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Abstract

C�� uses inheritance as a substitute for subtype polymorphism� We give examples where this makes

the type system too in�exible� We then describe a conservative language extension that allows a program�

mer to de�ne an abstract type hierarchy independent of any implementation hierarchies� to retroactively

abstract over an implementation� and to decouple subtyping from inheritance� This extension gives the

user more of the �exibility of dynamic typing while retaining the e�ciency and security of static typing�

With default implementations and views �exible mechanisms are provided for implementing an abstract

type by di�erent concrete class types� We �rst show how the language extension can be implemented in

a preprocessor to a C�� compiler� and then detail and analyze the e�ciency of an implementation we

directly incorporated in the GNU C�� compiler�

� Introduction

The basic ideas of object�oriented design and programming are to group data structures� together with the
functions operating on them� into new types� to encapsulate the data� and to keep interdependencies between
types thus created as few as possible�

C��� as well as most other typed object�oriented languages� provides the class construct for de�ning and
implementing types� In addition� inheritance is provided as a mechanism to reuse the code of existing classes
and to de�ne a subtype relationship between classes� The overloading of a single language construct� the
class� for de�ning a type� for implementing a type� as the basis for code reuse� and as the basis for subtyping�
not only limits the expressiveness of type abstraction and subtyping� but also the �exibility of inheritance
for code reuse� To illustrate why this is the case� we �rst de�ne some terminology and follow with examples
of the limitations of classes�

��� Types

Semantically� a type can be viewed as a set of values ����� In most traditional programming languages� such
a set is characterized implicitly by providing an implementation for the type� e�g�� using a primitive type the
hardware provides or using a user�de�ned record type� However� there is another way to characterize a type	
by specifying base elements� operations on the type� and axioms limiting the behavior of those operations�

�A slightly improved version of this paper appeared in Software�Practice � Experience� ���������	��
�
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For example� a stack could be speci�ed by emptystack as a base element� the operations push� pop� and top

with the function signatures

stack emptystack ���

stack push �T� stack��

stack pop �stack��

T top �stack��

where T is the type of the stack elements� and the axioms

pop �emptystack ��� �� ERROR

pop �push �elem� stack�� �� stack

top �emptystack ��� �� ERROR

top �push �elem� stack�� �� elem

A type speci�ed in this way is called an abstract type� In contrast� a type de�ned by an implementation is
termed a concrete type� Since an abstract type lacks a representation� it must be implemented by a concrete
type whose operations satisfy the function signatures and the axioms of the abstract type� For the purpose
of this paper� we de�ne type abstraction to be the process of abstracting over a preexisting or yet to be
de�ned implementation� yielding an abstract type� Using abstract types allows a program to be written
independent of the implementation of types� Implementations of abstract types� i�e�� concrete types� can
then be exchanged or added later without a
ecting the program� For example� a program written in terms
of an abstract stack type can use any stack implementation� such as an implementation based on arrays or
one based on linked lists�

Most object�oriented languages don�t allow the de�nition of abstract types in this manner� Checking
whether an implementation of an abstract type satis�es the axioms could not be done in a compiler since it
is undecidable� In C��� the closest approximation is to de�ne an abstract class with the implementations as
subclasses� Since implementations are required to be subclasses of the abstract class� �exibility in structuring
type hierarchies is lost� An example below demonstrates this point�

The C�� extension we present in this paper allows� instead� the de�nition of a signature type� an abstract
type without axioms� independent of any class hierarchy� Having a language construct for de�ning a type
separate from the construct used to implement a type allows greater �exibility in designing type hierarchies�

��� Subtype Polymorphism

Polymorphism is the potential for the same variable in a program to refer to values of di
erent concrete types
at di
erent points in time� Cardelli and Wegner ���� distinguish four kinds of polymorphism	 parametric
polymorphism� subtype polymorphism� overloading� and coercion�

Some forms of overloading and coercion appear in nearly every programming language� with relatively
strong support in C��� Parametric polymorphism� which allows functions to work over a potentially in�nite
range of argument types� is mostly found in functional languages� such as ML ��� ��� and Haskell ����
Generics in Ada ��� and templates in C�� ���� ��� provide a limited form of parametric polymorphism as
well�

The form of polymorphism relevant to this paper is subtype polymorphism� or subtyping for short� It
is found in some form in most strongly typed object�oriented languages� In subtype polymorphism� the
di
erent concrete types to which a variable can refer are limited to be subtypes �according to some subtype
relationship between types� of the declared type of the variable�

Informally� a type t� is a subtype of a type t� if a value of type t� can be used wherever a value of type t�

is expected� In C��� as in many other typed object�oriented languages� the subtype relationship is de�ned
by the inheritance hierarchy� and �subtype� is synonymous with �subclass�� In object�oriented languages� the
subtype relationship is seldom extended to builtin types and function types�

Having the subtype relationship based on inheritance can severely limit subtyping� To implement abstract
classes� the implementation classes are typically made subclasses of the abstract classes� This requires
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designing the inheritance hierarchy with implementation considerations in mind and� therefore� causes a loss
of freedom in de�ning the subtype relationship� An example below demonstrates this point� It is possible to
program around the problem by duplicating code or by writing forwarding classes� but both are cumbersome
for the programmer�

In our language extension� we provide a mechanism to achieve subtype polymorphism based solely on the
member function types �i�e�� the signature� the structure� or the interface� of a class� independent of the class
hierarchy� Subtyping de�ned this way is more general and� together with a separate language construct to
declare a signature type� provides more freedom in de�ning type hierarchies than with classes alone� To make
the language extension a conservative extension of C��� we use subtyping based on class interfaces only in
connection with signatures� Although the extension is speci�c to C��� any statically typed object�oriented
language can be extended in a similar way�

The next section further illustrates the problems that are caused by using inheritance for subtyping
purposes� We follow with a section explaining the design of the language extension� Next� following some
examples� we describe two implementations for translating signatures into C�� and assembly language�
respectively� and analyze the run�time cost of the latter� All the type checking is done at compile time in
both implementations� In the former implementation� the cost of calling signature member functions is two
function calls� one of which is virtual� while in our GNU C�� implementation it is a few machine instructions
in addition to the cost of only one virtual function call�

� Limitations of Classes

In this section� we present some examples that demonstrate the limited use of classes for type abstraction
and subtyping� The last example also shows that by overloading the use of inheritance� its possibilities for
code reuse have to be restricted in order not to break subtyping�

��� X�Windows Object Manager

A practical example� illustrated in ����� shows that inheritance� as a substitute for subtype polymorphism�
is not �exible enough in dealing with multiple implementations of an abstract type�

Imagine two libraries containing hierarchies of classes for X�Windows display objects� One hierarchy is
rooted at OpenLookObject and the other at MotifObject� Further suppose all the classes in each hierarchy
implement a display�� and a move�� member function� For the sake of argument� assume source code is
not available for the two libraries� only header �les and binaries are provided� The two implementations�
therefore� cannot be modi�ed to retroactively inherit from a common base class� Problems arise when when
constructing a display list that can contain objects from both class libraries simultaneously �

One solution would be to build the list as a discriminated union �i�e�� union plus tag �eld� of pointers
or references to the base class of each hierarchy� to set the discriminant on each assignment and to select
the proper reference each time an operation in invoked� The type tag is needed to determine whether to
call displayList�i��pMotifObject�	display�� or displayList�i��pOpenLookObject�	display��� The
inelegance of this solution should be apparent�

In C��� as in other languages� multiple inheritance ���� can also be used to solve this problem� If an
abstract class is constructed that de�nes the operations display�� and move��� a set of new classes� each
corresponding to an existing library class� can be constructed� such that each new class inherits both from
the corresponding original library class and the abstract class� The implementation of the methods in the
new classes can just forward the operation to the implementation in the original library class� In C��� the
task of creating these classes can be simpli�ed using templates ���� ���� However� even with templates this
option entails substantial software engineering costs� Building all the extra classes is tedious at best� and
clutters the program name space with a super�uous set of new class names�

The di�culty in creating a display list that can contain both MotifObjects and OpenLookObjects is
that C�� constrains the type of an object reference or pointer to a class� providing only one mechanism
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�inheritance and virtual functions� to achieve the needed polymorphism� Consequently� even if every class
in both libraries implements the display�� and move�� functions with the same interface� it cannot be
expressed in C�� that this is the only requirement for addition to the display list and for manipulation of
objects on the list�

��� Computer Algebra

An example from computer algebra similar to the one found in ��� demonstrates how a complex type hierarchy
cannot be modeled and implemented by a class hierarchy� In computer algebra� the distinction between
abstract types and concrete types arises naturally� Typical abstract types are Group� Ring� Field� or
EuclideanDomain� while typical concrete types are Integer� Fraction� or DistributedPolynomial� To
maintain these di
erences� abstract and concrete types should not be pressed into the same class hierarchy
of an object�oriented language� Otherwise� code duplication is required�

Consider� for example� the abstract types GeneralMatrix� NegativeDefiniteMatrix and Orthogonal�

Matrix� Both negative de�nite matrices and orthogonal matrices are subtypes of general matrices since
they have some functions� like inverse��� that are not available for general matrices� On the other hand�
there might be several di
erent implementations of matrices� such as two�dimensional arrays �DenseMatrix��
lists of triples �SparseMatrix�� or matrices in BandMatrix form� Assuming only single inheritance� pressing
these implementations into the same hierarchy as the abstract types requires duplication of code to use
the appropriate implementation for both negative de�nite matrices and orthogonal matrices� Two copies of
the dense matrix implementation� DenseNegativeDefiniteMatrix and DenseOrthogonalMatrix� would be
needed� as well as two copies each of the sparse matrix and band matrix implementations�

Code duplication could be avoided by using multiple inheritance� Each of the three implementation
classes would then inherit from each of the three abstract classes� However� a problem arises when adding
a subclass to one of the matrix implementations� Assume the class PermutationMatrix is to be added as
a subclass of SparseMatrix in order to implement multiplication of permutation matrices more e�ciently�
Since a permutation matrix is positive de�nite� the new class can only be used as an implementation of
GeneralMatrix and OrthogonalMatrix� No matter how the classes are structured� either code is duplicated�
or PermutationMatrix is incorrectly allowed as an implementation of NegativeDefiniteMatrix�

Similar arguments have been presented in the literature to show that the collection class hierarchy of
Smalltalk��� ���� is not appropriate as a basis for subtyping� While the problem does not arise directly
in Smalltalk���� since it is dynamically typed� it becomes an issue when trying to make Smalltalk�
�� statically typed while retaining most of its �exibility� Proposed solutions include factoring out the
implementation aspect of classes into prototypical objects ���� and factoring out the type aspect into interfaces
���� ����

��� Doubly Ended Queues

Inheritance is not only an inadequate mechanism for achieving subtyping� If inheritance is used to de�ne
a subtype relationship� it can either make subtyping unsound or limit the �exibility of inheritance for code
reuse�

An example similar to one in ���� illustrates this point� Consider two abstract types Queue and DEQueue

�doubly ended queue�� The abstract type DEQueue provides the same operations as Queue and in addition
two operations for enqueuing at the head and for dequeuing from the tail of the queue� Therefore� DEQueue
is a subtype of Queue�

For implementing Queue and DEQueue� the easiest way is to structure the inheritance hierarchy opposite
to the type hierarchy� A natural choice for implementing a doubly ended queue is to use a doubly linked
list� A queue implementation could then just inherit the doubly ended queue implementation and ignore� or
hide� the additional operations�

For the type system to be sound it is not possible to de�ne a subtype relationship based on inheritance
and also allow to hide operations of a superclass ����� Therefore� most object�oriented languages choose
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instead to disallow inheriting only part of a superclass and to restrict the use of inheritance for code sharing
to situations where there is also a subtype relationship�

� Design of New Language Constructs

We turn now to describing our language extension and illustrating how it addresses the problems described
above� The key language construct added to support type abstraction in C�� and to allow separating
subtyping from inheritance is called a signature� Signatures� in this language extension� are related to types
in Russell ����� signatures in ML ���� ���� type classes in Haskell ���� de�nition modules in Modula��
���� interface modules in Modula�� ����� abstract types in Emerald ���� type modules in Trellis�Owl
����� categories in Axiom ���� and its predecessor Scratchpad II ���� ���� and types in POOL�I ����

In this section� we specify syntax and semantics of signatures� signature pointers� and signature references�
We then show how signatures allow the introduction of subtype polymorphism into C�� independent of the
inheritance mechanism� For the remainder of this section� we discuss aspects of the language extension that
allow a smooth integration of signatures with the rest of C���

��� Signatures

For simplicity� the syntax of signature declarations is nearly the same as that of class declarations� The
di
erences are

� the keyword signature is used instead of class or struct�

� only type declarations� constant declarations� member function declarations� operator declarations� and
conversion operator declarations are allowed� i�e�� a signature cannot have constructors� destructors�
friend declarations� or �eld declarations�

� the visibility speci�ers private� protected� and public are not allowed� neither in the signature body
nor in the base type list�

� signature base types have to be signatures themselves �similarly� a signature cannot be the base type
of a class��

� the type speci�ers const and volatile are not allowed for signature member functions� and

� storage class speci�ers �auto� register� static� extern�� the function speci�ers inline and virtual�
and the pure speci�er �
 are not allowed�

In other words� a signature contains only public interfaces�
The reason for not allowing the type speci�ers const and volatile is that� semantically� they are storage

location speci�ers and are meaningless for member functions� The function speci�ers inline and virtual

and the pure speci�er �
 are only needed for classes where member function declarations serve to de�ne both
an interface and an implementation� For signature member function declarations they would be meaningless�

Like a class declaration� a signature declaration de�nes a new C�� type� For example� the signature
declaration

signature S �

typedef int t�

t � f ���

int g �t ���

S  h �t ���

��
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de�nes a signature type S with member functions f� g� and h�
Instead of using a signature� the type S above could have been de�ned just as well as an abstract class�

i�e�� a class containing pure virtual member function declarations ����� The behavior of both implemen�
tations would be equivalent� However� if the type hierarchy becomes more complex� it can no longer be
modelled precisely with a class hierarchy as shown in the earlier computer algebra example� Unlike when
using abstract classes� a di
erently structured signature hierarchy� separate from the class hierarchy� can be
constructed� enabling the creation of more complex type hierarchies and allowing the decoupling of subtyping
and inheritance� Finally� while an abstract class cannot be retro�tted on top of an existing class hierarchy
without recompiling all existing source �les� signatures can easily be de�ned as type abstractions of existing
classes� This both improves C���s capabilities for reusing existing code and provides a better design tool
for specifying abstract types independent of their implementation�

��� Signature Pointers and References

Since a signature type declaration does not provide enough information to create an implementation of that
type� it is not possible to declare objects of a signature type� In order to associate a signature type with an
implementation� a signature pointer or a signature reference is declared and assigned the address of some
existing class object� Signature pointers and signature references can thus be seen as run time interfaces
between abstract types �or signature types� and concrete types �or class types��

Consider the following declarations	

signature S � �� ��� �� ��

class C � �� ��� �� ��

C o�

S � p � o�

To type check the initialization of the signature pointer p or an assignment to p� the compiler has to verify
that the implementation C satis�es the interface S� or in other words� that the class type C conforms to the
signature type S� The conformance check� which is de�ned below� also de�nes a subtype relationship� In this
example� the signature of C is a subtype of S if and only if C conforms to S�

A signature pointer or reference can also be assigned to� or initialized from� another signature pointer or
reference� In this case� the right hand side signature needs to conform to the left hand side signature� or� in
other words� the right hand side signature has to be a subtype of the left hand side signature�

A signature pointer cannot be assigned to a class pointer without an explicit type cast since� in general�
the class of the object pointed to by the signature pointer is unknown� What can be done is to implicitly
convert a signature pointer to a pointer of type void�	

S � p � new C�

void � q � p�

The result is a pointer to the class object� but without the type information� With an explicit type cast�
a signature pointer can be assigned to a class pointer but� like casting down the class hierarchy� this is an
unsafe operation� The same holds for signature references�

��� The Conformance Check

The conformance check is the type check performed for initializing or assigning to a signature pointer or a
signature reference� There is no run�time penalty involved� the conformance check can be done at compile
time�

To test whether a class C conforms to a signature S� it is necessary to compare the structures of C and S

recursively� A class C is said to conform to a signature S if

� for every member function in S� there is a public member function in C with the same name and with
conforming return and argument types�
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� for every operator and every conversion operator declared in S� there is a corresponding public decla�
ration in C with conforming return and argument types�

� for every type de�nition in S� there is a public type de�nition of the same name and conforming
structure in C� and

� for every constant declaration in S� there is a constant declaration of the same name and of conforming
type in C�

A class member function C��f conforms to a signature member function S��f if

� the type of every argument of S��f conforms to the type of the corresponding argument of C��f and

� the return type of C��f conforms to the return type of S��f�

As the base case of the recursive de�nition of conformance� every type conforms to itself� Operators and
conversion operators are treated exactly like member functions� only the syntax for calling them is di
erent�
Field declarations as well as private or protected member functions and constructors in C are ignored� C can
have more public member functions or types than speci�ed in S�

For example� suppose the conformance of class C to signature S is being tested� Given signatures T and
U and classes D and E� let U conform to T� let E be a subclass of D� and let class D conform to signature T�
The signature member function

T � S��f �D �� E ���

can be matched with any of the following class member functions	

T � C��f �D �� E ���

T � C��f �D �� D ���

T � C��f �T �� E ���

T � C��f �T �� T ���

D � C��f �D �� E ���

E � C��f �D �� E ���

U � C��f �D �� E ���

T � C��f �D �� E �� int � 
��

Note that conformance of member functions is de�ned using contravariance ���� of the argument types
and covariance of the result types� This makes the signature�based notion of subtyping more general than
C���s class�based subtyping�

If more than one member function of C conforms to a single member function of S� the one that conforms
best is selected using a variant of C���s algorithm for selecting the function declaration that best matches
the call of an overloaded function �����

If a single member function of C conforms to more than one member function of S� an error is reported� It
is possible to relax this restriction by considering di
erent matches of C�s member functions with S�s member
functions and by selecting the best match according to some metric on signature types� but any such rule
would be su�ciently complex to confuse users�

Every signature contains an implicit destructor declaration� This destructor is matched with the class�s
destructor if de�ned or with the default destructor otherwise�

For testing the conformance of one signature to another� the test is exactly the same as for testing the
conformance of a class to a signature�

��� Signature Inheritance and Subtyping

Conformance between two signatures cannot� in general� be determined from the inheritance hierarchy of
signatures� Using the conformance test for signatures� it is obvious that signatures can be in a subtype
relationship without one inheriting from the other� The following shows that the converse can hold as well�





Signature inheritance is de�ned roughly as textual substitution� Declaring a signature T to inherit from
signature S is equivalent to copying all declarations from S into T� while changing all occurrences of signature
pointers and references of types S� and S in S�s declarations into T� and T� respectively� If S inherits from
another signature U� the declarations of U are merged into S before the declarations of the resulting signature
S are merged into T� This is the same de�nition as that of interface inheritance in ����� For example� the
declaration of T in

signature S �

S � f �int� S ��

��

signature T � S �

T  g �int� S ���

��

is equivalent to

signature T �

T � f �int� T ��

T  g �int� S ���

��

These semantics of signature inheritance are necessary to ensure that the signature conformance check does
not depend on the hierarchy of signature declarations�

To motivate this de�nition of signature inheritance consider an example from computer algebra� As�
sume the two abstract types AGroup� of additive groups� and Ring� and an implementation of matrices�
DenseMatrix� Signature Ring inherits from AGroup� the matrix class DenseMatrix conforms to both signa�
ture types�

signature AGroup �

AGroup � add �AGroup ���

�� ���

��

signature Ring � AGroup �

Ring � mul �Ring ���

�� ���

��

Ring � p � new DenseMatrix�

Ring � q � p�	mul �p�	add �p��� �� p � �p � p�

If signature inheritance were de�ned like class inheritance� i�e�� merely copying the declarations from the
base signature� then the function call of mul above would not type check correctly� The result of the addition
would have type AGroup instead of type Ring� which is expected by the multiplication member function�

Because of the chosen form of inheritance� however� the signature types AGroup and Ring are in no
subtype relationship� Neither are S and T above� For type T to be a subtype of S� T��f would need to be a
subtype of S��f� But� due to contravariance� that would require the second argument type of S��f� S� to
be a subtype of T� Hence� S would need to be a subtype of T� which is impossible since S doesn�t have a
member function g�

If types related by inheritance are not recursive� i�e�� if they don�t contain references to themselves� the
inheritance relation is identical to the subtype relation� Only recursive types require subtyping to be treated
separately� Using the signature conformance check described earlier� arbitrary recursive types are disallowed
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from being in a subtype relationship� It is possible� though� to extend subtyping to recursive types using
an algorithm similar to the one in ���� However� to guarantee that conformance remains sound� this would
require an object�level encapsulation of conforming classes instead of the usual class�level encapsulation in
C��� The algorithm to check whether an implementation adheres to object�level encapsulation is beyond
the scope of this paper�

��� The Signature of a Class

As an alternative to the signature construct we also provide the sigof construct as found in ����� Given
a class C� the signature sigof�C� is constructed by duplicating all the public type de�nitions� constant
de�nitions� and member function declarations from C into a new� anonymous signature� Field declarations
and private and protected member functions are ignored� For example� the signature

signature S �

typedef int t�

t � f ���

int g �t ���

S  h �t ���

��

could alternatively be de�ned as the signature of a class with the appropriate public interface	

class C �

public�

typedef int t�

t x�

t � f ���

int g �t ���

sigof �C�  h �t ���

private�

t � foo �t ���

��

typedef sigof �C� S�

The result is equivalent to the previous declaration�
Since t is only a type abbreviation for int� the declaration of C��t could have been left out by replacing

all occurrences of t in C by int� The resulting signature would still be the same� If t were de�ned by a local
class� union� signature� or enumeration declaration� it couldn�t be left out�

If class C is recursive� e�g�� if an argument type or the return type of one of its member functions is of
type C�� the resulting type in the signature will still refer to C� If class C refers to sigof�C�� the resulting
signature will become recursive as in the example above�

Whether a type� constant� or member function is inherited or de�ned in class C directly is irrelevant for
inclusion in sigof�C�� This ensures that the result of sigof�C� does not depend on the inheritance hierarchy
of C�

The sigof construct can also be used to specify a base type in a signature declaration� to declare a
signature pointer or reference� or in a cast expression	

signature T � sigof �C�� U � �� ��� �� ��

sigof �C� � p � �sigof �C� �� new C�

Wherever a signature name can be used� a sigof expression can be used as well�
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��� Default Implementations

So far only signatures containing member function declarations have been considered� However� we also
allow a signature to contain member function de�nitions �i�e�� declarations together with implementations��
which are called default implementations� Consider� for example� the signature

signature S �

int f �int��

int f
 �� � return f �
�� ��

��

Now a class C does not need a member function �int f
 ��� in order to conform to to S� If there is a member
function C��f
 of the right type� it will be used� If C��f
 is not de�ned or is of the wrong type� the default
implementation S��f
 is used instead�

When specifying an abstract type� signature default implementations allow a prototype implementation
for some member function to be written� Such a prototype both serves to specify the behavior and allows
testing to start before a corresponding �and likely more e�cient� class member function is written� i�e�� it
serves a similar purpose as a member function implemented in an abstract class�

Since it must be known at compile time whether a signature member function has a default implementa�
tion� all default implementations need to be de�ned inside the signature declaration� If a de�nition outside
the signature such as

int S��f
 �� � return f �
�� �� �� illegal

were allowed� it wouldn�t be know until link time which signature member functions have default implemen�
tations and which ones do not� This would prevent performing the conformance check at compile time�

Another consequence of allowing default implementations is that they introduce one case in which the
program cannot be type�checked fully at compile time� The problem arises when assigning a signature pointer
of signature type T to a signature pointer of signature type S� where T contains a default implementation
for member function f but S only contains a declaration of f without default implementation� Since it is
not know at compile time whether the default implementation of T��f is actually used� a run�time test for
it must be generated� Consider

signature S �

int f ���

��

signature T �

int f �� � return 
� ��

��

int foo �T � p�

�

S � q � p�

�� ��� ��

�

In the function foo above� it cannot be known whether p will use T�s default implementation or not� If the
default implementation is used� a run�time type error in the assignment to q will occur� Using T�s default
implementation when calling q�	f�� is not an option� since it would violate the static scoping rules of the
language�

Note that this is the only case where a run�time type check is necessary� in all other cases conformance
can be fully checked at compile time� To warn of the possibility of a run�time type error� the compiler should
print a warning message when generating the run�time test�
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An alternative would be to make the conformance test stricter so that two signature member functions
only conform if neither one has a default implementation or if both inherited their default implementation
from the same supertype� We feel that for most practical purposes� this would unnecessarily restrict the
subtype relationship� but it might be useful to have a compiler option that makes the compiler print an error
message instead of generating a run�time type check�

��� Constants

In the de�nition of the conformance check� it was mentioned that a signature can contain constant decla�
rations� Conceptually� constants in signatures are treated similarly as nullary signature member functions�
In particular� unlike constant declarations elsewhere� they do not need to be initialized� For example� for a
class C to conform to the signature

signature S �

const int n�

��

it has to have a public declaration of constant n� The value of C��n can then be accessed through a signature
pointer as in the following example�

class C �

public�

const int n � ���

��

S � p � new C�

int i � p�	n�

The variable i above gets set to the value ��� If the constant n had been replaced by a nullary member
function in both the signature and the class� with the class�s implementation returning the constant value
��� the behavior would be the same� The implementation of constants� however� is more e�cient�

Similarly� initialized signature constants could be viewed as analogous to constant nullary functions with
a default implementation� The value of the class�s constant would then override the value of the signature�s
constant� Such an implementation would indeed be possible� but it wouldn�t allow code such as

signature S �

const int n � ���

typedef int�n� array�

int f �array��

��

since the value of n would not be known at compile time� To make the value of initialized signature constants
available at compile time� it is required that the value of the constant is the same in both the class and the
signature� This restriction allows initialized signature constants to be used for de�ning data structures�

��	 Opaque Types

Signature member functions typically don�t have a default implementation and signature constants don�t
need to be initialized� By analogy� consider what happens if types in a signature are only declared and are
de�ned in conforming classes� Such types� called opaque types� would allow programming is a style similar
as in Modula�� or in the stack example given in the introduction� Opaque types can be used to hide
implementation aspects from users of a signature in a similar way as the private keyword hides part of a
class implementation� Experience will tell whether opaque types prove to be useful in practice�

To declare an opaque type� the typename is declared using the typedef construct without specifying a
type expression� For example� the type S��t in

��



signature S �

typedef t�

t mk�t ���

t foo �t� t��

��

is an opaque type�
To call the member functions of the signature above� the compiler must be able to calculate the amount

of memory to allocate for an object of type S��t� Since the de�nition of the opaque type is not available
when compiling S� all uses of opaque types must be made to take the same amount of memory by requiring
them to be implemented as pointer types� For example� the following class conforms to signature S above	

class C �

public�

typedef int � t�

t mk�t ���

t foo �t� t��

��

If the type C��t were not a pointer type� the class would not conform to the signature�
As mentioned earlier� since a normal typedef declaration in a signature is only a type abbreviation� it

is not necessary for a conforming class to use the same typedef statement� An opaque type declaration� by
contrast� is not a type abbreviation but de�nes a type� A conforming class� therefore� needs to contain a
typedef specifying the implementation of the opaque type�

A signature that contains opaque type declarations can only be implemented by one class at a time�
Otherwise it would introduce a loophole in the type system� Suppose class D conforms to S but implements
D��t di
erently� If both C and D were allowed to coexist as implementations of the abstract type S� as in

S � p � new C�

S � q � new D� �� illegal

S��t x � p�	foo �p�	mk�t ��� q�	mk�t ����

it would be impossible to catch the type error in the second argument of foo� To test that globally only
one class was used to implement S� linker support is needed to test that at most one signature table was
generated for signature S� On a per �le basis� it can be done in the compiler�

��
 Views

For the conformance check it was required that signature member functions have to be matched by class
member functions of the same name and the same type� Often it is desirable to allow a class member function
to have a di
erent name� The same holds for constants and types�

For example� suppose that in the X�Windows object manager example the member function to display
a window on the screen is called display�� in OpenLookObject but show�� in MotifObject� To build a
display list of objects from both hierarchies� it is necessary to rename the member function of one of these
hierarchies�

To rename class member functions� or to view a class to be an implementation of a signature type in
di
erent ways� we provide the following syntax	

S � p � �S �� foo � bar� new C�

In this cast expression� the signature member function foo is associated with the class member function bar�
The same e
ect can be achieved using the following variant of the sigof construct	

typedef sigof �C� foo � bar� T�

T � p � �sigof �C� �� foo � bar� new C�

��



The same syntax can be used for renaming constants and types�
For renaming multiple member functions� renaming pairs are separated by commas� To allow swapping

of member function names� conceptually� the renaming operations are performed in parallel� This allows� for
example� to view a rational number class as an implementation of the signature type Group in two di
erent
ways� as a multiplicative group and as an additive group� without having to write additional interface code�

For overloaded member functions� no special syntax is provided to selectively rename member functions
depending on their return and argument types� While this wouldn�t be di�cult to implement� the syntax
of views would become excessively complicated� Instead� all member functions with the same name are
renamed the same�

A similar renaming mechanism can be found in Views ��� ��� an experimental computer algebra system
written in Smalltalk� or in the algebraic speci�cation language OBJ� �����

� Examples

In this section� we present three examples that show a typical use of a signature with multiple implementa�
tions� how constants can be used to encode semantic information in a signature� and how signatures integrate
with templates� In addition� we contrast the use of opaque types with the traditional C�� programming
style�

��� Heterogeneous Collections of Objects

This example demonstrates how objects from two unrelated classes can be combined in a heterogeneous data
structure� Assume that all that is required for an object to be included in a data structure is that it�s class
contains a nullary public member function text that returns a string� This requirement can be speci�ed
with the signature declaration

signature S �

char � text ���

��

Since the two implementations of the signature type S don�t need to be related by inheritance� they can
easily be developed separately� They only need to conform to the signature� i�e�� the signatures of the classes
are structural subtypes of S�

class C �

char � str�

public�

C �� � str � �Hello �� ��

char � text �� � return str� ��

��

class D �

public�

char � text �� � return �World��� ��

char � text �int i� � return ��������� ��

��

The fact that the member function D��text is overloaded� doesn�t matter� As long as class D contains a
member function �char � text ���� it conforms to signature S�

Now a heterogeneous collection can be constructed by de�ning a data structure containing signature
pointers of type S��
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�include �iostream�h	

int main ��

�

S � p��� � � new C� new D ��

cout �� p�
��	text �� �� p����	text �� �� ��n��

return 
�

�

When run� the above program will print the string �Hello World��n��

��� Properties

Other languages� such as POOL�I ��� or Axiom ����� o
er language constructs for de�ning properties of
signature and implementation types� These properties are used as a shorthand for axioms written in �rst�
order logic or equational logic to encode semantic information as part of the speci�cation of an abstract type�
Constants provide a simple and e�cient mechanism to implement properties without requiring additional
syntax�

For example� an integer stack signature with the property LIFO could be de�ned as follows	

�define LIFO const int lifo�p � 
�

signature Int�Stack �

typedef stack�

stack emptystack ���

stack push �int� stack��

stack pop �stack��

int top �stack��

LIFO�

��

For comparison with the example in the introduction of this paper� this signature is written using an opaque
type to represent the implementation type� i�e�� in the style of an abstract data type de�nition� The property
LIFO is intended to be an abbreviation for the four axioms given in the introduction� Note� however� that
the use of properties does not depend on using this programming style�

In order to conform to the above signature� a class needs to contain the same property declaration in
addition to member functions speci�ed in the signature� The opaque type needs to be implemented as a
pointer type� in this example as a pointer to a list element�

�define properties public

class Int�Stack�as�List �

private�

struct elem�

public�

typedef elem � stack�

stack emptystack ���
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stack push �int� stack��

stack pop �stack��

int top �stack��

properties�

LIFO�

private�

struct elem �

int value�

stack next�

��

��

The intended meaning of a certain property de�ned in a class is that the operations of the class have been
veri�ed to satisfy the axioms represented by the property� That is� the operations have been certi�ed to have
the expected behavior�

��� Signature Templates

Like classes� signatures can be parameterized by writing signature templates� which allow the de�nition of
generic abstract types� For example� a stack type parameterized by the type of its elements could be de�ned
using the following signature template	

template �class Elem	 signature Stack �

void push �Elem��

void pop ���

Elem top ���

LIFO�

��

This signature is written without using an opaque type� i�e�� in the traditional C�� style� The private �elds
of an implementation class play now the role of the opaque type� As in the previous example� the property
LIFO is used to specify the semantics of a stack� A possible implementation could be

template �class Elem� int N	 class Stack�as�Array �

private�

Elem contents�N��

int sp�

public�

Stack�as�Array �� � sp � 
� ��

void push �Elem��

void pop ���

Elem top ���

properties�

LIFO�

��

To build a stack object� the templates must be instantiated� For example� let Symtab be an implemen�
tation of symbol tables� With the signature pointer declaration
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Stack�Symtab	 � stk � new Stack�as�Array�Symtab� �

	�

a stack of at most ��� symbol tables would be created�
It is important to note that templates don�t introduce any additional complexity in the conformance

check� In this example� both the signature template and the class template are instantiated �rst� The
conformance check is then performed on the instantiated signature and class types�

� Possible Implementations

In this section� we �rst outline a scheme for translating signature constructs directly into C�� classes� Using
this method it is possible to write a compiler preprocessor� say cfrontfront� that translates from C�� with
signatures into C�� without signatures� We then present our GCC ���� implementation� which is designed
to minimize the run�time overhead� The implementation only modi�es GCC�s C�� front end� cc�plus�
the technique is independent of the compiler and� e�g�� could be used to implement signatures in the AT�T
cfront compiler as well� Finally� we discuss some of the design alternatives and possibilities for optimization�

��� Translation into C��

The main idea of implementing signature pointers is to treat them as run time interfaces to class objects�
In this implementation� signature pointers themselves are instances of some interface class and require twice
as much memory as a regular C�� pointer�

Consider the declarations

signature S �

int f ���

int g �int� int��

��

S � p � new C�

and assume C conforms to S� For the signature declaration itself no code is generated� it is considered a type
declaration only�

To make p an interface from abstract type S to concrete type C� an interface class S�C�Interface could
be generated with p as an instance as follows	

class S�C�Interface �

C � optr�

public�

S�C�Interface �C � x� � optr � x� ��

int f �� � return optr�	f ��� ��

int g �int x� int y� � return optr�	g �x� y�� ��

��

S�C�Interface p � new C�

When p is initialized� the instance variable optr is initialized to point to the object assigned to p� The
member functions of the interface class only redirect to the appropriate member functions of class C�

However� the signature pointer p can now only be used to point to objects of class C� To make signature
pointers point to arbitrary objects� an additional indirection is needed� This can be achieved by compiling
the declaration of the signature S into an abstract class S�Pointer�

class S�Pointer �

public�
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virtual �S�Pointer �� � 
�

virtual int f �� � 
�

virtual int g �int� int� � 
�

��

For building the interfaces between the signature and conforming classes a template class S�Interface is
generated as public subclass of S�Pointer�

template �class T	 class S�Interface � public S�Pointer �

T � optr�

public�

S�Interface �T � x� � optr � x� ��

�S�Interface �� � delete optr� ��

int f �� � return optr�	f ��� ��

int g �int x� int y� � return optr�	g �x� y�� ��

��

This template class is then instantiated with some class C to build the object interfacing S and C�
Signature pointers can now be implemented as pointers to instances of S�Interface�C	 for some class C�

That is� the declaration

S � p � new C�

would be translated to

S�Pointer � p � new S�Interface�C	 �new C��

This has the advantage that it is very easy to implement in a preprocessor for a C�� compiler� but it requires
interface objects to be allocated on the heap�

A more e�cient solution is to use the interface object directly as signature pointer� i�e�� to generate the
code

S�Interface�C	 p � new C�

With this implementation no heap allocation of interface objects is needed� but instead the preprocessor
must be modi�ed to make p behave as if it were a pointer to an object of type S�Pointer rather than a
structure of type S�Interface�C	�

A signature pointer implemented thus requires the storage of two normal C�� pointers� namely the
pointer to the class object� optr� and the pointer to S�Interface�s virtual function table� Signature refer�
ences are implemented exactly the same way�

For implementing default implementations� a �ag in the interface class S�Interface is needed that tells
us whether the default implementation is used or whether a member function was provided by the class�
The corresponding member function of the interface class then� depending on the value of the �ag� either
calls the class member function or executes the code of the default implementation�

Constants without initialization can be implemented by generating a public variable declaration in the
interface class and initializing it with the object�s constant value in the constructor�

��� Implementation in GCC

The main disadvantage of the above implementation is the overhead of an additional function call when
calling one of C�s member functions� To make signature member function calls more e�cient� we instead
make the interface object a table of addresses of C�s member functions together with some �ags�

Unfortunately� with this implementation it is only possible to achieve strict conformance between a
signature and a class� For a class member function to conform to a signature member function� it needs to
have the same number of arguments� the same return type instead of a conforming return type� and the same
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argument types instead of argument types the argument types of the signature member function conform
to� The problem is that in the more general case� the arguments and�or the return value may need type
conversion when calling a signature member function� Since in the implementation described here there is no
place to keep the conversion code� only strict conformance can be achieved� In the next section� we explain
how this restriction can be removed�

Simpli�ed Version

Ignoring default implementations� classes with virtual member functions� and multiple inheritance of classes
for now� we internally translate the declaration of signature S above into the equivalent of

struct S �

const void � �S�destr�

const int �S����f� ���

const int �S����g� �int� int��

��

The �eld �S�destr represents the implicitly declared destructor of signature S�
As in the previous solution� we make a signature pointer an object containing a pointer to the class object

and a pointer to an interface object� the signature table�

struct S�Pointer �

void � optr�

const S � sptr�

��

The structure S above is used as the type of signature tables for signature S�
For initializing a signature pointer� such as

S � p � new C�

a signature table must be generated and initialized if it doesn�t exist already� The signature pointer structure
is initialized with a default constructor call as follows	

static const S S�C�table � � C���C� C��f� C��g ��

S�Pointer p � � �void ��new C� S�C�table ��

For an assignment� such as

p � new C�

or for passing an object to a signature pointer parameter� a compound expression must be generated� In the
case of the assignment� the code generated is

static const S S�C�table � � C���C� C��f� C��g ��

� p�optr � �void ��new C�

p�sptr � S�C�table�

p

��

The signature table S�C�table takes on a role similar to that of the virtual function table in C��� The
instance variable sptr of a signature pointer corresponds to the virtual function table pointer vptr in an
instance of a class with virtual functions�

Initializing the signature table S�C�table requires casting C���C� C��f� and C��g to member functions
of S� This has to be done in the compiler front end� since C�� doesn�t allow casting to a member function
type�
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Since signature tables are static and constant� only one signature table per signature�class pair in each
�le needs to be constructed� instead of one signature table per signature pointer assignment�

To translate a function call such as

int i � p�	g ��� ����

we dereference p�s sptr and call the function whose address is stored in the �eld �g� i�e�� C��g� The optr

has to be passed as the �rst argument� so that C��g gets a pointer to the right object passed for its implicit
�rst parameter called this�

int i � p�sptr�	�g �p�optr� �� ����

In cases where the value of p�	sptr is known at compile time� this can be optimized to call C��g directly�
Similar as in the translation to C��� uninitialized constants are implemented by generating a �eld

declaration in the signature table type �i�e�� in struct S� and initializing it with the class�s constant value
in the default constructor for the signature table�

Implementation Details

Above only interfaces to classes with non�virtual member functions were considered� The address of a
virtual member function cannot be stored in the signature table since the address is not known until run
time� Similarly� it is unknown at compile time whether to use an object�s member function or a default
implementation� To allow for all possibilities it is necessary to add two �ags to each member function
pointer in the signature table� One of the �ags indicates whether the address of a virtual member function
needs to be looked up at run time� in this case� instead of a pointer to the function� the o
set into the virtual
function table is stored together with the o
set into the object at which to �nd the pointer to the virtual
function table� The second �ag indicates whether the function pointer points to a default implementation
instead of a class member function� in this case� the signature pointer itself� instead of the optr� has to be
passed as the implicit �rst argument when calling the function�

To deal with classes that are de�ned using multiple inheritance it is also necessary to store the o
set
that needs to be added to this for inherited member functions� Instead of being just a function pointer� a
signature table entry now looks as follows	

struct sigtable�entry�type �

short code�

short offset�

union �

void � pfn�

struct �

short vptroff�

short vtbloff�

��

��

��

The code �eld contains the �ags explained above� offset contains the value that needs to be added to this�
The �eld pfn contains a pointer to the code for a non�virtual member function or a default implementation�
For a virtual member function the �eld vptroff contains the o
set into the object to �nd the virtual function
table and vtbloff contains the o
set into the virtual function table� These two o
sets occupy the same
storage space as pfn�

For calling a signature member function� the compiler needs to generate a conditional expression that
tests the appropriate �ags before the call of the class�s member function�

For assigning a signature pointer to another signature pointer� all that is required is to simply copy the
optr and sptr �elds if the signature pointers are of the same type and the LHS signature pointer is in local
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scope� If the RHS signature is a subsignature of the LHS signature� it is possible to let the LHS sptr point
into the RHS signature table at an o
set determined by the signature hierarchy� If they are not related
by signature inheritance or when assigning to a non�local signature pointer� the corresponding �elds of the
signature table have to be copied and the LHS signature table needs to be allocated in the same scope as the
LHS signature pointer instead of in static memory�� Pointers to default implementations� in general� cannot
be copied but might cause a run�time type error to be reported�

��� Design Alternatives

Thunks

As an alternative to using member function pointers in the signature table and to test �ags to determine
how to call a member function� the signature table could contain �pointers to� pieces of code� or thunks� that
set the argument for the this parameter correctly and then branch to the class member function� Such an
implementation is described in ���

Advantages of using thunks would be that there would be no overhead of testing the �ags in a signature
member function call� and that no zero o
set would need to be added to the this pointer in case of single
inheritance� Instead� thunks would simply contain the appropriate code� Similarly� thunks are used in some
implementations of virtual function tables to reduce the overhead in the single inheritance case�

A big advantage� though� would be that code for converting argument types could be included in a thunk�
For converting the return type either a second thunk that does nothing else could be used� or a thunk could
call� instead of branch to� the class member function using a light�weight function call sequence�

By making signature tables contain thunks the conformance check could� therefore� be implemented
correctly� i�e�� we would not be limited to strict conformance� There would be no run�time penalties compared
to our implementation in GCC if a signature member function doesn�t require conversions� On the contrary�
by not having to test the code �eld� a few instructions would be saved� In the common case of calling a
non�virtual member function with a zero o
set for the this pointer� the thunk could be eliminated altogether
by branching to the member function directly� The only disadvantage of using thunks is that it requires
generation of low�level code� which complicates or even prohibits its use in a compiler that generates C code�
such as AT�T�s cfront compiler�

Signature Table Management

As with virtual function tables� in a system consisting of more than one object �le the executable can contain
several copies of a signature table since they are statically allocated in each compilation unit� Additional
duplication of signature tables can be caused by assigning one signature pointer to another as discussed
earlier�

There are two possibilities to decrease the number of tables� One is to provide a signature table manager
in the run�time system that allocates memory for the signature tables when starting the program� The other
possibility is to make signature tables external and to have linker support to eliminate identical tables� Both
the signature table manager and the link�time table comparison could be implemented e�ciently using the
type matching scheme described in �����

If a signature table manager is used and type information of objects is available at run time �e�g�� using
typeid ����� the signature tables for virtual subclasses can be generated at run�time� eliminating the need
for double indirection when looking up the address of a virtual member function and eliminating copying of
signature tables when assigning one signature pointer to another�

�This complexity is necessary to correctly handle assignments to signature pointers in recursive functions� In the absence
of recursion or when the signature hierarchy is designed such that the RHS signature pointer is of a subsignature type� all
signature tables can be statically allocated� For more e�cient implementations see ���
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� Cost Analysis

For the purpose of the following discussion assume that a pointer can be stored in a machine word� The
memory required for storing a signature table is then the memory needed for constants declared in the
signature plus two words per table entry� i�e�� two words for each member function� member operator� or
conversion operator declared in the signature plus an additional two words for the destructor� In the absence
of the pathological case discussed earlier� signature tables can be stored in statically allocated memory�

The space needed for a signature pointer or signature reference is also two words� one word for each of
the optr and sptr �elds� This makes a signature pointer or reference require twice the amount of memory
needed for a normal C�� pointer�

The time needed for assigning to a signature pointer or reference is twice the time needed for assigning to
a normal C�� pointer� The only exception is when one signature pointer or reference is assigned to another
one� and the LHS signature is neither equal to the RHS signature nor an ancestor in its inheritance hierarchy�
In this case� it is necessary to initialize the LHS signature table at run time� which requires copying two
words for each table entry� Furthermore� if the RHS signature has a default implementation that is not also
a default implementation of the LHS signature� is it necessary to test whether this default implementation
is used and report a run�time type error if it is�

When calling a class member function through a signature pointer or reference� the sptr �eld needs to
be dereferenced �rst to get the corresponding signature table entry� Then a test� whether a virtual function
is being used� must be performed and� depending on the result� either a call to the class member function
is made directly� or a virtual function lookup and call is performed� In either case� the optr value is passed
as the argument for this� The overhead for calling a class member function through a signature pointer is
roughly the same as the overhead for a virtual function call plus the cost of one test and dereferencing the
optr� If a default implementation might be called an additional test instruction is needed�

� Conclusion

In this paper� we discussed the limitations of class inheritance for constructing complex type hierarchies and
argued that di
erent mechanisms should be used for implementing subtype polymorphism and code reuse�
We proposed language constructs for specifying and working with signature types� These constructs allow
us to decouple subtyping from inheritance�

The result� C�� with signatures� has a type system related to those of several other modern programming
languages� Similarly as in ML ���� ����Modula�� ���� andModula�� ����� signatures in C�� allow a clean
separation of speci�cation and implementation� However� ML and Modula�� only have modules and no
classes� whileModula�� has both classes and modules but provides interfaces for modules only and not for
classes� Russell ���� and Haskell ��� have notions related to signatures� but both lack classes� Emerald
��� has �rst�class types instead of classes� and Trellis�Owl ���� has a class hierarchy in which only type
information but no implementation is inherited� Signatures in C�� come closest to categories in Axiom ����
and types in POOL�I ���� But Axiom is an abstract data type language� and POOL�I lacks overloading
and private and protected member functions and �elds� Also� while categories and domains in Axiom as
well as types in POOL�I are �rst class� signatures and classes in our C�� extension are not� This makes the
type system slightly less expressive but it allows a more e�cient implementation and permits complete type
checking at compile time� To make up for the loss in expressiveness� like Modula�� we provide structural
subtyping�

After discussing a straightforward translation of the new language constructs to somewhat ine�cient
C�� code� we described how to directly translate them into e�cient assembly language and analyzed the
performance of the latter� We also presented some promising possibilities for optimizing signature member
function calls� which need further investigation�

Signature types are presented as a conservative extension of C��� but the concept would apply equally
well to any statically typed object�oriented programming language� If a language with signatures and
classes were designed from the ground up� there wouldn�t be any need for a subtype relationship de�ned
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by inheritance in addition to the subtype relationship de�ned by the conformance check� Similarly� virtual
member functions would not be needed� signature member functions provide the desired polymorphism
instead� With subtyping thus decoupled from inheritance� it would be possible to change the semantics of
inheritance and make it more versatile for code reuse� e�g�� by allowing to inherit only parts of superclasses�
For pragmatic reasons� however� such drastic changes are undesirable for an extension of C��� as they would
a
ect the behavior of existing programs�

Availability

Parts of the language extension have been implemented in the GNU project C�� compiler ��� as a compiler
extension� The implementation is included in versions GCC������ and higher�
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