An Efficient Counting Network

Costas Busch
Brown University

Marios Mavronicolas
University of Cyprus
We present a practical counting network which:

- Is efficient in terms of contention
- Its construction is based on new techniques

We proceed by presenting:

- Background for counting networks
- Our counting network construction
- Remarks and conclusions
Counting Networks

Introduced by Aspnes, Herlihy and Shavit in STOC 91

Distributed data structures used for:

- Shared counters
- Producer/consumer buffers
- Barrier synchronization

Advantages:

- Low contention
- Non-blocking
They look like Sorting Networks

\[\text{width} = 4 \]

\[\text{depth} = 3 \]
The **Balancer**

\[
\begin{align*}
 y_0 &= 1 \\
 y_1 &= 0 \\
\end{align*}
\]

\[
\begin{align*}
 y_0 &= 2 \\
 y_1 &= 2 \\
\end{align*}
\]

Step Property:

\[0 \leq y_0 - y_1 \leq 1\]
The counting network

Step Property:

\[0 \leq y_i - y_j \leq 1 \]

for \(i < j \)
Contention

- Concurrent processors access the same balancer at the same time

Amortized Contention (Dwork et al. STOC 93)

- The number of tokens goes to infinity
Practical counting networks:
 • Bitonic
 • Periodic

Have depth $O(\log^2 t)$

Have amortized contention $O\left(\frac{n\log^2 t}{t}\right)$

$t = $ width
$n = $ concurrency

Problem:
 • To decrease contention we increase depth
Our Counting Network

Has input width $t \leq w$ output width

Balancer

Counting Network
Has depth $O(\lg^2 t)$

Has amortized Contention $O\left(\frac{n\lg^2 t}{w} + \frac{n\lg t}{t}\right)$

$t = \text{input width}$

$w = \text{output width}, \ t \leq w$

$n = \text{concurrency}$

Advantages of increasing output width:

- Depth stays the same
- Contention decreases
Setting \(w = O(t \lg t) \)

we obtain contention \(O\left(\frac{n \lg t}{t}\right) \)

For input width \(t \) it achieves

- Same depth as other practical counting networks of width \(t \)
- Improves contention by a \(\lg t \) factor
The construction

Counting t, w

Counting $\frac{t}{2}, \frac{w}{2}$

Merger $\frac{t}{2}, w$
The \textit{Bounded Difference Merger}

Merger t, w
Remarks and Conclusions

Output width $p2^k$ (most have width 2^k)

Extend the construction to arbitrary widths

Use the Bounded Difference Merger for other constructions