Failure-Awareness and Dynamic Adaptation in Data Scheduling

Mehmet Balman

MS Thesis

Department of Computer Science

Louisiana State University

Research Goal

"Reliability and Efficiency" for wide-area Data Access

- The Data Placement Challenge
- Lessons Learned from Computer Architecture
- Adaptive Data Scheduling
- Failure-Aware Data Placement
- Conclusion

Large Scale Applications

• Science

- Astronomy SuperNova, LSST(Large Synoptic Survey Telescope)
- Biology (bimolecular computing)
- Climate research
- High Energy Physics (Cern)

Business

- · Credit Card Fraud detection
 - (historical data, analyze transactions)
- Data mining for brokerage and customer services
- Oil and electronic design companies
 - (long term batch processes)
- Medical institutions
 - (computational network, large image transfers)

Data Deluge

- Scientific and Business applications becoming more data-intensive
- Huge Computational requirements
- Immense data sets (real time processing of data)

Data-intensive Computing

- Using Distributed Resources to satisfy excessive computation requirements
- Data to be shared between geographically distributed sites
- Complex workflow characteristics
- High capacity, fast storage systems

Data Scheduling

- Make data placement a first class citizen
- Orchestrating data placement jobs

Stork <u>www.storkproject.org</u>

Key Attributes affecting Data Placement Performance

	In Single Host	Between a Pair of Hosts	Multiple Servers to Single Server	Between Distributed Servers
Available	✓	✓	✓	✓
Storage Space CPU Load and	✓	✓	✓	✓
Memory Usage Transfer Protocol		✓	✓	✓
Performance Number of Parallel		✓	✓	✓
Connections				
Network Bandwidth and			✓	✓
Latency Number of			✓	✓
Concurrent Operations Ordering of				✓
Data Placement Tasks				

Contribution

- Failure-Aware Data Placement Paradigm for increased Fault-Tolerance
- Adaptive Scheduling of Data Placement Tasks

- The Data Placement Challenge
- Lessons Learned from Computer Architecture
- Adaptive Data Scheduling
- Failure-Aware Data Placement
- Conclusion

- The Data Placement Challenge
- Lessons Learned from Computer Architecture
- Adaptive Data Scheduling
- Failure-Aware Data Placement
- Conclusion

Adaptive Scheduling

- Dynamic Parameter Tuning
 - Parallel Stream
 - Aggregate TCP connections
 - Concurrent Jobs
- Aggregation of Data Placement Job
 - Source/Destination pair

Dynamic Parameter Setting

- Low integration cost (no external profilers)
- Adapt to changing network conditions
- No high level predictors
- Increase level of parallelism gradually
 - Can we set the number of parallel streams while transfer is in progress?

Job Aggregation

- Aggregate data transfer jobs into a single job
- Eliminate the cost of connection for each transfer
- Major performance improvement
 - Especially with small files

- The Data Placement Challenge
- Lessons Learned from Computer Architecture
- Adaptive Data Scheduling
- Failure-Aware Data Placement
- Conclusion

Failure-Awareness

- Early Error Detection
 - Network Exploration
- Error Classification and Reporting
- Adapt to Failures (Retry?)

- The Data Placement Challenge
- Lessons Learned from Computer Architecture
- Adaptive Data Scheduling
- Failure-Aware Data Placement
- Conclusion

Conclusion

- An Adaptive Approach for Parameter Tuning
- Early Error Detection and Error Classification
- Failure-Awareness in Scheduling
- Aggregation of Data Placement Jobs

Broader Impact

- Stork
 - http://www.storkproject.org/
- Petashare (petaFS & petaShell)
 - http://www.petashare.org/
- I/O aggregation
 - IRODS FUSE and IRODS Parrot clients
 - 3-fold performance increase
- Stork.globus-url-copy
 - Extending globus-url-copy
 - New features:
 - Checkpointing (rescue file for restart)
 - Network explorations
 - Checksum verification

Auto Tuning the number of Parallel Streams

Future Research Problems

- Semantic Compression
 - For better end-to-end performance
- Utilizing Replicated Data
- Distributed Scheduling
 - Job delegation