Performance Optimization of Tensor Contraction
Expressions for Many Body Methods in Quantum
Chemistry

Albert Hartono, Qingda Lu,T Thomas Henretty,Jr Sriram Krishnamoorthy,Jr
Huaijian Zhang,Jr Gerald Baumgartner,i David E. Bernholdt,T Marcel Nooijen,§

Russell Pitzer,T J. Ramanujam,i and P. Sadayappan*'Jr

The Ohio Sate University, Louisiana State University, Oak Ridge National Laboratory, and

University of Waterloo

E-mail: saday@cse.ohio-state.edu

Abstract

Complex tensor contraction expressions arise in accutatgrenic structure models in
guantum chemistry, such as the coupled cluster method.papisr addresses two complemen-
tary aspects of performance optimization of such tensotraction expressions. Transforma-
tions using algebraic properties of commutativity and aisgivity can be used to significantly
decrease the number of arithmetic operations required/&duation of these expressions. The
identification of common subexpressions among a set of tessdraction expressions can
result in a reduction of the total number of operations nexflito evaluate the tensor contrac-

tions. The first part of the paper describes an effectiverdlgo for operation minimization

TThe Ohio State University
*Louisiana State University
Toak Ridge National Laboratory
SUniversity of Waterloo

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

with common subexpression identification and demonstiitgesffectiveness on tensor con-
traction expressions for coupled cluster equations. Thkerskpart of the paper highlights
the importance of data layout transformation in the optation of tensor contraction com-
putations on modern processors. A number of consideratiools as minimization of cache
misses and utilization of multimedia vector instructioms discussed. A library for efficient
index permutation of multi-dimensional tensors is desatiland experimental performance

data is provided that demonstrates its effectiveness.

| ntroduction

Users of current and emerging high-performance parall®lpeders face major challenges to both
performance and productivity in the development of thelerstific applications. The manual de-
velopment of accurate quantum chemistry models typicaltytake an expert months to years of
tedious effort to develop and debug a high-performanceamphtation. One approach to alle-
viate the burden on application developers is the use ofhaatio code generation techniques to
synthesize efficient parallel programs from high-levelcsfiation of computations expressed in a
domain-specific language. The Tensor Contraction EngiG&[F2 effort resulted from a collab-
oration between computer scientists and quantum chemisgisvelop a framework for automated
optimization of tensor contraction expressions, whicmfdhe basis of many-body and coupled
cluster method4-’ In this paper, we describe two complementary optimizatiopreaches that
were developed for the TCE, but are available as indepersigtware components for use by
developers of other computational chemistry suites.

The first step in the TCE’s code synthesis process is theftnanation of input tensor con-
traction expressions into an equivalent form with minimpé@ation count. Input equations rep-
resenting a collection of tensor contraction expressigpisally involve the summation of tens to
hundreds of terms, each involving the contraction of two orartensors. Given a single-term ex-
pression with several tensors to be contracted, insteadiofiée nested loop structure to compute

the result, it is often much more efficient to use a sequengeivise contractions of tensors,

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

with explicit creation of temporary intermediate tensdris optimization problem can be viewed
as a generalization of the matrix chain multiplication geobh. However, while the matrix-chain
optimization problem has a polynomial time solution, theltrtensor contraction problem has
been shown to b&lP-hard® — a combinatorial number of possibilities for pairwise tvemsor
contractions must be considered. With tensor contractimessions involving the summation
of tens to hundreds of terms, there are opportunities fahéurreduction in computational cost
by recognizing common subexpressions in the sequence wfipaitwo-tensor contractions for
computing the multi-tensor contraction terms. Quantunmibts have addressed the operation
optimization problem for specific modefs but to the best of our knowledge a general approach
to optimization of arbitrary tensor contraction expreasiavas not addressed prior to the TCE ef-
fort. In the first part of the paper, we discuss a generaligtinent of the operation minimization
problem for tensor contraction expressions.

The second part of the paper addresses an important issaepey to achieving a high frac-
tion of processor peak performance when computing operatimimized tensor contraction ex-
pressions. Achieving high performance on current and emggrocessors requires the genera-
tion of highly optimized code that exploits the vector instion set of the machine (e.g., SSE,
AVX, etc.), minimizes data movement costs between memodycache, and minimizes the num-
ber of register loads/stores in loops. The current statiefart in compiler technology is unable
to achieve anywhere close to machine peak in compiling leegl code representing a multi-
dimensional tensor contraction. Hence the approach takgnantum chemistry codes is to morph
a tensor contraction problem into a matrix multiplicationlem and then use highly tuned matrix
multiplication libraries available for nearly all systenms general, this requires a layout transfor-
mation of the tensors into a form where all contracted inglafdhe tensors are grouped together in
the transformed view. Theoretically, the computationahptexity of the data layout transforma-
tion step is linear in the number of elements in the tensoilewhe computational complexity of
the subsequent matrix multiplication has a higher compartat complexity. However, in practice

the use of a straightforward loop code to perform the laymrndformation results in significant

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

overhead. In the second part of the paper we discuss theogieneht of an efficient tensor layout
transformation library.

The rest of the paper is organized as follows. The next seaiaborates on the operation
minimization problem, followed by a section that descritiesalgorithmic approach to operation
minimization. Experimental results that demonstrateffisctiveness are presented in the section
after that. The following section describes the layout 4farmation problem, summarizing an
approach (described in detail elsewh&eo efficient transposition of 2D arrays, and the gener-
alization of the 2D transposition routines to multi-dimiemsl tensor layout transformation along
with experimental results from incorporation of the laytransformation routines into NWChem.

We then discuss related work in the section following thedding to the conclusion section.

Operation Minimization of Tensor Contraction Expressions

A tensor contraction expression comprises a sum of a nunibemos, where each term represents
the contraction of two or more tensors. We first illustrate ibsue of operation minimization
for a single term, before addressing the issue of optimiaicrgss multiple terms. Consider the
following tensor contraction expression involving threagorst, f ands, with indicesx andz
that have rang¥, and indices andk that have rang®. Distinct ranges for different indices is
a characteristic of the quantum chemical methods of intevdsereO andV correspond to the
number of occupied and virtual orbitals in the represeomatif the molecule (typically > O).
Computed as a single nested loop computation, the numbeitioh&tic operations needed would
be 202V2.

X =3, K t7fxs (cost=20?V?)

However, by performing a two-step computation with an imediatel, it is possible to com-

pute the result using@/? operations:

1X =3 FXst (cost=2V?); X =y, tAx (cost=2V?)

Another possibility using @2V computations, which is more efficient wher> O (as is usu-

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

ally the case in quantum chemistry calculations), is shoglova:
1k =5t X (cost=20?V); X = Sylks (cost=20?V)

The above example illustrates the problem of single-tertmopation, also called strength
reduction: find an operation-minimal sequence of two-tensatractions to achieve a multi-tensor
contraction. Different orders of contraction can resulvvéry different operation costs; for the
above example, if the ratio of /O were 10, there is an order of magnitude difference in the
number of arithmetic operations for the two choices.

With complex tensor contraction expressions involving rgéanumber of terms, if multiple
occurrences of the same subexpression can be identifiegedt only be computed once, stored
in an intermediate tensor and used multiple times. Thusnhoomsubexpressions can be stored
as intermediate results that are used more than once in gralbgomputation. Manual formu-
lations of computational chemistry models often involve tise of such intermediates. The class
of quantum chemical methods of interest, which include thgpted cluster singles and doubles
(CCSD) method,® are most commonly formulated using the molecular orbitaidh&VO) inte-
gral tensors. However the MO integrals are intermediatesyedd from the more fundamental
atomic orbital basis (AO) integral tensors. Alternate “Ad@sed” formulations of CCSD have been
developed in which the more fundamental AO integrals ard dgectly, without fully forming the
MO integrals!! However it is very difficult to manually explore all possilimulations of this
type to find the one with minimal operation count, especialhce it can depend strongly on the
characteristics of the particular molecule being studied.

The challenge in identifying cost-effective common sulvespions (also referred to as com-
mon subexpression elimination, or CSE) is the combindtexplosion of the search space, since
single-term optimization of different product terms must tbeated in a coupled manner. The
following simple example illustrates the problem.

Suppose we have two MO-basis tenserandw, which can be expressed as a transformation
of the AO-basis tensolg, in two steps. Using single-term optimization to form temspwe

consider two possible sequences of binary contractions@grsbelow, which both have the same

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

(minimal) operation cost. Extending the notation abovejaes p andg represent AO indices,
which have rang&l = O+V.
Seq. 1. fi=y,alc, (cost=DM?); V=3, fhdP (cost=202M)
Seq. 2. gP=yqabd] (cost=2DM?); Vi =y pdich (cost=2D?M)
To generate tensav, suppose that there is only one cost-optimal sequence:

fy =y palch (cost=2DM?); Wy =3, fhel (cost=2DVM)

Note that the first step in the formationwfuses the same intermediate tensdinat appears in
sequence 1 fov. Considering just the formation f either of the two sequences is equivalent in
cost. But one form uses a common subexpression that is usefinputing the second MO-basis
tensor, while the other form does not. If sequence 1 is chémew the total cost of computing
bothv andw is 20M2 4 20°M + 20V M. On the other hand, the total cost is higher if sequence 2
is chosen (®M? + 20°M + 20VM). The 20M? cost difference is significant wheM is large.

When a large number of terms exist in a tensor contractioressgpn, there is a combinatorial
explosion in the search space if all possible equivalest-fmyms for each product term must be
compared with each other.

In the first part of the paper, we address the following qoestby developing an automatic op-
eration minimization procedure that is effective in idéntig suitable common subexpressions in
tensor contraction expressions, can we automatically fiokrafficient computational forms? For
example, with the coupled cluster equations, can we autoatigtfind AO-based forms by sim-
ply executing the operation minimization procedure on th@dard MO-based CCSD equations,
where occurrences of the MO integral terms are explicitlyagded out in terms of AO integrals

and integral transformations?

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.
Algorithms for Operation Minimization with Common Subex-
pression Elimination

In this section, we describe the algorithm used to perforeragon minimization, by employing
single-term optimization together with CSE. The exporalytiarge space of possible single-term
optimizations, together with CSE, makes an exhaustivechesgproach prohibitively expensive.
So we use a two-step approach to apply single-term optimizand CSE in tandem.

The algorithm is shown in Figure 2. It uses the single-tertinmgation algorithm, which is
broadly illustrated in Figure 1 and described in greateritlé our earlier work!? It takes as
input a sequence of tensor contraction statements. Eamsat defines a tensor in terms of a
sum of tensor contraction expressions. The output is ammiged sequence of tensor contrac-
tion statements involving only binary tensor contractioAfl intermediate tensors are explicitly
defined.

The key idea is to determine the “binarization” (determimmatof optimal sequence of two-
tensor contractions) of more expensive terms before tiseebgsensive terms. The most expensive
terms contribute heavily to the overall operation cost, paténtially contain expensive subex-
pressions. Early identification of these expensive sulesgions can facilitate their reuse in the
computation of other expressions, reducing the overallajms count.

The algorithm begins with thierm set to be optimized as the set of all the terms of the tensor
contraction expressions on the right hand side of eachnséaite The set of intermediates is ini-
tially empty. In each step of the iterative procedure, theabzation for one term is determined.
Single-term optimization is applied to each term in the teehusing the current set of interme-
diates and the most expensive term is chosen to be “bindrizett Among the set of optimal
binarizations for the chosen term, the one that maximatlyces the cost of the remaining terms
is chosen. Once the term and its binarizations are decided, upe set of intermediates is up-
dated and the corresponding statements for the new intéatesdare generated. The procedure

continues until the term set is empty.

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

SINGLE-TERM-OPT-CSE(E,is)
1 if Eis a single-tensor expression
2 thenreturn {(E,0)}
else * E is a multiple-tensor contraction expression (.5 ... *Ep) *\

3
4 {pwsist), (P2,isp),...}

5 set of pairs of optimal binarizations Bfand its corresponding intermediate set
6

7

(the given intermediate sitis used to find effective common subexpressions)
return {(ps,is1), (P2,i%),...}

Figure 1: Single-term optimization algorithm with commarbexpression elimination
Evaluation of Operation Minimization

In order to illustrate the use of the automatic operationimiration algorithm, we consider the
tensor expressions for a closed shell CCSD T2 computatiguré 3 shows the CCSD T2 equa-
tion, including the computation of the MO integrals (dembieand the expression for the double-
excitation residual. We compare the optimized forms gerdri two different ways: 1) with the
conventional “separated” approach of first explicitly fangnthe MO integrals from AO integrals
and then using the MO integrals for the CCSD T2 term, and 2)guan “integrated” form where
significant MO integrals in the CCSD T2 equation are repldngdhe expressions that produce
them. Although some MO integrals may appear more than oniteif2 expression, the multiple
expansion of such terms does not result in any unnecesspligation of computation because of
common subexpression elimination with the operation mizeétion algorithm.

We study two scenarios for evaluation of the CCSD T2 expoesdl) the typical mode, where
iterations of the residual calculation are performed with ttamplitudes changing every itera-
tion, but without change to the MO integrals (because thestoamation matrices to convert AO
integrals to MO integrals do not change), and 2) an orbitéihgpation (Brueckner basis) sce-
nario where the AO-to-MO transformation matrices changefiteration to iteration, i.e., the MO
integrals (if explicitly formed) must be recalculated foeey iteration.

Since the operation minimization algorithm uses specifloasfor the number of occupied
orbitalsO and the number of virtual orbitals, the optimized expressions that are generated could

be different for differenO andV values. The values fd® andV depend on the molecule and

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

OPTIMIZE (tMts)
1 MSET < set of all terms obtained from RHS expressionstoits

2 is<— 0 *the set of intermediates *\
3 whileMSET #0
4 do Mheaiies < the heaviest term iIMSET
5 (searched by applyingi8GLE-TERM-OPT-CSE(M;,is) on each ternM; € MSET)
6 PSET <« SINGLE-TERM-OPT-CSE(Mpeaviest, 1S)
7 (Pest s 1Sbest) < NIL
8 profit — 0
9 for each (pi,is) € PSET
10 docur_profit— 0
11 for each M; € (MSET — {Mheavieg})
12 do base_cost < op-cost of optimal binarization inISGLE-TERM-OPT-CSE(M;,is)
13 opt_cost < op-cost of optimal binarization inISGLE-TERM-OPT-CSE(M;,isUis)
14 cur_profit « cur_profit + (base_cost — opt_cost)
15 if ((Pbest,iSoest) = NIL)V (cur_profit > profit)
16 then (Poest, iSest) < (Pi,1S)
17 profit < cur_profit

18 smts < replace the terMViheaieg IN SMtS With ppeg
19 MSET «— MSET — {Mheavies }

20 IS <+ iSU iSpest

21 return stms

Figure 2: Global operation minimization algorithm

quality of the simulation, but a typical range is<1v /O < 100. To provide concrete comparisons,
O was set to 10 andl values of 100, 500 and 1000 were used. Additional runfeet to 100
andV values of 1000, 5000 and 10000 were also evaluated but thralbirends were similar and
so that data is not presented here.

The standard CCSD computation proceeds through a numberafions in which the MO
integrals remain unchanged. At convergence, the ampSstattain values such that the residual
is equal to zero and this typically takes 10-50 iterations.sdme variants of CCSD, such as
Brueckner basis orbital optimization, the MO integralsoathange at each iteration, requiring
the AO-to-MO transformation to be repeated. The optimizatsor expressions for these two
scenarios can be very different. With the operation minatan system, all input terms can be
tagged as either stable (i.e., unchanging from iteratiotetation) or volatile (i.e., changing every

iteration). In addition, an expected number of iteratioas be provided to the optimizer. The

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

v'k‘I pcqckcs v'k‘a qc' Lchocs viE =aldddid ey v'a‘b afschcheic
v'a scpcicicy V@ =afschciches VP IDOIc""cbcrcS vi2 = pqc' | caches
vab c"gcgc,rcﬁ vag’ c"ﬂ‘cbcrcs
ab b JC jta_ 1\cdid icybc _ \ictbe _ \jictb by
(P = SVh, + fSE00— fooktkJ Vot — \/b + Jvatde 4 2victbe — viStRe — S the — vjorpe
+2VIJ<:tIEIa fctlctI?Jb fctbcta 1vcd ctd _ Jthtk Vll(gtlc b+VJC ctba Vﬂgtﬁ?td Vggtl?jctid

baj i
beyd d d Jl bta d o] iC:b b
ZVCdtLCt — Viate °t +2v bta —vﬁg],C a+v'k<,>tjgta+v t2ot3 — v'k?t |°ta—|-v'k‘|3t| ‘e
+2viet et 2v'k‘|5t°t vﬁg,,tk+ + VEthetdd 2v°dtb°t +v§| det 2v§|dt tIl
1 d+d ab b d d d l b d d b d bcyad 1 d bd
VR + 2vgf tjlstl? — Vg it + 2Vﬁjtk1°t|'°|‘ Vﬁ| chta + VCdtl jctl?(+ 2Vﬁ| it

dia, 1,edt jcrcibta dy boyd b dsacedy b
Vﬁﬁtft.d ab“‘ Vﬁ|djct| sma“‘vlf e (§| bZVﬁl d°t tlZ"‘Vﬁj éla"“’ﬁjt |Ct|d “d“éﬁ ot
reS|duafI‘b D+ b8

Figure 3: Unoptimized input expressions for CCSD T2 and ADAO transform

operation minimization algorithm seeks to find a transfafrfeem of the input tensor expression

that minimizes the total arithmetic cost for the expecteahber of iterations.

Arpiq — alics BRI Csqu (Cu AP) D|a]p _ chf}q

' = afPdl \/kjl = ch(c qu) \/ija— Co Vi =, Db
v" — ch(c3(chER))]b_caCLfJ' Vi3 = c3(ch(CSES) vﬁ‘]"’—c""DVp
Fja'k vadtg GP =it Hb — 2vab 18P — S (ald(ce(cdte)))
. T Fioafe e -
N = V' ktl Oab = C%(Cﬁ(quGq)) Pab Ca(Cs(Cur L)) Qf=Vik—2vd
P = 3ba + TGV —) — vigt? +tbd<fd+t. <+ ci(ca((2Ag -~ A)GD))

+t|?f(V|°ft.?d— §?+Vﬁfj(%tﬁ‘d thi‘d) vis) + (20°a P°a+t,.ad(2v°‘f Vi) + 2vig — Vi)
+cf(2|ﬁr 1c5(Gqus)+c5(E IGH) + 1tab Jk'+t a1k NIK
HPEANG — viSte -+ R) + 1 (tdCde+t°M° fook fte+teQS)
-l-tk(tleCFk‘;".—cklbr—thlgb-l-t C(F ek — 2chl')+§t,b3k'+v tﬁ°+\/k$t|bc+t cQi°
itk ! —vbkt°+tb°(M°— £8) — Vi + SVitP)
readuaﬂ’b—r +rba

Figure 4: Integrated optimization of CCSD T2 with AO-to-Mfrnsforms

Figure 4 shows the output generated by the integrated ggtion of the AO-to-MO transform
and the the CCSD T2 expression (for an expected number afitesT of 10). Seventeen new
intermediates are generated - labeled using capital $eittiroughQ. Only seven of the original

twelvev integrals are explicitly computed in the optimized form,ilghthe expressions using the

10

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

otherv integrals has been transformed to use other intermed@tesitice total operation cost.

Table 1 provides detailed information about the computati@omplexity of the optimized
expressions for the different cases considered, showagdefficients for the various higher order
polynomial terms for the arithmetic cost (counting eachtfif@ppoint addition or multiplication as
one operation; we note that this is different from the cotieerused in previous publications such
as’ where a multiply-add pair is counted as one operation rattzar two).

The first six columns in Table 1 correspond to the standardCC@®del while the last six
columns correspond to optimization for the Brueckner CCSileh Alternate columns, labeled
“sep” and “int”, provide the coefficients of cost terms foettesulting expressions using separated
and integrated optimization, respectively. Considerimg first two columns (for V = 500), it
is clear that the optimized expressions are very differBoine table entries have constant values
while others are scaled Ay- a constant value implies that the corresponding term ig@rdluated
once (for example, the MO integrals in the expressions ddrby separated optimization), while
the entries scaled bl are executed repeatedly during every CCSD iteration. Sirstegle table is
used for displaying the polynomial complexity terms forfeliént expressions, we also have some
zero entries when terms do not apply to a particular opticheagression.

With separated optimization, the optimized form has séwamatractions with computational
complexity in the fifth power o¥//M (for V >> O, M is very close td/), arising from the explicit
computation of the MO integrals. In contrast, integratetiozation produces optimized expres-
sions without any terms involving the fifth power ¥IM, instead trading them for a@(OM*)
term that is computed times (once every CCSD iteration). Wheénx T is less tharV/, such a
term has lower cost despite being recomputed every iterétian the one-time explicit computa-
tion of the MO integrals. The last row of the table shows theraf total arithmetic operation
count using the separated versus integrated optimizamn/ = 100, both optimized expressions
essentially have the same cost. But for the higher valuéds @fcan be seen that the integrated
optimization produces a much more efficient form than irdégg optimization, with the benefit

increasing a¥ increases.

11

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

Table 1: Coefficients of leading terms of symbolic cost fiorgt O = 10, M =V + O; ("sep”
denotes separated optimization of CCSD T2 expression artbADO transform; "int" denotes
integrated optimization of CCSD T2 and AO-to-MO transforimgenotes the number of CCSD

iterations).
Leading termg Standard iteration Brueckner basis
of symbolic V =100 V =500 V = 1000 V =100 V=500 [V=1000
cost function|| sep | int sep| int sep| int sep| int | sep| int || sep| int
VM4 2 0 2 0 2 0 2T 0 2T 0 2T 0
Vv2ms3 2 0 2 0 2 0 2T | 0 || 2T | O || 2T | O
V3M2 2 0 2 0 2 0 2T | O 2T | O 2T | O
V4M 2 0 2 0 2 0 2T | 0 || 2T | O || 2T | O
o2m4 0 2T 0 2T 0 2T 0 | 2T 0 | 2T 0 | 2T
o4 2T 0 2T 0 2T 0 2T | 0 || 2T | O | 2T | O
om* 2 | 2T+4 2 | 2T+4 2 | 2T+4 || 2T | 6T || 2T | 6T | 2T | 6T
ovm3 2 2 2 0 2 0 2T | 0 || 2T | O |[2T | O
OV2Mm?2 4 0 2 0 2 0 2T | O 2T | O 2T | O
ov3M 4 0 4 0 4 0 4T | O 4T | O 4T | O
odv3 20T | 16T || 20T | 16T | 20T | 16T | 22T | 18T | 22T | 18T | 22T | 18T
0o3%V2Mm 0 0 0 0 0 0 0 0 0 | 2T 0 | 2T
ov4 2T 0 2T 0 2T 0 2T | 0 || 2T | O || 2T | O
o2m3 4 | 6T+6 4 | 8T+8 4 | 8T+8 | 4T | 14T || 4T | 14T | 4T | 14T
OV M? 6 | 12T+8| 6 |12T+8| 6 | 12T+8| 6T | 18T | 6T | 18T | 6T | 18T
0oA/2M 8 | 8T+8 8 | 8T+8 8 | 8T+8 || 8T | 16T || 8T | 16T | 8T | 16T
o3 10T | 4T 10T | 4T 10T | 4T 14T | 4T | 14T | 4T | 14T | 4T
Reduction 1 2.46 4.24 251 13.75 28.86
factor

The right half of Table 1 shows the computational completétyns for the optimized expres-
sions for the Brueckner CCSD model, where the AO integralsfiarmation must be performed
for every CCSD iteration. For both the separated approadhtanintegrated approach, each term
is therefore scaled by. Again, the optimized forms are clearly very different feparated versus
integrated optimization. Relative to the standard CCShaue, for the Brueckner CCSD mode
the benefit of integrated optimization over separated apétion is significantly higher.

So far the comparisons of different optimized forms havdéeén generated by the automated
operation minimization algorithm. But how effective is tngomatic optimization when compared
with manually optimized formulations? In order to answas tfpjuestion, we generated an opti-
mized version of just the CCSD T2 equations and comparedamplexity of the generated terms

with a highly optimized closed-shell CCSD T2 form developgdScuseria et al. The optimized

12

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

form produced by the automatic minimizer is shown in Figur&lde computational complexity of
the most significant terms i<V 4 + 200%V3 4+ 100*V?2 operations (counting each floating-point
addition or multiplication as a separate operation). Thauadly optimized implementation from
Scuseria et al.is 3024 + 8033+ 20%2 A close examination of the optimized forms shows
that the difference is mainly due to two reasons. First, oumngiler generated expressions exploit
antisymmetry but not another form of symmetry (“vertex” syetry) that is used in the optimized
form from Scuseria et al. Aﬂb = Aﬁ’f‘. The most significant contraction causing Bg0?V4)
complexity is essentially the same contraction in bothroed forms, but is implemented by
Scuseria et al. with one fourth the operation count due toimabexploitation of such symmetry.
Secondly, a close examination of the form of optimized eguatin Scuseria et &.demonstrate
the need for more sophisticated intermediate steps (ang.that involves adding and subtracting
a term to an intermediate term that significantly enhancesatipossibility of reduction in oper-
ation count). We are in the process of incorporating very@xraetry and enhancing the operation
count minimization capability of our compiler using moreghgsticated steps.
_\adid i _ \adid i _ \adid ij _ \cdid ab _ adibd
A =Viiti Bp =Wvigt) Clo=Wite Dy =Wjte EP =Vt
rf = 0.5v, + O.5v°ajbtﬂ° + 209 (I (£ — 1)) + 8P (0.5t + B — vig — BE) + 056D
(Vi 6 — Vi + O.BVETEEE) + P (2vi§ — Eﬁa_—ngjl + 2523'1 — V& HR(ME — 2vi§ — 2C3 +C)
+d (tl? d_ Hg}k) — (Vi tE) + te2(1 +0.5R) +t (v, + 0.5vEate)
HEP (VR — FoOl — 26PGE — 2vi§te +t8(AF — £i8) + (v — 2v))
RS + 0 (5 — Via) +1R(AT — 12 — 2G7) + Vi (¢ ilﬁﬁdD))
+2(0.5tPDY — tTHSK +-t°CT — VEpte + Wit + 0.5tPR — Vit® —vig + Pl
residuaP = r& 4 rba

Figure 5: CCSD T2 expression optimized separately from 8M40 transform

13

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.
|mplementing Tensor Contractions using Tuned Matrix Multi-
plication

Consider the following tensor contraction expression.
Efi,j,k = % Ala, b, c|B[a,i]C[b, j]D[c, k]
ab,c

where all indices range ové&f anda, b, andc are contraction indices. The direct way to compute
this would requireD(N®) arithmetic operations. However, as discussed in the firsppéhe paper,

algebraic transformations can be used to reduce the nuribpeations taD(N%4).

Tllabk] = Z Ala, b, c|D[c, K]
T2[a j,k = %Tl[a,b,k]C[b,j]

Efi,j.K = Y T2aj.KBai

Each of the three contractions for the operation-optimfaeah is essentially a generalized matrix
multiplication. Since highly tuned library Generalized tvba Multiplication (GEMM) routines
exist, it is attractive to translate the computation forreaeensor contraction node into a call to
GEMM if possible. For the above 3-contraction example, trst fiontraction can be implemented
directly as a call to GEMM withA viewed as arN? x N rectangular matrix an@® as anN x

N matrix. The second contraction, however, cannot be diréstplemented as a GEMM call
because the contraction indexs the middle index o 1. GEMM can only be directly used when
summation indices and non-summation indices in the catiracan be collected into two separate
contiguous groups. However,1 can first be “reshaped” via explicit layout transformatiery.,
T1[a,b,k] — T1r[a,k,b]. GEMM can then be invoked with the first operafdr viewed as an
N2 x N array and the second input operaBas anN x N array. The result, which has the index

order|a,k, j], would also have to be reshaped to fofi®a, j,k|. Considering the last contraction,

14

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

it might seem that some reshaping would be necessary in tvdese GEMM. However, GEMM
allows one or both of its input operands to be transposeds,Tihe contraction can be achieved
by invoking GEMM with B as the first operand in transposed form, dr&ja, j,k| as the second
operand, with shaphl x N2,

In general, a sequence of multi-dimensional tensor cotrzs can be implemented using a
sequence of GEMM calls, possibly with some additional aresydering operations interspersed.
Since the multiplication of twd\ x N matrices require©(N3) operations and reordering of a
P x Q matrix only requireO(PQ) data moves, it might seem that the overhead of the layout
transformation steps would be negligible relative to theetifor matrix multiplication. However,
as shown in the next section, a simple nested loop struatuperform the layout transposition
can result in significant overhead. The remaining sectidribie paper address the development
of an efficient index permutation library for tensors. Thelgem of efficient transposition of 2D
matrices is first addressed, and is then used as the coréfiuircimplementing generalized tensor

layout transformation.

|ndex Permutation Library for Tensors

In this section, we first present an overview of the problemfiafient 2D matrix transposition (dis-
cussed in detail elsewhéf® and then discuss its use in optimizing arbitrary index peations
of multi-dimensional arrays. Consider the simple dould#stad loop in Figure 6. While trans-
position might seem such a straightforward operation,tiegjscompilers are unable to generate
efficient code. For example, the program in Figure 6 was ctadpising the Intel C compiler with
“-03” option. On an Intel Pentium 4 with a 533MHz front sideshit achieved an average data
transfer bandwidth of 90.3MBY/s, for single-precision gs;awith each dimension ranging from
3800 to 4200. This is only 4.4% of the sustained copy bandwadhieved on the machine by the
STREAM memory benchmarkd

On modern architectures, the cache hierarchy, the memdsystem, and SIMD vector in-

15

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

for i =0 to Ni-1
for j =0to N2-1
Blil[j] = Alj][i]

Figure 6: A simple implementation of matrix transposition

structions (like SSE) are key factors to performance of iatanspose and there is interplay
amongst them. Cache provides fast data and instructioerisutib on-chip computation resources
and is often organized into multiple levels including letdl.1) cache, level 2 (L2) cache and so
on. A cache is organized as a set of cache blocks (lines) wiypg=l sizes range from 16 bytes
to 128 bytes. If a data element has multiple accesses dusdrggay in cachetemporal locality

is exploited. If different elements within a cache line aceessedspatial locality is exploited.
Translation lookaside buffer (TLB) is a special CPU caclet themory management hardware
uses to improve virtual address translation speed. Matainsposition lacks temporal locality and
has a large cache footprint. The data access pattern forotteio Figure 6 involves row-wise
access oB but column-wise access #fin the inner loop. This results in poor spatial locality for
A. If the loops are interchanged, excellent spatial localéy be obtained foA but arrayB will
now have poor spatial locality. The strided access pattarodlumn-wise access can potentially
result in a large number of conflict misses in cache and TLBess

Processors have adopted multimedia extensions chamstteas Single Instruction Multiple
Data (SIMD) units operating on packed short vectors. Exaspf these SIMD extensions in-
clude SSE/SSE2/SSE3/SSE4 for Intel processors and VMX&dtfor PowerPC processors. The
effective use of SIMD support can provide performance eobarent for matrix transposition in
several ways.

To illustrate the potential benefits of employing SIMD exdems in memory bandwidth-bound
computations, Figure 7 shows the performance differencenfemory copy using scalar versus
SIMD instruction sets on an Intel Pentium 4 and a PowerPC G5.

The reader is referred to a prior publicatiSrior details on the issues to be addressed for ef-

ficient implementation of the matrix transposition operatthrough explicit attention to various

16

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

3500

3000 +

2500 1

2000 +

MB/s

1500 +

1000

500 +

Pentium 4 PowerPC G5

[Scalar l SIMD

Figure 7: Improvement from using SIMD in memory copy

architectural factors. A combination of offline analysislampirical search are used to determine
the best choice of optimization parameters. The empirieatch is performed once at library in-
stallation time, and is similar to the ATLAS approach to gatiag an efficient BLAS library:*1°
The code generator takes as input the architectural pagasreetd generates multiple versions of
code optimized for different categories of problem insenat library invocation time, a dynamic
search tree is traversed to determine which version of tHe actually executed.

The matrix transposition approach (presented elsewRecan be used to optimize arbitrary
index permutations of multi-dimensional arrays. When gdiom 2D matrix transposition to

higher dimensions, several issues must be considered:

1. It is important to reduce the number of generated codeoresshile optimizing for dif-
ferent permutations. Instead of havingcode versions for all possible permutations of
n-dimensional arrays, we only generat@ersions. By always accessing the source array
or the destination array in a fixed order, we calculate thesgstride of each loop into the

other array. In such a way one code version hangies1)! permutations.

2. The decrease in dimension sizes with the increasing difoeality impairs the benefits from

optimizations such as loop tiling. Due to the limited benefisecond-level tiling and TLB

17

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

tiling with reduced dimensions, we only have one level ahgjlwhen dimensionality is

larger than 3.

3. The index calculation overhead must be effectively ailetd to achieve high performance.
Instead of relying on compiler-generated code, we idethdidp invariants and generate effi-

cient indexing code by strength reductiéh.

Following the optimization procedure with the above changee have developed a highly op-
timized index permutation library for both PowerPC and x&hdectures. We demonstrate the
effectiveness of optimized index permutation operatiopsmploying them in NWCherd’ a
widely used computational chemistry suite.

In NWChem, two variants of index permutation operationswaed: without and with accu-
mulation: i) A’ = permute(A, p), whereA is transformed to\’ using index permutatiop, and
A = A +cx permute(A, p), whereA is permuted, scaled by factoand accumulated int4'.

Two representative computations are used in our evalua{ibnthe triples correction in the
CCSD(T) computation and (2) th€ECSDT computation. The experiments were conducted using
NWChem version 4.7 on the same Pentium 4 platform used inrhequs section. By replacing
the original index permutation code in NWChem with the ojtied version, significant perfor-
mance improvements are obtained, as shown in Figure 8 ande 8y We make the following

observations.

1. The computation complexity of triples correctionQ$0%V4), while the index permutation
cost of triples correction i©(03%V?3), which is mainly for symmetrization operations. How-
ever, the index permutation was found to dominate the coatiout of the triples correction.
Our implementation offers overall speedups of 2.27 and fb&e triples correction, re-
spectively, for the two tested molecules. This improvenessentially comes from the index

permutation speedups of 3.35 and 3.53, respectively.

2. The computation complexity of CCSDT@ O3V °) while its index permutation cost is only

O(0%?3). The theoretical order complexity might suggest that theinpermutation cost

18

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

would be negligible. However this is not the case, as sean tie experimental results:

overall speedups of 2.02 and 1.74, respectively, are aethifor the two inputs.

1.20
1.00 -
]
E
. 0.80 -
(%]
]
i
o 0.60 -
o
N
£ 0.40 -
S
z
0.20 -
0.00
unoptimized optimized unoptimized optimized
C6H6 (d2h/ 6-31g*) formamide (Cs/cc-PVTZ)
Onon-IP WIP

Figure 8: Normalized execution time of triples correctianaoPentium 4. Note: IP refers to Index
Permutation

1.20 -

1.00 ~

0.80 -

0.60 -

0.40 -

Normalized Exec. Time

0.20 -

0.00

unoptimized optimized unoptimized optimized

H20 (C2v / cc-PVTZ) HCI (C2v / aug-cc-PVQZ)
Onon-IP WIP

Figure 9: Normalized execution time of CCSDT on a Pentium dteNIP refers to Index Permu-
tation

19

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.
Related Work

Common subexpression elimination is frequently used iticnal optimizing compilers® Clas-
sical CSE techniques are focused on identifying the oppdrés for value reuse; in most cases,
such opportunities are rather limited, and they exist oohstalars. In contrast, the CSE problem
in our work considers more complicated arithmetic struesyiand requires search for profitable
alternatives in a large space of possible choices for vausa. Algebraic properties (e.g., asso-
ciativity) play a central role in our approach, while they &ypically ignored in CSE techniques
used in optimizing compilers.

Quantum chemists have proposed domain-specific heurstisgrength reduction and factor-
ization for specific forms of tensor contraction expressifg., for electronic structure methods
such as the coupled cluster meth6&33). For example, Scuseria et Aknd Janssen and Schae-
fer!® developed a very highly optimized formulation for close@lsECSD equations. Common
subexpression elimination is frequently employed in thauwahformulation of quantum chemical
methods. However, due to the complexity of the equatioris,ptohibitively time-consuming to
explore manually the large set of alternative formulationsth the help of the automated search
techniques proposed here, it becomes feasible to explongch farger space of possible formu-
lations for operation minimization. Janssen and Scha@féescribe a common subexpression
elimination algorithm for tensor contractions but do nagent any experimental results.

Theoretical study and empirical evaluation of optimizingtrix transposition with cache per-
formance considerations were conducted by Carter andr3at° The authors conclude that,
assuming conflict misses are unavoidable, it is impossbleetboth cache efficient and register
efficient, and employ an in-cache buffer. Other memory dttarestics are not taken into account.
Zhang et ak! focus on how to write an efficient bit-reversal program witlop tiling and data
padding. Different implementations of matrix transpasitivere investigated by Chatterjee et al.,
22 with the conclusion that hierarchical non-linear layouts imherently superior to the standard
layouts for the matrix transposition problem. We do not adesdata padding or non-canonical

layouts as an option since we focus on generation of librangimes that can be used with the

20

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

standard data layouts used by quantum chemistry softwéaes such as NWChem.

Several studies focus on how to generate or optimize iefgéster permutations. The gener-
ation of register-level permutations is addressed by Kawtisev and Kogg® for optimizing data
permutations at the instruction level, with a focus on SS#rirctions. Ren et &* present an
optimization framework to eliminate and merge SIMD datanpaation operations with a high-
level abstraction. Both studies propagate data organizationg data-flow graphs and focus on
reducing intra-register permutations. We manually gdeerarious versions of micro-kernels and
empirically choose the best one. However the manual prowsss only be repeated once for ev-
ery vector instruction set. The limited number of vectotrastion sets allows this process to be
applicable across a wide range of processor architectures.

Empirical search employed in library generators such as#g1*1°2%has drawn great interest
because of the complexity of analytical modeling of optipaiameters for modern architectures.
However, empirical global search is often too expensivepfaya Yotov et al?® present a strategy
employing both model-driven analysis and empirical se#watecide optimization parameters in
matrix multiplication. Chen et &’ also present an approach to combining compiler models and
empirical search, using matrix multiplication and Jacabaxation as two examples. Our work
is similar in spirit but is applied to a computation that imtdeidth-limited and has no temporal
locality. Matrix transposition is similar to the level 1 BISAkernels optimized by Whaley and
Whalley?® using an empirical search-based approach. But the preséstéded memory access

in matrix transposition makes it harder to exploit spatahlity.

Conclusions

This paper has addressed two complementary aspects ofrparfoe optimization for tensor con-
traction expressions that arise in many body methods intgoanhemistry: 1) algebraic transfor-
mations to optimize the number of arithmetic operationd, 2yefficient multi-dimensional tensor

permutation to facilitate effective use of tuned matrix tiplication libraries to perform tensor

21

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

contractions. The effectiveness of the developed optitmizapproaches has been demonstrated

using examples from coupled cluster models.

Acknowledgments We thank the referees for their valuable feedback. This wa& been
supported in part by: the U.S. National Science Foundatioough grants 0121676, 0121706,
0403342, 0508245, 0509442, 0509467, 0541409, 0811457,7831 0926687 and 0926688;
the Laboratory Directed Research and Development Progfadak Ridge National Laboratory
(ORNL); and a Discovery grant 262942-03 from the NaturakBces and Engineering Research
Council of Canada. ORNL is managed by UT-Battelle, LLC, foe# tUS Dept. of Energy under
contract DE-AC-05-000R22725.

References

(1) Baumgartner, G. et aProceedings of the IEEE 2005, 93, 276—-292.
(2) Auer, A. et al Molecular Physics 2006, 104, 211-218.
(3) Hirata, SJ. Phys. Chem. A 2003, 107, 9887-9897.

(4) Lee, T.J.; Scuseria, G. E. Achieving chemical accuraitly @oupled cluster theory. IQuan-
tum Mechanical Electronic Sructure Calculations with Chemical Accuracy; Langhoff, S. R.,

Ed.; Kluwer Academic, 1997; pp 47-109.

(5) Martin, J. M. L. Benchmark Studies on Small MoleculesEheyclopedia of Computational
Chemistry; v. R. Schleyer, P., Schreiner, P. R., Allinger, N. L., Clark Gasteiger, J., P. Koll-
man, H. F. S., Eds.; Wiley & Sons: Berne, Switzerland, 1998; YV, pp 115-128.

(6) Bartlett, R.; Purvis, Glnt. J. Quantum Chem. 1978, 14, 561-581.

(7) Stanton, J.; Gauss, J.; Watts, J.; Bartletft Journal of Chemical Physics 1991, 94, 4334—
4345.

22

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

(8) Lam, C.; Sadayappan, P.; Wengerf&rallel Processing Letters 1997, 7, 157—-168.

(9) Scuseria, G.; Janssen, C.; SchaeferTheé Journal of Chemical Physics 1988, 89, 7382—
7387.

(20) Lu, Q.; Krishnamoorthy, S.; Sadayappan, P. Combinimajydical and empirical approaches
in tuning matrix transpositiorPACT '06: Proceedings of the 15th International Conference
on Parallel Architectures and Compilation Techniques, Seattle, Washington, USA, 2006; pp
233-242.

(11) Koch, H.; Christiansen, O.; Kobayashi, R.; JargengenHelgaker, TChem. Phys. Lett.
1994, 228, 233.

(12) Hartono, A.; Sibiryakov, A.; Nooijen, M.; Baumgartnés.; Bernholdt, D.; Hirata, S.;
Lam, C.; Pitzer, R.; Ramanujam, J.; Sadayappan, P. Autah@peration Minimization of
Tensor Contraction Expressions in Electronic Structurke@ations.Proc. ICCS 2005 5th
International Conference on Computational Science, Atlanta, Georgia, USA, 2005; pp 155—

164.
(13) McCalpin, JIEEE Computer Society TCCA Newsletter 1995, 19-25.
(14) Whaley, R. C.; Petitet, A.; Dongarra, JParallel Computing 2001, 27, 3—35.

(15) Whaley, R. C.; Dongarra, J. Automatically Tuned Lindlgebra SoftwareSuper Computing
1998: High Performance Networking and Computing, 1998, CD-ROM Proceedings.

(16) Aho, A. V.; Lam, M. S.; Sethi, R.; Ullman, J. BCompilers. Principles, Techniques, and
Tools, 2nd ed.; Addison-Wesley, 2006.

(17) High Performance Computational Chemistry Group; 1999, NWChem, A computational
chemistry package for parallel computers, Version 3.3jfieadorthwest National Labo-

ratory.

23

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

(18) Janssen, C.; Schaefer, Hheoretica Chimica Acta 1991, 79, 1-42.

(19) Carter, L.; Gatlin, K. S. Towards an Optimal Bit-RewwBermutation ProgrankOCS’ 98:
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto,

California, USA, 1998; pp 544-555.

(20) Gatlin, K. S.; Carter, L. Memory Hierarchy Considevas for Fast Transpose and Bit-
ReversalsHPCA ' 99: Proceedings of the 5th International Symposium on High Performance
Computer Architecture, Orlando, Florida, USA, 1999; pp 33-43.

(21) Zhang, Z.; Zhang, XdAM J. Sci. Comput. 2000, 22, 2113-2134.

(22) Chatterjee, S.; Sen, S. Cache-Efficient Matrix Trasgmm. HPCA ’'00: Proceedings of
the Sxth International Symposium on High-Performance Computer Architecture, Toulouse,

France, 2000; pp 195-205.

(23) Kudriavtsev, A.; Kogge, P. Generation of permutatiémsSIMD processorsLCTES 05:
Proceedings of the 2005 ACM S GPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, Chicago, lllinois, USA, 2005; pp 147-156.

(24) Ren, G.; Wu, P.; Padua, D. Optimizing Data PermutationsSIMD Devices.PLDI '06:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and

Implementation, Ottawa, Ontario, Canada, 2006; pp 118-131.

(25) Yotov, K.; Li, X.; Ren, G.; Garzaran, M. J. S.; Padua, Bingali, K.; Stodghill, PProceed-
ings of the IEEE 2005, 93, 358—386.

(26) Yotov, K.; Pingali, K.; Stodghill, P. Think globallyearch locallylCS’05: Proceedings of
the 19th Annual International Conference on Supercomputing, Cambridge, Massachusetts,

USA, 2005; pp 141-150.

(27) Chen, C.; Chame, J.; Hall, M. Combining Models and Gdilepirical Search to Optimize

for Multiple Levels of the Memory HierarchyCGO '05: Proceedings of the International

24

Albert Hartono et al. Performance Opt. of Tensor ContracE&ps.

Symposium on Code Generation and Optimization, San Jose, California, USA, 2005; pp

111-122.

(28) Whaley, R. C.; Whalley, D. B. Tuning High Performancerids through Empirical Com-
pilation. Proceedings of the 2005 International Conference on Parallel Processing (34th
ICPP’ 2005), Oslo, Norway, 2005; pp 89-98.

25

