
Efficient Parallel Out-of-core Matrix Transposition�

Sriram Krishnamoorthy Gerald Baumgartner
Daniel Cociorva Chi-Chung Lam

P. Sadayappan
Department of Computer and Information Science

The Ohio State University
�krishnsr,gb,cociorva,clam,saday�@cis.ohio-state.edu

Abstract

This paper addresses the problem of parallel transpo-
sition of large out-of-core arrays. Although algorithms
for out-of-core matrix transposition have been widely
studied, previously proposed algorithms have sought
to minimize the number of I/O operations and the in-
memory permutation time. We propose an algorithm that
directly targets the improvement of overall transposition
time. The I/O characteristics of the system are used to
determine the read, write and communication block sizes
such that the total execution time is minimized. We also
provide a solution to the array redistribution problem for
arrays on disk. The solution to the sequential transposi-
tion problem and the parallel array redistribution prob-
lem are then combined to obtain an algorithm for the
parallel out-of-core transposition problem.

1. Introduction

This paper addresses the problem of parallel out-
of-core matrix transposition. The problem is viewed in
terms of two sub-problems: disk-based array redistribu-
tion, followed by concurrent independent uniprocessor
transposition of disk-based arrays. The same algebraic
framework is used for both steps. We first address the
sequential transposition problem, which has been previ-
ously studied.

Consider an � � � matrix that is stored in disk in
row-major order. The system has main memory, which
can hold � elements, where � � � �, � � ����.
The problem is to transpose the matrix stored in disk,
when only a part of the matrix can be brought into mem-
ory at any time. Applications that need to access the el-

� Supported in part by the National Science Foundation through the
Information Technology Research program (CHE-0121676)

ements of a matrix in column-major order transpose the
matrix in disk and then access the elements in it. Matrix
transpose is a key operation in various scientific appli-
cations. For example, the multidimensional Fast Fourier
transform (FFT) [2, 3] can be implemented as a series of
one-dimensional FFTs, one along each dimension. For
a matrix stored in disk in row-major order that is too
large to fit in memory, the most effective mechanism
is to transpose the matrix between the one-dimensional
FFTs.

Our primary motivation for addressing the parallel
out-of-core matrix transposition problem arises from the
domain of electronic structure calculations using ab ini-
tio quantum chemistry models such as Coupled Cluster
models. We are developing an automatic synthesis sys-
tem called the Tensor Contraction Engine (TCE) [18], to
generate efficient parallel programs from high level ex-
pressions for a class of computations expressible as ten-
sor contractions [4, 7, 6, 8]. Often the tensors (essen-
tially multi-dimensional matrices) are too large to fit in
memory and must be disk-resident.

The optimized parallel programs synthesized by the
tool often have to take as input large disk-resident ten-
sors created by other software packages, such as the
NWChem computational chemistry suite [14]. For ef-
ficient execution, the TCE-synthesized program might
need to store and accesses the disk-resident tensors
in a very different order than that used by the pro-
ducer program. Efficient transformation of the data from
the available format to the required format is required
through transposition and/or re-blocking. In addition,
when TCE-synthesized code is used on different ma-
chines, different transformations are required on the data
produced by packages like NWChem, requiring efficient
out-of-core matrix transposition and transformation al-
gorithms.

This problem has been widely studied in the litera-
ture. A simple in-place element-wise approach to trans-

pose the matrix is prohibitively expensive. The block
transposition algorithm transposes the array in a sin-
gle pass in ��� ���� I/O operations. An in-place trans-
position algorithm requiring ��� ����� disk accesses
was proposed by Eklundh [11]. This algorithm requires
at least two rows to fit in memory. Extensions to the
algorithm for rectangular matrices were presented in
[1, 16, 19]. Kaushik et al. [12] proposed an out-of-place
algorithm that improves upon these algorithms by re-
ducing the number of read operations. Suh and Prasanna
[17] reduced the in-memory permutation time by using
collect buffers, instead of in-memory permutation, in ad-
dition to reducing the number of I/O operations. Their
algorithm combines writes and collects the rows to be
permuted in subsequent passes.

All these studies use the number of I/O operations
as the primary optimization metric. Although the exe-
cution time of the solution provided has been improved
by all these efforts, the total execution time has not been
used as the primary metric for optimization. A reduction
in the number of I/O operations, in most cases, translates
to larger sizes of I/O blocks. The importance given to re-
ducing the number of I/O operations is due to the fact
that the seek time for the disk head is very large (of the
order of several milliseconds) compared to the per-byte
transfer time (of the order of microseconds or less). If
the I/O blocks read/written are relatively small, the total
number of I/O operations is indeed a suitable optimiza-
tion metric. However, when the I/O blocks get large, the
data transfer time becomes significant and can dominate
the total access time. Since previously proposed algo-
rithms for out-of-core transposition have focused on re-
ducing the number of I/O operations, they can become
sub-optimal when large block transfers are involved.

Cormen et al. [9] solve the problem based on the par-
allel disk model (PDM) [20]. PDM handles the read and
write block sizes as equivalent, while the I/O character-
istics of reads and writes can differ widely. PDM uses
the number of I/O operations as the metric, where the
size of each I/O is determined by the layout of data on
disk. It does not take into account the effect of read-
ahead and request reordering in the I/O subsystem.

All the algorithms in the literature determine the fun-
damental unit of I/O based on the size of the matrix, i.e.,
they are data-centric. The basic unit of I/O operation in
these algorithms is one row of the matrix or a multiple
thereof. They do not adapt to the I/O characteristics of
the system. In contrast, the approach proposed here takes
into account the empirically determined I/O characteris-
tics of the disk and file system in determining the param-
eters of the algorithm. The basic unit of I/O is not a row,
but is determined by the I/O characteristics and the in-
stance of the problem at hand. The execution time of the

algorithm on the system is estimated based on the ex-
perimentally observed I/O characteristics. The parame-
ters that minimize the execution time are chosen.

In this paper, we do not discuss the sequential trans-
position algorithm in detail due to lack of space. For a
detailed analysis, please refer to [13].

The paper is organized as follows. The I/O charac-
teristics of two systems are discussed in Section 2. In
Section 3 the transposition problem is formulated using
the matrix-vector product notation. The sequential trans-
position algorithm is described in Section 4. The algo-
rithm is extended to parallel systems in Section 5. Ex-
perimental results are presented in Section 6. Section 7
concludes the paper.

2. I/O Characteristics

We studied the variation of read and write access
times with changes in size and stride of I/O on a com-
modity PC (henceforth referred to as PC) and an HP
zx6000 workstation. Their configurations are shown in
Table 1. The PC and the HP zx6000 workstation are part
of a the IA32 and the Itanium 2 cluster, respectively, at
the Ohio Supercomputer Center (OSC) [15].

For both the systems we observe that above a par-
ticular block size the stride does not affect the per-byte
transfer cost. We expect this observation to hold across a
wide variety of systems. These block sizes, above which
the per-byte read and write times are not affected by the
stride of access, will henceforth be referred to as the
read and write thresholds respectively. These parame-
ters vary depending on the system under consideration
and the per-byte read and write costs can saturate at dif-
ferent block sizes.

An important consequence of this observation is that
if the thresholds are smaller than � , the size of the ma-
trix, fractions of a row can be read and written with-
out any additional penalty, irrespective of the stride of
access. This reduction in the read and write block size
in turn decreases the amount of work involved in trans-
posing an array as will be explained later. In the ex-
treme case, if each element is large enough to allow ef-
ficient I/O of individual elements, a simple single-pass
element-wise transposition would be efficient.

This observation also shows that for I/O sizes above
the threshold the number of I/O operations does not re-
flect the actual performance of the algorithm. An algo-
rithm might involve more I/O operations but be faster
than another algorithm with fewer I/O operations due to
this effect.

System Configuration
Processor Memory OS Compiler

commodity PC Dual AMD Athlon MP (1.533 GHz) 2GB linux 2.4.20 pgcc 4.0-2
HP zx6000 Dual Itanium-2(900 MHz) 4GB linux 2.4.18 gcc 2.96

Table 1. Configuration of the systems used for I/O characterization.

3. Matrix Vector Product Formulation of
Transposition Algorithms

In this section, matrix transposition algorithms are
formulated based on the matrix-vector notation used in
[10]. This section provides a generic formulation for
transposition algorithms.

Transposition of a matrix can be viewed as an inter-
change of the indices of the matrix.

� ��� �� � ��� ��

where � is the row index and � is the column index. This
is a particular instance of a general class of index trans-
formation algorithms.

Each element of the array on disk has a linear ad-
dress obtained by concatenating the column index bits
to the row index bits. This is the address upon which
the permutation is applied. The transformation of the ad-
dress vector using a permutation matrix corresponds to
the permutation of the address vector and hence the ma-
trix. The linear address of an element in the array con-
tains �� bits and hence the permutation matrix contains
�� rows.

The identity of the transformation is

�
	� �
� 	�

�
.

Matrix transposition is defined as the permutation of the
address vector �

�� � �

where T is the transformation matrix

�
� 	�
	� �

�
.

We use the following notation in the discussion.

�� �

�

 �
� �

�
(1)

��
��� �

�
� �

 �

�
(2)

Thus,��	�� 	�� is the desired permutation. Since the
entire array does not fit in memory, ��	�� 	�� is factor-
ized into a number of permutation matrices such that the
transformation effected by each of the matrices can be
done with the memory available.

Any out-of-core matrix transposition algorithm con-
sists of three phases — read, permute and write. Each
phase corresponds to a permutation matrix. These

phases are repeated on disjoint sets of data in the dif-
ferent steps of each pass. The algorithm might in-
volve many passes, each operating on the entire ar-
ray. Thus, out-of-core matrix transformation algorithms
are of the form

� � ��	�� 	�� �

����
�����

�����

where � is the permutation matrix corresponding to a
write,�� is a permutation matrix corresponding to a read
and �� corresponds to in-memory permutation. The al-
gorithms under this formulation read some data, permute
it in memory, and write the data to disk before reading
data for the next step in the same pass. � specifies the
number of passes. Thus each algorithm is defined by the
parameters ���� �� and ��, where the suffix � is used
to refer to the permutations in the �th pass. Each algo-
rithm can also have additional parameters.

Some restrictions apply to the possible values of �,
�� and ��. These restrictions are induced by the mem-
ory constraint involved in the algorithm. Each permuta-
tion matrix must correspond to a transformation of the
given matrix that can be done with the memory avail-
able. Thus, each step of the algorithm can operate on at
most � elements. In particular, �, �� and �� must be
expressed as

�� �
����� � 	� � � �

�� � 	����� � ��

� � ������ � 	� � � �

The algorithm reads � � �� elements and writes
 � �� elements in one I/O operation. Henceforth, we
use the term read(write) threshold to refer to �() and
the least significant �(�) rows of the permutation ma-
trix, interchangeably. The reference will be clear from
the context. Also note that �� can permute only data cor-
responding to elements in memory. Given these param-
eters for an algorithm it can be implemented as

Algorithm 1: Generic Transposition Algorithm
(1) for � � � to �� �
(2) for � � � to ������ � �
(3) Read M elements at address ���

� ���
/*Might involve multiple I/O operations*/

(4) Permute data in memory according to � �.
(5) Write M elements at address ����

/*Might involve multiple I/O operations*/

The read (write) may involve multiple I/O operations
each of size at least ��(��) elements.

For a discussion of performance of different transpo-
sition algorithms based on these I/O characteristics refer
to [13].

4. Sequential Transposition Algorithm

Our algorithm is based on estimating the total trans-
position time and choosing parameters for the algorithm
that optimize it. The observation that an increase in I/O
size beyond the threshold does not influence the perfor-
mance of the algorithm is exploited. There is a trade-off
between the I/O size and the number of passes the al-
gorithm requires. The smaller the I/O size, the more the
algorithms approach the block-transposition algorithm
and hence run in a smaller number of passes. However,
reducing the I/O size below the threshold increases the
I/O time above the minimum possible.

The transposition time can be written as

Timetotal �
������
���

TimeRead	TimePermute	TimeWrite

The read and write times for each pass can be com-
puted from the stride and block size of the I/O opera-
tion. Estimating the permutation time is more difficult
as it depends on the exact permutation involved. Unlike
the I/O characteristics of a system, which can be deter-
mined independent of any specific algorithm, the permu-
tation characteristic for each algorithm has to individu-
ally determined. Here, we determine the best parameters
for the algorithm that optimize the total I/O time. The
characteristics of the algorithm allow for optimizing the
in-memory permutation, as will be discussed later.

The algorithm has three parameters, namely the fac-
tors to be permuted in each pass, the read and write block
size and the number of passes. The read and write block
sizes are chosen close to the threshold in order to opti-
mize the total I/O time. The most common case in which
the I/O block size is chosen to be smaller than the thresh-
old is when such a choice reduces the number of passes
and offsets the additional cost incurred due to the smaller
I/O size.

The I/O permutations are of the form
� 	� , while
the required permutation ��	�� 	�� involves exchang-
ing the upper and lower � address elements in the ad-
dress vector. The nature of the I/O permutation pre-
vents any effective permutation from being done in the
read and write phases. The I/O phases ‘gather’ data to
be permuted and ‘scatter’ the result of the permuta-
tion. In previous algorithms, the basic unit of I/O was
a row. In our algorithm, the I/O block size could be
smaller than � , say � � ��, in which case the ex-
change ��
 � � �� � ��
 � 	 � � �� can be done
in the read and/or write phases. This reduces the number
of address vector elements to be permuted in the permu-
tation phase and might result in a reduction in the num-
ber of passes, and hence significantly reduce transposi-
tion time.

Our algorithm is formulated as shown below. The unit
of each read and write is �� and �� elements respec-
tively. Except in the first pass, the algorithm reads� el-
ements in each read operation. In the first pass, the read
and write phases permute the address vector elements
��
 �	 �� �� and ��
 �	�� ��, respectively, to their
appropriate positions.

The conditions to be satisfied are:

� � �
� � � � �
� � �

� � �
Case 1: � � �

�� � ������ ��� ��
� � ��
�� � �	���
�� � �	��� � ��	�� ��	���� 	����
� � �����	���� 	��� 	����� 	��

Case 2: � � �

�� � ������ ��� ��
� � ��
�� � �	��� � ��	�� 	����� 	��
�� � �	��������� � ��	�� ��	���� 	����
� � ���	���� 	��� � ��	�� 	������ 	��

� � � � �� �

�� � �� � ��� mod ��� �� if � � �� � and
�� � ��� mod ��� �� �� �

�� � 	�� � ������� ��
 otherwise
��� �

�	��
	�� �	

�� � �	���
�� � �	���������� � ��	�� � ��	���
���� � 	�����

	�
� �
� � �	��� � ��	���� � 	��������� � 	����

	��

With increasing memory size, a modification of the
I/O parameters provides diminishing improvements, un-
less it results in a reduction in the number of passes.
Greater improvements can be obtained if the additional
memory available is used to improve permutation time.
Kaushik et al. perform an in-place in-memory permu-
tation. Suh and Prasanna use collect buffers to collect
data to be written in each write operation. The locality
of the permutation operation can be improved by opti-
mizations such as blocking.

We use collect operations to perform the permuta-
tion, as this was empirically found to take less time
than in-memory permutation. The permutation involved
in the first pass is similar to transposition. Since the
naive element-wise approach or the collect operation
have poor cache performance, the permutation was done
out-of-place in-memory. The I/O size was further re-
duced in order to maintain the number of passes.

5. Parallel Out-of-Core Matrix Transposi-
tion

In this section, the problem of transposing an out-
of-core array distributed among multiple processors is
discussed. Each processor has a local disk and the ar-
ray is distributed among the processors in a row-blocked
fashion. The required distribution of the transposed ar-
ray among the processors is specified.

In the following discussion, we first formulate the
representation of an array distributed among multiple
processors. Then an algorithm is provided for redis-
tributing out-of-core arrays in a parallel system. To our
knowledge the problem of parallel out-of-core array re-
distribution has not been addressed previously.

The array redistribution mechanism and the sequen-
tial transposition algorithm are combined to describe
the out-of-core transposition algorithm for arrays dis-
tributed among multiple processors.

5.1. Formulation for Arrays Distributed among
Multiple Processors

The arrays are assumed to be distributed in a regular
fashion so that some of the elements in the address vec-
tor represent the processor identifier. This corresponds to
a mapping of the elements of the array to a sequence of
processors. A row-blocked distribution is obtained when
the most significant elements in the address vector repre-
sent the processor identifier. A cyclic distribution is ob-
tained when the least significant elements of the address
vector represent the processor identifier.

We define the linear address vector of an element in
the array to be the concatenation of the address vector of

the element in the local disk to the processor identifier.
This view preserves the notion of contiguity of elements
which differ in the lower most elements of the address
vector, analogous to the sequential formulation. Hence
the formulation can represent read and write thresholds
in the address vector and the access pattern that can take
advantage of prefetching as well.

Given that the uppermost elements in the linear ad-
dress vector correspond to the processor identifier, the
distribution of the array among multiple processors cor-
responds to choosing a set of elements in the address
vector to become the uppermost elements. Hence array
distribution among multiple processors can be viewed
as a permutation of the linear address space of the ar-
ray. The identity of array distribution is 	�, which cor-
responds to a row-blocked distribution. Any other dis-
tribution of data among processors is viewed as a per-
mutation on the row-blocked distribution. For example,
a cyclic distribution of an array among two processors
corresponds to the following permutation:

�
� �

	����� �

�

5.2. Array Redistribution Problem

The array redistribution problem is stated as fol-
lows: Given an array distributed among processors, rep-
resented by a permutation matrix, achieve a target distri-
bution corresponding to a new permutation.

The array redistribution problem brings with it an-
other cost factor in the form of communication. Com-
munication cost varies linearly and is modeled as �� 	
� � ��, where �� is the startup cost, � the message size
and �� the per-byte transfer cost. Depending on the pa-
rameters �� and �� of a communication protocol, be-
yond a message size �, the transfer cost dominates the
startup cost and the average per-byte cost converges to a
constant. The message size beyond which there is little
change in the communication cost is called the commu-
nication threshold ��. This is the minimum message size
for communication. Note that as in the case of the read
and write thresholds, the message size chosen for a spe-
cific instance of an algorithm may be below the thresh-
old, if it cannot be improved upon. The communica-
tion characteristics of various systems have been widely
studied and we do not discuss them here. For the follow-
ing discussion, it is assumed that there are �
 processors.
The uppermost � rows of any permutation matrix corre-
spond to the elements that constitute the processor iden-
tifier. The lowermost � elements of the address vector
correspond to the communication threshold. The terms
read, write and communication thresholds will be used
interchangeably to refer to the size of I/O and �, � and

� least significant elements in the address vector respec-
tively. The reference will be clear from the context.

The formulation of the parallel redistribution involves
four permutation matrices — read, write, in-memory
permutation and communication. Extending the tem-
plate for the formulation of read, write and in-memory
permutation discussed in Section 3 to the parallel do-
main we get

�� � 	
 �
������
 � 	� � � �
�� � 	����� ���

� � 	
 � �������
 � 	� � � �

which indicates that ��, � and �� cannot permute the
elements corresponding to the processor identifier. Only
communication can permute the elements corresponding
to the processor identifier. The permutation correspond-
ing to communication is of the form

� �

�
������ �

� 	�

�

where � describes the permutations done by communi-
cation.

Note that there are some restrictions on � similar to
those on ��, � and �� as discussed in Section 3. �
cannot permute between address elements correspond-
ing to in-memory and out-of-memory data (the elements
corresponding to the processor identifier are special and
will be discussed below). Any permutation except those
involving the the processor identifier can be performed
by �� and �. Therefore, we place additional restric-
tions on �, so that it can only involve permutations re-
quired to change the processor identifier. In most cases,
� is smaller than � and � and we assume the same.

Array redistribution can involve permutations of
three kinds. First is the exchange of elements that
are part of the processor identifier. This effect is
achieved by an exchange of all the data between pro-
cessors. An equivalent effect could be achieved by
relabeling the processors. But this does not obvi-
ate the problem as the same situation arises when
there are multiple arrays which are aligned with re-
spect to one another. This, or other constraints, might
involve such an exchange that cannot be handled by re-
labeling.

Second is the exchange involved when elements
within the communication threshold are to become part
of the processor identifier. Any permutation involv-
ing the elements beyond the communication threshold is
performed by an all-to-all personalized collective com-
munication operation. If the number of elements within
the communication threshold that are to become el-
ements corresponding to the processor identifier is
greater than � � �, then a sequence of in-memory per-
mutation and communication operations are carried

out. Each in-memory permutation operation moves as
many elements from within the communication thresh-
old to be beyond the threshold as possible. These el-
ements are then made part of the processor identifier
by a scatter operation. This process is repeated un-
til there are no more elements in the least significant
� address elements that are to be part of the proces-
sor identifier.

Thus any element already part of the processor iden-
tifier or within the least significant � elements (mem-
ory size), that is to be part of the processor identifier
can be made part of the processor identifier in a single
pass, where a single pass is defined as all operations be-
tween the read of a data element from disk and its write
to disk.

A more complicated operation is required when try-
ing to permute the elements corresponding to the pro-
cessor identifier and the address elements which are be-
yond the least significant � elements. This involves a
collect operation by each processor. The difference in
handling this case and the previous two cases is that in
the previous two cases all processors do the same oper-
ations throughout each pass. In this case, each processor
collects all the data in memory from certain other pro-
cessors in turn, in different iterations of the loop. But
since all the collected data cannot be stored in mem-
ory, the data received from every processor is written
to disk. This breaks the clear demarcation between the
communication and write operations as they become in-
terleaved. Since handling this case essentially involves
writing the data to disk, this case is handled last.

Hence all communication required to handle array re-
distribution can be done in a single pass. But note that
this may not be the most efficient way of performing the
array redistribution. In handling the last case, each pro-
cessor might receive data from a different set of pro-
cessors in different iterations. Each receive is separated
by a write to disk. Hence the communication and write
times cannot overlap and could lead to very poor exe-
cution time especially when the number of processors is
large.

We handle the last case by a sequence of in-memory
permutation and write operations which move the ad-
dress elements above the communication threshold but
within the memory size. These are now handled as in the
second case. This would increase the number of passes,
but the total execution time might be reduced as the com-
munication and write times overlap. The exact operation
is determined by the relative cost of communication and
I/O in the system under consideration and by determin-
ing the sequence of operations that minimizes the over-
all execution time.

5.3. Combining Array Redistribution and Se-
quential Matrix Transposition

In this section, we combine the mechanisms con-
sidered until now to derive an algorithm for transpos-
ing out-of-core matrices which are distributed in a row-
blocked fashion among multiple processors.

The only major change is in the first pass, into
which the array distribution phase is merged. Subse-
quent passes are similar to that in the sequential case and
involve only local permutation. The first pass for the par-
allel algorithm is as follows:

� Read as in sequential case (��).

� Perform in-memory permutation as in sequential
case ��.

� Perform array distribution, handling the different
cases discussed above.

� Write data to disk, if this has not yet been done as
part of the previous step.

Note that the parallel case does not lead to an increase
in the number of passes in the form of additional reads
or writes.

6. Experimental Results

In this section, we discuss the results obtained from
implementing the parallel transposition algorithm. For
results pertaining to sequential transposition, please re-
fer to [13]. The transposition times were measured on
the Itanium 2 cluster and on the IA32 cluster at the Ohio
Supercomputer Center. Each machine in the Itanium 2
cluster is an HP zx6000 workstation and each machine
in the IA32 cluster is the commodity PC discussed in
Section 2. Both clusters use the Myrinet [5] intercon-
nection network. The implementation was out-of-place
and used an auxiliary array.

The transposition time for different memory sizes and
numbers of processors was measured. Tables 2 and 3
show the transposition times on the Itanium 2 cluster
for array sizes of 16GB (�=64K) and 64GB (�=128K).
Table 4 shows the transposition times on the IA32 clus-
ter for an array size of 16GB (�=64K).

In both systems the read threshold was much higher
than � . So the execution was influenced mainly by the
write threshold. The results show that the effect of mem-
ory size on the execution time is more pronounced for
specific memory sizes. This is due to a reduction in the
number of passes required. Note that even in cases with-
out a significant change in execution time, correspond-
ing to an increase in memory size the execution time im-
proves. This is due to a reduction in the stride of writes.

#procs Memory size (MB)
16 32 64 128 256 512

1 3406 3322 2265 2230 2003 2079
2 1536 1127 962 949 984 1006
4 740 542 484 483 475 474

Table 2. Execution time, in seconds, on
the Itanium 2 cluster. Array size is 16GB
(N=64K).

#procs Memory size (MB)
16 32 64 128 256 512

4 3448 3252 3213 2102 2907 2801
8 1470 1533 1469 921 985 1007

Table 3. Execution time, in seconds, on
the Itanium 2 cluster. Array size is 64GB
(N=128K).

The write block size is reduced to be below the write
threshold if it reduces the total execution time, for ex-
ample in Table 2 for memory sizes of 128MB and 64MB
and one processor.

The parallel algorithm scales well with the number of
processors. A slightly superlinear speedup can be seen
in some cases. This is due to improved cache locality in
access. Note that for the 4 processor case, the portion
of each array in a processor is 4GB, equal to its mem-
ory size. But since there are three arrays the arrays are
not fully cached in memory, making the results depen-
dent on the caching mechanism. In some cases, an in-
crease in the number of processors reduces the number
of passes thus significantly reducing the execution time.
This effect can be observed in Table 3 for a memory size
of 64MB.

#procs Memory size (MB)
16 32 64 128 256 512

1 6448 5680 3229 4138 4253 4056
2 4009 2059 2185 2182 2280 2171
4 2008 981 1135 1167 1186 1140
8 995 583 664 688 638 517

Table 4. Execution time, in seconds, on the
IA32 cluster. Array size is 16GB (N=64K).

7. Conclusions

In this paper, we have addressed the efficient parallel
out-of-core transposition of matrices that are too large
to fit in main memory. The problem was cast as a com-
position of two sub-problems: disk-based array redistri-
bution, followed by concurrent independent uniproces-
sor transposition of disk-based arrays. The same alge-
braic framework was used for both steps. By viewing
the transposition problem as an index permutation on the
addresses of matrix elements, effective use was made of
available main memory in optimizing the overall trans-
position time, rather than reducing the number of I/O
operations, as previous algorithms have done. A solu-
tion to the out-of-core array redistribution problem was
then provided using the same algebraic framework, com-
bining to provide an algorithm for parallel out-of-core
matrix transposition. Experimental measurements were
provided, demonstrating the scalability of the proposed
approach and the limited communication overhead. Ex-
tensions of this framework are being pursued for effi-
cient index permutation of multi-dimensional arrays on
parallel systems.

Acknowledgments

We would like to thank the Ohio Supercomputer Cen-
ter (OSC) for the use of their computing facilities.

References

[1] W. O. Alltop. A computer algorithm for transposing
nonsquare arrays. IEEE Transactions on Computers,
24(10):1038–1040, 1975.

[2] G. L. Anderson. A stepwise approach to computing the
multidimensional fast Fourier transform of large arrays.
IEEE Transactions on Acoustics and Speech Signal Pro-
cessing, 28(3):280–284, 1980.

[3] D. H. Bailey. FFTs in external or hierarchical memory.
Journal of Supercomputing, 4(1):23–35, 1990.

[4] G. Baumgartner, D. Bernholdt, D. Cociorva, R. Harrison,
S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam,
and P. Sadayappan. A high-level approach to synthesis of
high-performance codes for quantum chemistry. In Pro-
ceedings of Supercomputing 2002, 2003.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, February 1995.

[6] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. Bernholdt, , and R. Har-
rison. Space-time trade-off optimization for a class of
electronic structure calculations. In Proc. of ACM SIG-
PLAN 2002 Conference on Programming Language De-
sign and Implementation (PLDI), 2002.

[7] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner,
C. Lam, P. Sadayappan, and J. Ramanujam. Global com-
munication optimization for tensor contraction expres-
sions under memory constraints. In Proc. of 17th Inter-
national Parallel & Distributed Processing Symposium
(IPDPS), 2003.

[8] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. Bernholdt, and R. Harri-
son. Towards automatic synthesis of high-performance
codes for electronic structure calculations: Data locality
optimization. In Proc. of the Intl. Conf. on High Perfor-
mance Computing, 2001.

[9] T. H. Cormen, T. Sundquist, and L. F. Wisniewski.
Asymptotically tight bounds for performing BMMC per-
mutations on parallel disk systems. SIAM Journal on
Computing, 28(1):105–136, 1998.

[10] A. Edelman, S. Heller, and S. L. Johnsson. Index
transformation algorithms in a linear algebra framework.
IEEE Transactions on Parallel and Distributed Systems,
5(12):1302–1309, 1994.

[11] J. O. Eklundh. A fast computer method for matrix trans-
posing. IEEE Transactions on Computers, 20(7):801–
803, 1972.

[12] S. D. Kaushik, C.-H. Huang, R. W. Johnson, P. Sadayap-
pan, and J. R. Johnson. Efficient transposition algo-
rithms for large matrices. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing, pages 656–
665. ACM Press, 1993.

[13] S. Krishnamoorthy, G. Baumgartner, D. Cociorva,
C. Lam, and P. Sadayappan. On efficient out-of-core ma-
trix transposition. Technical Report OSU-CIRSC-9/03-
T52, School of Computer and Information Science, The
Ohio State University, Sept 2003.

[14] NWChem. http://www.emsl.pnl.gov:2080/docs/nwchem/
nwchem.html.

[15] Ohio Supercomputing Center. http://www.osc.edu.
[16] H. K. Ramapriyan. A generalization of Eklundh’s algo-

rithm for transposing large matrices. IEEE Transactions
on Computers, 24(12):1221–1226, 1975.

[17] J. Suh and V. K. Prasanna. An efficient algorithm for
out-of-core matrix transposition. IEEE Transactions on
Computers, 51(4):420–438, April 2002.

[18] Synthesis of High-Performance Algorithms for Elec-
tronic Structure Calculations. http://www.cis.ohio-
state.edu/ saday/TCE/index.html.

[19] R. E. Twogood and M. P. Ekstrom. An extension of Ek-
lundh’s matrix transposition algorithm and its application
to digital signal processing. IEEE Transactions on Com-
puters, 25(12):950–952, 1976.

[20] J. S. Vitter and E. A. M. Shriver. Algorithms for paral-
lel memory I: Two-level memories. Algorithmica, 12(2–
3):110–147, 1994.

