mT

iI,nI,mIiI,nI,jI

  T[iI,nI]
 *C1[mT+mI,iT+iI]

B[mT+mI,nT+nI] +=

iI,nI

T[iI,nI]=0

mT,nT

mI,nI

 A[iT+iI,jT+jI]
*C2[nT+nI,jT+jI]

T[iI,nI] +=

(b) Parse tree for the tiled 2-index transform

Fig. 3. Example of abstract code and corresponding parse tree for the tiled version of the
2-index transform.

in Fig. 2(a). To simplify the tree representation, each sequence of perfectly nested
loops is represented by a single node labeled with the corresponding sequence of
loop indices.

The input to the out-of-core code generation algorithm consists of the abstract code,
the loop ranges and the memory limit of the machine. The algorithm consists of the
following three steps:

(1) Loop Tiling: We split each loop into a tiling loop and an intra tile loop and
propagate the intra tile loops down to the leaves. For example, as shown in
Fig. 3, loopi is split into tiling loopiT and intra-tile loopiI. Fig. 3(b) shows
the parse tree for the tiled abstract code in Fig. 3(a).

(2) Candidate Placements:For each array, we enumerate all feasible placements
of disk read/write statements. Any placement surrounded by a loop index that
is not involved in the I/O statement is ignored, as this I/O statement can be
moved out of the loop reducing the I/O cost.

(3) DCS Input Construction: Given the enumeration from step2, we construct
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Input Arrays: (Read Placements)
A: iI, nT
C2: iI, jT
C1: iI, nT

Output Arrays: (Write Placements)
B:

Write Placement: iI, mT
Read Required : Yes, Yes

Intermediates: (Write & Read Placements)
T: In Memory

(a) Candidate I/O placements

FOR mT, nT
FOR mI, nI

B[mI,nI] = 0
Write BDisk[mT:mT+Tm-1,nT:nT+Tn-1]

FOR iT, nT
FOR iI, nI

T[iI,nI] = 0
FOR jT

C2[1:Tn,1:Tj] =
Read C2Disk[nT:nT+Tn-1,jT:jT+Tn-1]

A[1:Ti,1:Tj] =
Read ADisk[iT:iT+Ti-1,jT:jT+Tj-1]

FOR iI, nI, jI
T[iI,nI] += C2[nI,jI] * A[iI,jI]

FOR mT
B[1:Tm,1:Tn] =

Read BDisk[mT:mT+Tm-1,nT:nT+Tn-1]
C1[1:Tm,1:Tj] =

Read C1Disk[mT:mT+Tm-1,jT:jT+Tj-1]
FOR iI, nI, mI

B[mI,nI] += T[iI,nI] * C1[mI,iI]
Write BDisk[mT:mT+Tm-1,nT:nT+Tn-1]

(b) Final concrete code for 2-index
transform

Fig. 4. Candidate I/O placements and final concrete code.Nm = Nn = 35000,
Ni = Nj = 40000, memory limit =1GB, double precision arrays.

non-linear equations for the objective function and constraints and provide
them as input to the DCS solver. The DCS solver outputs the disk read/write
placement for each array and the tile sizes that minimize the disk I/O cost and
satisfy the memory limit constraint.

4.1 Candidate Placements

Given a tiled imperfectly nested loop structure (Fig. 3), we consider various pos-
sible placements of reads for input arrays, reads and writes for intermediates, and
writes (and reads, if required) for output arrays. In enumerating the candidate place-
ments, there are some constraints that must be satisfied.

(1) Input Array Constraints: The read statement for an input array may only be
placed to be executed before the statement where it is consumed. For example,
in Fig. 3(a), the read for input arrayA can be placed anywhere before line7.

(2) Output Array Constraints: The write for an output array may only be placed
after the statement where it is produced. For example, in Fig. 3(a), the write
for output arrayB can be placed anywhere after line9.

(3) Intermediate Array Constraints: For intermediate arrays, we have two cases
to consider: the array is either kept in memory or written to disk. If the array is
kept in memory, there will be no disk I/O statements inserted for the array. On
the other hand, if it is written to disk, there is a constraint imposed on its disk
read/write placement. For example, in Fig. 3(a), intermediateT is produced in
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statement7 and consumed in statement9. If we consider these statements in
the parse tree in Fig. 3(b), the lowest common ancestor for both the statements
is loopnT . The write statement for the production and read statement for the
consumption must be inside thisnT loop.

The approach to enumerating the placements for input, output and intermediate
arrays is sketched below; details may be found in [26].

(1) Input Arrays: Each loop index surrounding the consumption of an input ar-
ray is considered as a candidate position for placing the read. At any candidate
position, if there exists a redundant loop immediately surrounding it, then we
ignore that position and move further up. A redundant loop for a read state-
ment is one that does not index the array being read. We also ignore those read
placements that cause the in-memory version of the input array to be a scalar
or a vector. This is because the resulting concrete code will involve in-memory
matrix-matrix products using level-3 BLAS kernels [17], and scalar and vec-
tor operands will result in poor performance. Consider the abstract tiled code
in Fig. 3. All loops surrounding statement7 are candidate positions for plac-
ing the read for arrayA. LoopsjI andnI are ignored so that the in-memory
version of arrayA is at least two-dimensional. LoopjT is not considered be-
cause the surrounding loopnT is redundant for arrayA. Another important
check that needs to be made is that the in-memory version of the array fits in
memory. For every candidate position, we compute the memory cost of the
correspondinglocal bufferassuming a tile size of one. If the buffer does not
fit in memory, we do not move further up.

(2) Output Arrays: The algorithm for enumerating write placements for an out-
put array is exactly the same as that for input arrays, except that if any redun-
dant loop surrounds the write statement, we need to insert a corresponding
read for the array before the production. This is required as we will be re-
accessing the disk array for every iteration of the redundant loop. For example,
consider statement9 in Fig. 3(a), where the output arrayB is produced. If the
write for arrayB is placed just after loopmT , an extra read will be required
as the write will be surrounded by the redundant loopiT .

(3) Intermediate Arrays: If an intermediate array is written to disk, the algo-
rithm for enumerating the disk read/write statements is exactly the same as
for input/output arrays, except that the constraint specified earlier for interme-
diate arrays must be satisfied.

Fig. 4(a) shows the candidate read and write placements computed for each array
in the code shown in Fig. 3(a). Fig. 4(b) shows the final concrete code for the two-
index transform using the candidate read and write placements shown in Fig. 3(a).
Note that in Fig. 4(b), for a loop indexx, the index of the tiling loop is denotedxT
and the index of the intra-tile loop is denotedxI; in addition, the tile size for this
loop index is denotedTx.
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4.2 DCS Input Construction

If all possible combinations of disk I/O placements, shown in Fig. 4(a), are consid-
ered for all the arrays, a very large number of cases will have to be evaluated. Our
approach to avoid explicit evaluation for each combination of I/O placements is
to encode the placement into the formulation of a nonlinear optimization problem
that is input to the DCS system, as explained below. DCS attempts to minimize an
objective function subject to equality and inequality constraints. The input to DCS
consists ofinput parameters, variables, objective function, and a set ofconstraints.

Input Parameters

The input parameters for our problem are the memory limit of the machine and the
rangesNi,Nj, . . . of the loop indicesi, j, . . ..

Variables

The variables in our case include tile sizesTi, T j, . . . for loopsi, j, . . . where each
tile size variable has a lower bound of1 and an upper bound of the full loop range.
In addition to tile size variables, placement variables,λi, i = 0, 1, 2, . . ., are intro-
duced for each arrays that has more that one candidate placement. The placement
variables corresponding to an array encode all the possible placements for the disk
I/O placement for the array. The values chosen for these variables in the solution
from the solver uniquely determine the disk I/O placement for that array.

Objective Function

The objective function for our problem is the disk I/O cost. The disk I/O cost for
an I/O statement is the product of the size of the array being read/written and the
ranges of any redundant loops surrounding the statement. Consider the two possible
read placements for input arrayA shown in Fig. 4(a). For the first read placement
above loopiI, the disk I/O cost will be:

D1A = (Nn/Tn)× SizeA

where the total size of arrayA is multiplied by the range of the redundant loopnT .
The disk I/O cost for the second read placement (above loopnT ), isD2A = SizeA.
Since there are two possible placements forA, dlog2(2)e = 1 placement variable
λ0 is introduced as follows to express the disk I/O cost:

(λ0 ×D1A) + ((1− λ0)×D2A)
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If λ0 = 1, the first placement is selected, else ifλ0 = 0, the second one is selected.
As explained later, the placement encoding variables are constrained to have a value
of 0 or 1.

Constraints

The total space utilized for in-memory buffers is constrained to be within the mem-
ory limit. A static memory cost model is used, in which all the in-memory buffers
are allocated memory at compile time. The total memory cost is the sum of the
memory usage for all the individual in-memory buffers. The memory cost for an
in-memory buffer is the product of the ranges of its indices. The memory cost
expression for arrayA can be constructed, along the same lines as the disk cost
expression, as follows. For the read placement above loopiI, the in-memory buffer
for input arrayA will be A[iI, jI], which makes the memory costM1A = Ti×Tj.
On the other hand, for the read placement above loopnT , the in-memory buffer
is A[iI, j], thus making the memory costM2A = Ti × Nj. The memory limit
constraint using placement variableλ0 is:

(λ0 ×M1A) + ((1− λ0)×M2A) ≤ MemoryLimit

The placement variables are constrained to take values0 or 1 as follows:

λi × (1− λi) = 0, i = 0, 1, 2 . . .

We also introduce constraints on the minimum size of the in-memory version of
an array. The arrays are stored in a blocked fashion on disk. The block sizes of the
arrays are equal to the size of their in-memory versions, determined by the out-of-
core code generation algorithm. A block is the basic unit of I/O and is chosen to be
large enough to make the disk seek time negligible compared to the block transfer
time. Krishnamoorthy et al. [25] observed that the incremental improvement ob-
tained in the ratio of transfer time to seek time became negligible, and approach the
performance of sequential I/O, beyond a certain block size. The in-memory version
of the array, and hence the block size, is constrained to be larger than this block
size. For the system on which the experiments were conducted, and whose config-
uration is described in Sec. 6, the block size for reads must be at least2MB, while
that for writes must be at least1MB.

In this manner, we can construct disk cost, memory cost and other constraint ex-
pressions for all arrays. Using these expressions, we build the input to DCS using
the AMPL format [18]. DCS minimizes the objective function, that is, the disk I/O
cost expression, while satisfying the memory limit, boundary, placement variable
and buffer size constraints. DCS outputs values for the placement variables and tile
sizes, thus providing the parameters for the concrete code.

The code generated for a multi-processor system uses the Global Arrays (GA) and
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Disk Resident Arrays (DRA) libraries [43, 42]. GA provides a shared-memory pro-
gramming model while encouraging locality of access. DRA extends the shared-
memory model to secondary storage. GA/DRA provide an array abstraction in
which the portion of data to be accessed is specified as a section of the array. In
the generated code, the reads and writes from the disk are performed by the read
and write routines in DRA. The in-memory computation is performed using ker-
nel matrix multiplication libraries in GA. The I/O operations and the in-memory
computations are collective operations.

5 Illustration

In this section, we illustrate the process of code generation using the 4-index trans-
form. Consider the abstract code for the 4-index transform in Fig. 5. The 4-index
transform involves four contractions, requiring three intermediate arrays. These are
T1, T2 and T3 in the abstract code shown. Loops are fused so that two of the inter-
mediates are significantly reduced in size, leaving only T1 to be a four-dimensional
array. This fused abstract code was tiled and the intra-tile loops were moved to be
innermost in the loop structure. The tiled abstract code for the 4-index transform is
shown in Fig. 6.

Then, the possible placements for disk I/O statements are enumerated for all the
arrays. The enumeration starts at the first tiling loop or the first redundant intra-
tile loop and proceeds up the fusion graph. The list of candidate I/O placements is
shown in Table 1. An I/O placement for an array denoted by a loop index specifies
that the disk read(write) for that array is inserted above(below) the loop corre-
sponding to that index, surrounding the use of the array. The loops surrounding the
update of an array are considered for write placements, and those surrounding the
read-only use of an array are considered for read placements. The read and write
placements noted correspond to these loops. The read(write) placements are shown
for the input(output) arrays. For intermediate arrays, the I/O cost for production
and consumption of the array are enumerated. This is shown by the cross-product
of the write and read placements. The input and output arrays are disk-resident.
The intermediate arrays can potentially be in memory, which is also enumerated
as a possible I/O placement. The placement variables allocated to each array are
also shown in Table 1. Consider the I/O placements enumerated for array T2. Ar-
ray T2 could be in memory, represented by the first “placement” possibility. If T2
is disk-resident, there are three possible write and read placements, forming nine
placement pairs. Each placement pair uniquely determines the read and write place-
ment for that array. The placement pair qT× cT results in the read and write at the
same node in the fusion tree, and is equivalent to T2 residing in memory. Hence it
is discarded, leaving eight placements pairs, as shown.

The I/O and memory costs are the sum total of I/O and memory costs for all the
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arrays. Each possible placement of I/O statement for an array has a potentially
different contribution to the I/O and memory cost. The contributions to the I/O and
memory cost by the array T1 for some of the possible placements are shown in
Table 2. Every element in a disk-resident array needs to be accessed from disk at
least once. The I/O cost shown is the factor of redundant I/O over the minimum
access of SizeT1*8, where SizeT1 is the size of array T1 in the tiled code, and the
size of each element is 8. When the placement variables have value 11111, T1 is
in memory and has no I/O cost. T1 has 25 possible placements and any values
of placement variables that are beyond 00110 do not correspond to any legal I/O
placement. These values for the placement variables are pruned away by specifying
the memory cost to be higher than the available memory. The table also shows that
the read and write costs can potentially be different, as in the case of placement
variables being equal to 01010. When determining the overall I/O costs, the read
and write costs can be weighted by the average read and write times. Sequential
access (read/write) time was found to be a good approximation of the actual access
time, once the block size is larger than a threshold.

The tile sizes are limited to the valid range by the constraints

1 ≤Ta, Tb, T c, Td≤ 190

1 ≤ Tp, Tq, Tr, Ts≤ 180

The constraints on the placement variables to limit their values to either0 or 1 is
given by

∀ i ∈ {0, . . . , 26}λi ∗ (1− λi) = 0.

The I/O sizes are constrained to be large enough for efficient I/O on the target
system. The I/O sizes are just the size of the in-memory buffers and hence can be
computed from the memory costs. The read and write constraints, respectively, for
the array T1 are given by

8 ∗
1∑

i,j,k,l,m=0

Placement(i, j, k, l,m) ∗MemCost(i, j, k, l,m)≥ readbufsize

8 ∗
1∑

i,j,k,l,m=0

Placement(i, j, k, l,m) ∗MemCost(i, j, k, l,m)≥writebufsize

where

Placement(i, j, k, l,m) =





1 if (i = λ0 ∧ j = λ1 ∧ k = λ2 ∧ l = λ3 ∧m = λ4)

0 otherwise

The parameters to complete the construction of the optimization problem are shown
in Table 4. We determined the parameters for the Itanium-2 cluster at the Ohio
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1. for a, q, r, s
2. T1[a,q,r,s] = 0
3. for a, p, q, r, s
4. T1[a,q,r,s] += C4[p,a] * A[p,q,r,s]
5. for a, b, c, d
6. B[a,b,c,d] = 0
7. for a, b
8. for c, s
9. T3[c,s] = 0

10. for r, s
11. T2 = 0
12. for q
13. T2 += C3[q,b] * T1[a,q,r,s]
14. for c
15. T3[c,s] += C2[r,c] * T2
16. for c, d, s
17. B[a,b,c,d] += C1[s,d] * T3[c,s]

Fig. 5. Abstract code for the 4-index transform example.

1. for aT, qT, rT, sT, aI, qI, rI, sI
2. T1[aT+aI,qT+qI,rT+rI,sT+sI] = 0
3. for aT, pT, qT, rT, sT, aI, pI, qI, rI, sI
4. T1[aT+aI,qT+qI,rT+rI,sT+sI] += C4[pT+pI,aT+aI] *

A[pT+pI,qT+qI,rT+rI,sT+sI]
5. for aT, bT, cT, dT, aI, bI, cI, dI
6. B[aT+aI,bT+bI,cT+cI,dT+dI] = 0
7. for aT, bT
8. for cT, sT, aI, bI, cI, sI
9. T3[cT+cI,sT+sI,aI,bI] = 0

10. for rT, sT
11. for aI, bI, rI, sI
12. T2[aI,bI,rI,sI] = 0
13. for qT, aI, bI, rI, sI, qI
14. T2[aI,bI,rI,sI] += C3[qT+qI,bT+bI] *

T1[aT+aI,qT+qI,rT+rI,sT+sI]
15. for cT, aI, bI, rI, sI, cI
16. T3[cT+cI,sT+sI,aI,bI] += C2[rT+rI,cT+cI] *

T2[aI,bI,rI,sI]
17. for cT, dT, sT, aI, bI, cI, dI, sI
18. B[aT+aI,bT+bI,cT+cI,dT+dI] += C1[sT+sI,dT+dI] * T3[cT+cI,sT+sI,aI,bI]

Fig. 6. Abstract code for the tiled 4-index transform.

Supercomputer Center, discussed in Sec. 6. The parameters correspond to a single-
processor execution using local disks. The loop bounds Na,Nb,KC, and Nd are set
to 190 and Np,Nq,NB, and Ns are set to 180. The array sizes (SizeA, SizeT1, ..) are
also specified.

The optimization problem thus constructed is solved using the non-linear optimiza-
tion solver. The result is interpreted to obtain the concrete code shown in Fig. 7. The
tile sizes determined are shown in Table 3.
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Array Possible placements Placement Variables

T1 In Memory +{pI,aI,sT,rT,pT} × {bI,aI,qT,sT,bT} λ0 — λ4

C4 {qT, pT, aT} λ5 — λ6

A {aI, sT, rT, qT} λ7 — λ8

T2 In Memory +{rI,bI} × {rI,bI,cT} +

{qT} × {rI,bI} λ9 — λ12

C3 {aI,rT,aT} λ13 — λ14

T3 In Memory +{rI,bI,aI,cI} × {cI,bI,aI,dT,cT} +

{rT} × {cI,bI,aI,dT} λ15 — λ19

C2 {aI,sT,aT} λ20 — λ21

B {cI,bI,sT,dT,cT,bT} λ22 — λ24

C1 {aI,sT,aT} λ25 — λ26

Table 1
Candidate disk I/O placements and placement variables for the arrays in the 4-index trans-
form.

Placement variables I/O placement I/O cost Memory cost

(*SizeT1*8)

λ0 λ1 λ2 λ3 λ4 Produce Consume Read Write

1 1 1 1 1 In Mem In Mem 0 0 Na*Nq*Nr*Ns*8

1 1 1 1 0 pI bI Np/Tp Np/Tp Tq*Tr*Ts*8

1 1 1 0 1 pI aI Np/Tp Np/Tp Ta*Tq*Tr*Ts*8
...

0 1 0 1 0 pT bI 1 Nb/Tb Ta*Nq*Nr*Ns*8
...

0 0 1 0 1 - - - - 2*MemSize
...

0 0 0 0 0 - - - - 2*MemSize
Table 2
Contributions to disk I/O cost and memory cost by the array T1 in the 4-index transform.

Ta Tb Tc Td Tp Tq Tr Ts

48 95 95 190 90 60 180 180
Table 3
Tile sizes for the 4-index transform example.
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Mem. limit Min. read size Min. write size Read time Write time

2GB 2MB 1MB 16ns/byte 20ns/byte
Table 4
Parameters used in the construction of the optimization problem for the 4-index transform
example.

1. for aT, qT, rT, sT
2. for aI, qI, rI, sI
3. T1[aI,qI,rI,sI] = 0
4. Write T1Disk[aT:aT+47,qT:qT+59,rT:rT+179,sT:sT+179]
5. for aT, pT
6. C4[1:90,1:48] = Read C4Disk[pT:pT+89,aT:aT+47]
7. for qT, rT
8. A[1:90,1:60,1:180,1:Ns] = Read ADisk[pT:pT+89,qT:qT+59,rT:rT+179,1:Ns]
9. for sT

10. T1[1:48,1:60,1:180,1:180] =
Read T1Disk[aT:aT+47,qT:qT+59,rT:rT+179,sT:sT+179]

11. for aI, pI, qI, rI, sI
12. T1[aI,qI,rI,sI] += C4[pI,aI] * A[pI,qI,rI,sT+sI]
13. Write T1Disk[aT:aT+47,qT:qT+59,rT:rT+179,sT:sT+179]
14. C1[1:Ns,1:Nd] = Read C1Disk[1:Ns,1:Nd]
15. for aT, bT
16. for cT, sT, aI, bI, cI, sI
17. T3[cT+cI,sT+sI,aI,bI] = 0
18. C3[1:Nq,1:95] = Read C3Disk[1:Nq,bT:bT+94]
19. for rT
20. C2[1:180,1:Nc] = Read C2Disk[rT:rT+179,1:Nc]
21. for sT
22. for aI, bI, rI, sI
23. T2[aI,bI,rI,sI] = 0
24. for qT
25. T1[1:48,1:60,1:180,1:180] =

Read T1Disk[aT:aT+47,qT:qT+59,rT:rT+179,sT:sT+179]
26. for aI, bI, rI, sI, qI
27. T2[aI,bI,rI,sI] += C3[qT+qI,bI] * T1[aI,qI,rI,sI]
28. for cT, aI, bI, rI, sI, cI
29. T3[cT+cI,sT+sI,aI,bI] += C2[rI,cT+cI] * T2[aI,bI,rI,sI]
30. for cT, dT
31. for aI, bI, cI, dI
32. B[aI,bI,cI,dI] = 0
33. for sT, aI, bI, cI, dI, sI
34. B[aI,bI,cI,dI] += C1[sT+sI,dT+dI] * T3[cT+cI,sT+sI,aI,bI]
35. Write BDisk[aT:aT+47,bT:bT+94,cT:cT+94,dT:dT+189]

Fig. 7. Concrete code for the 4-index transform example.Np = Nq = Nr = Ns = 190,
Na = Nb = Nc = Nd = 180. Memory limit=2GB.

1. for a, i
2. for b, j
3. t_2[b,j] = 0
4. for c, k
5. t_1 = ((2.0 * v_ovvo[k,a,c,i]) + (-1.0 * v_ovov[k,a,i,c]))
6. for b, j
7. t_2[b,j] += (t[b,c,j,k] * t_1)
8. for b, j
9. t_3 = 0

10. for c, k
11. t_3 += (t[c,b,j,k] * v_ovvo[k,a,c,i])
12. i0[a,b,i,j] = ((t_2[b,j] + (-1.0 * t_3)) + v_vvoo[a,b,i,j])

Fig. 8. Abstract code for the kernel from the CCD equation.
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1. for a, b, i, j
2. X[a,b,i,j] = 0
3. for b, d
4. for j, l
5. t_2[j,l] = 0
6. for c, e
7. t_1 = 0
8. for f, k
9. t_1 += (D[b,f,e,k] * N[d,c,f,k])

10. for j, l
11. t_2[j,l] += (S[c,j,e,l] * t_1)
12. for a, i, j, l
13. X[a,b,i,j] += (T[a,d,i,l] * t_2[j,l])

Fig. 9. Abstract code for the three-contraction example.

6 Experimental Results

We evaluated the developed approach, referred to as the DCS approach, by compar-
ing it with two alternatives. The first, referred to as the equi-tile-size approach, is
used in state-of-the-art quantum chemistry codes. In this approach, equal tile sizes
are chosen for all loop indices. The tile sizes are made large enough to fully utilize
the available memory. The placement of I/O statements is determined in a greedy
fashion. For a given set of tile sizes, the I/O statements are placed at that position
in the parse tree in which the total size of the data accessed in that subtree, rooted
at that position, just fits in the available memory.

The second approach, referred to as the uniform sampling approach, was developed
for locality optimization of the disk-memory hierarchy [26, 12]. A greedy approach
to disk I/O placement is used, where for each set of tile sizes, the algorithm places
read/write statements immediately inside those loops at which the memory limit is
exceeded. The tile size search space is sampled uniformly in a logarithmic fashion
along each dimension. This sampled search space is then explored using a brute
force approach.

Performance was evaluated on an Itanium-2 Cluster at the Ohio Supercomputer
Center. Each node in the cluster is a dual Itanium-2 900 MHz system running Linux
2.4.18. Each node has 4 GB of memory and an 80 GB SCSI hard disk. The gen-
erated code was compiled using the Intel Itanium Fortran Compiler for Linux (efc
version 7.1). For code generation purposes, the physical memory available to the
computation is specified as half the available memory to minimize any paging ef-
fects.

The performance of the concrete code generated by the three approaches was eval-
uated for three computations. The first is a three-contraction computation. It is a
synthetic computation in which the outputs of two tensor contractions are con-
tracted again. The loop structure of the computation is shown in Fig. 9. This is a
prevalent subtree in tensor contraction operator trees, though it does not occur inde-
pendently in many codes. The problem size is varied by increasing the range of the
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loop indexa, with a corresponding increase in size of theT array. The results are
shown in Fig. 10. The size of theT array is shown on the x-axis, with the predicted
and measured disk I/O cost shown along the y-axis. It can be observed that the
DCS approach is consistently better than the uniform sampling approach, which in
turn is superior to using equal tile sizes. The experimentally measured performance
matches prediction very closely.

The second computation used for testing is the four-index transform, which was
introduced earlier. The imperfectly nested loop structure shown in Fig. 5 was used.
The number of virtual orbitals (V ) was varied, to vary the problem size. Fig. 11
shows the predicted and measured disk I/O costs for the various problem sizes
considered, shown in terms of the size of array A, the dominant input array affecting
the memory requirement. For this example too, the DCS approach is superior to
uniform sampling, which is better than the equi-tile-size approach. For the equi-
tile-size approach, the experimentally measured data is a bit lower than prediction;
we believe that this is a consequence of caching of produced-consumed files in
physical memory.

The third computation considered is a sub-computation from the Coupled Cluster
Doubles (CCD) equation [16, 34, 38] for ab initio electronic structure modeling.
The computation is given by the loop structure shown in Fig. 8. The predicted and
measured disk I/O cost for various virtual orbital ranges was evaluated. The results
are shown in Fig: 12. For this computation, the DCS approach is again superior to
the other two. However, surprisingly, we find that the uniform sampling approach
is not consistently better than the equi-tile-size approach. We believe that this is
due to sharp peaks and troughs in the disk-IO-cost as a function of tile size, causing
uniform search to miss many local optima.

Overall, the graphs show that the predicted disk I/O closely matches the measured
cost. The equal-tile-size approach generally performs worse then the other two ap-
proaches, while the DCS approach performs consistently better than the other two
approaches. It is up to four times better than the equal-tile-size approach and up to
two times better than the uniform sampling approach.

For the parallel context, we used the Global Arrays (GA) [43] and Disk-Resident
Arrays (DRA) [42] framework. The GA model provides an abstraction of global
shared multi-dimensional arrays, transparently implemented on systems with phys-
ically distributed memory. The DRA model extends the global shared abstraction to
disk-resident multi-dimensional arrays, permitting an arbitrary multi-dimensional
segment of a DRA to be moved into a memory-resident GA. The aggregate memory
available on all the processors was used as the memory available for the computa-
tion, and tiling was done as in the sequential case.

The measured disk I/O times for the parallel code generated for the three-contraction
example and the four-index transform are shown in Figs. 13 and 14 respectively.
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Fig. 10. The predicted and measured disk I/O cost for the three-contraction example. The
size ofT array is shown along x-axis, in gigabytes.
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Fig. 11. The predicted and measured disk I/O cost for the four-index transform. The size of
A array is shown along x-axis, in gigabytes.
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Fig. 12. The predicted and measured disk I/O cost for the computation from the CCD
equation. The virtual orbital ranges (V ) are shown along the x-axis.

The DCS approach performs significantly better than the other approaches for the
different processor counts considered. In particular, considerable improvement in
performance can be observed for smaller processor counts. This shows the im-
proved resource-utilization by the DCS approach, potentially enabling larger prob-
lems to be computed on a given machine more efficiently.
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Fig. 13. The measured disk I/O cost for the generated parallel code for the three-contraction
example. The number of processors is shown along the x-axis.
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Fig. 14. The measured disk I/O cost, in seconds, for the generated parallel code for the
four-index transform. The number of processors is shown along the x-axis.

6.1 Computational complexity of the three evaluated approaches

The three approaches represent varying degrees of complexity in the code genera-
tion process, in terms of the determination of I/O placements and tile sizes. With
the equal-tiles approach, the tile sizes and the I/O placements are determined in
a straightforward manner based solely on the available memory. This approach
vastly simplifies code generation, while not necessarily resulting in quality code.
The choice of equal tile sizes for all the arrays ignores various aspects of the pro-
gram such as the reuse characteristics of the different arrays, thus resulting in sub-
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optimal code.

The uniform sampling approach takes a greedy approach to placement of I/O state-
ments, and searches the sample space of possible tile sizes to choose the set of tile
sizes that minimize the I/O cost. The greedy I/O placement strategy, while simplify-
ing code generation complexity, is not always the best strategy. It also decouples the
two phases of the code generation problem, thus potentially affecting the running
time. Also, the sampling nature of the tile size search does not always produce op-
timal code, while significantly affecting code generation time. The dimensionality
of the search space is linearly proportional to the number of loop indices.

The DCS approach produces a composite cost function combining the effects of I/O
placements and tile sizes on the disk I/O cost. The search over this composite space
uses heuristics established in the solver. The encoding of the I/O placements is such
that the search space to be explored for the I/O placements increases logarithmically
with the number of loop indices. Hence the complexity of the sample space to be
explored is still linear in the number of loop indices, while generally generating a
more globally optimal solution.

7 Conclusion

We have described an approach to the synthesis of out-of-core algorithms for a class
of imperfectly nested loops. The approach was developed for the implementation
in a component of a program synthesis system targeted at the quantum chemistry
domain. The determination of optimal placements of disk I/O statements and choice
of tile sizes requires search in a very large search space. By formulating it as a non-
linear constrained optimization problem, and use of a general-purpose constrained
optimization solver, code was generated that outperforms other approaches by up
to a factor of four.
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