
INFERENCE OF MONOTONE

BOOLEAN FUNCTIONS

1. Introduction to the Boolean Function

Inference Problem.

The goal in a classi�cation problem is to un-

cover a system that places examples into two

or more mutually exclusive groups. Identifying

a classi�cation system is bene�cial in several

ways. First of all, examples can be organized

in a meaningful way, which will make the ex-

ploration and retrieval of examples belonging to

speci�c group(s) more e�cient. The tree-like di-

rectory structure, used by personal computers in

organizing �les, is an example of a classi�cation

system which enables users to locate �les quickly

by traversing the directory paths. A classi�ca-

tion system can make the relations between the

examples easy to understand and interpret. A

poor classi�cation strategy, on the other hand,

may propose arbitrary, confusing or meaning-

less relations. An extracted classi�cation system

can be used to classify new examples. For an

incomplete or stochastic system, its structure

may pose questions whose answers may general-

ize the system or make it more accurate.

A special type of classi�cation problem, called

the boolean function inference problem, is when

all the examples are represented by binary (0

or 1) attributes and each example belongs to

one of two categories. Many other types of clas-

si�cation problems may be converted into a

boolean function inference problem. For exam-

ple, a multi-category classi�cation problem may

be converted into several two-category prob-

lems. In a similar fashion, example attributes

can be converted into a set of binary variables.

In solving the boolean function inference

problem many properties of boolean logic are di-

rectly applicable. A boolean function will assign

a binary value to each boolean vector (exam-

ple). See [22] for an overview of boolean func-

tions. Usually, a boolean function is expressed

as a conjunction of disjunctions, called the Con-

junctive Normal Form (CNF), or a disjunction

of conjunctions, called the Disjunctive Normal

Form (DNF). CNF can be written as:
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where x i is either the attribute or its negation, k

is the number of attribute disjunctions and �j is

the j-th index set for the j-th attribute disjunc-

tion. Similarly, DNF can be written as:
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It is well known that any boolean function

can be written in CNF or DNF form. Peysakh

[20] presented an algorithm for converting any

boolean expression into CNF. Two functions in

di�erent forms are regarded as equivalent as long

as they assign the same function values to all the

boolean vectors. However, placing every exam-

ple into the correct category is only one part of

the task. The other part is to make the classi�-

cation criteria meaningful and understandable.

That is, an inferred boolean function should be

as simple as possible. One part of the boolean

function inference problem that has received

substantial research e�orts is that of simplifying

the representation of boolean functions, while

maintaining a general representation power.

2. Inference of Monotone Boolean Func-

tions.

When the target function can be any boolean

function with n attributes, all of the 2n exam-

ples have to be examined to reconstruct the en-

tire function. When we have a priori knowledge

about the subclass of boolean functions the tar-

get function belongs to, on the other hand, it

may be possible to reconstruct it using a sub-

set of the examples. Often one can obtain the

function values on examples one by one. That

is, at each inference step, an example is posed
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as a question to an oracle, which, in return, pro-

vides the correct function value. A function, f,

can be de�ned by its oracle Af which, when

fed with a vector x =< x1; x2; x3; : : : ; xn >, re-

turns its value f(x). The inference of a boolean

function from questions and answers is known

as interactive learning of boolean functions. In

many cases, especially when it is either di�cult

or costly to query the oracle, it is desirable to

pose as few questions as possible. Therefore, the

choice of examples should be based on the pre-

viously classi�ed examples.

Monotone boolean functions is a subset of

boolean functions that have been extensively

studied not only because of their wide range of

applications (see [2], [7], [8] and [24]) but also

their intuitive interpretation. Each attribute's

contribution to a monotone function is either

non-negative or non-positive (not both). Fur-

thermore, if all of the attributes have non-

negative (or non-positive) e�ects on the function

value then the underlying monotone boolean

function is referred to as isotone (respectively

antitone). Any isotone function can be expressed

in DNF without using negated attributes. In

combinatorial mathematics, the set of isotone

boolean functions is often represented by the

free distributive lattice (FDL). To formally de-

�ne monotone boolean function, consider order-

ing the binary vectors as follows [21]:

Let En denote the set of all binary vectors

of length n; let x and y be two such vectors.

Then, the vector x =< x1; x2; : : : ; xn > pre-

cedesvectory =< y1; y2; : : : ; yn > (denoted as

x � y) if and only if xi � yi for 1 � i � n. If, at

the same time x 6= y, then xstrictly precedesy

(denoted as x � y).

According to this de�nition, the order of vectors

in E 2 can be listed as follows:

<11><01><00>

and

<11><10><00> :

Note that the vectors < 01> and < 10> are in

a sense incomparable.

Based on the order of the boolean vectors, a

non-decreasing monotone (isotone) boolean

function can be de�ned as follows [21]:

A boolean function f is said to be an non-

decreasing monotone boolean function if and

only if for any vectors x; y 2 En, such that

x � y, then f(x) � f(y).

A non-increasing monotone (antitone)

boolean function can be de�ned in a similar fash-

ion. As the method used to infer an antitone

boolean function is the same as that of a isotone

boolean function, we will restrict our attention

to the isotone boolean functions.

When analyzing a subclass of boolean func-

tions, it is always informative to determine its

size. This may give some indications of how gen-

eral the functions are and how hard it is to infer

them. The number of isotone boolean functions,

	(n), de�ned on En is sometimes referred to as

the n-th Dedekind number after R. Dedekind,

[6] who computed it for n = 4. Since then it has

been computed for up to E 8.

	(1) = 3;	(2) = 6;	(3) = 20;

	(4) = 168 [6]

	(5) = 7; 581 [4]

	(6) = 7; 828; 354 [27]

	(7) = 2; 414; 682; 040; 998 [5]

	(8) = 56; 130; 437; 228; 687; 557; 907; 788 [28]

Wiedeman's algorithm [28] employed a Cray-2

processor for 200 hours to compute the value

for n = 8. This gives a avor of the complex-

ity of computing the exact number of isotone
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boolean functions. The computational infeasibil-

ity for larger values of n provides the motiva-

tion for approximations and bounds. The best

known bound on 	(n) is due to Kleitman, [12]

and Kleitman and Markowsky, [13]:

	(n) � 2
( n
bn=2c

)(1+c log(n)=n)
;

where c is a constant and bn=2c is the integer

part of n/2.

This bound, which is an improvement over

the �rst bound, is also obtained by Hansel, [11],

are also based on the Hansel chains described in

section 4. Even though these bounds can lead to

good approximations for 	(n), when n is large,

the best known asymptotic is due to Korshunov,

[15]:
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Shmulevich, [24] achieved a similar but

slightly inferior asymptotic for even n in a sim-

pler and more elegant manner, which lead him

to some interesting distributional conjectures re-

garding isotone boolean functions.

Even though the number of isotone boolean

functions is large, it is a small fraction of the

number of general boolean functions, 22
n
. This

is the �rst hint towards the feasibility of ef-

�ciently inferring monotone boolean functions.

Intuitively, one would conjecture that the gen-

erality of this class was sacri�ced. That is true,

however, a general boolean function consists of

a set of areas where it is monotone. In fact, Ko-

valerchuk, et al., [17] showed that any boolean

function q(x1; : : : ; xn) can be represented by

several non-decreasing gi(x) and non-increasing

hj(x) monotone boolean functions in the follow-

ing manner:

q(x) =
_
i

(gi(x)
^
j

hj(x)):

As a result, one may be able to solve the

general boolean function inference problem by

considering several monotone boolean function

inference problems. Intuitively, the closer the

target function is to a monotone boolean func-

tion, the fewer monotone boolean functions are

needed to represent it and more successful this

approach might be. Kovalerchuk, et al.,[17] for-

mulated the problem of joint restoration of two

nested monotone boolean functions f1 and f2.

Their approach allows one to further decrease

the dialogue with an expert (oracle) and restore

a complex function of the form f1 & :f2, which

is not necessarily monotone.

3. The Shannon Function and the Hansel

Theorem.

The complexity of inferring isotone boolean

functions was mentioned in section 2, when re-

alizing that the number of isotone boolean func-

tions is a small fraction of the total number of

general boolean functions. In de�ning the most

common complexity measure for the boolean

function inference problem, consider the follow-

ing notation. LetM n denote the set of all mono-

tone boolean functions, and A =fFg be the set

of all algorithms which infer f 2 Mn , and

'(F; f) be the number of questions to the ora-

cle Af required to infer f. The Shannon function

'(n) can be introduced as follows [14]:

'(n) = min
F2A

(max
f2Mn

'(F; f)):

An upper bound on the number of questions

needed to restore a monotone boolean function

is given by the following equation (known as The

Hansel Theorem) [11]:

'(n) = (
n

bn=2c
) + (

n

bn=2c + 1
):

That is, if a proper question asking strategy is

applied, the total number of questions needed to

infer any monotone boolean function should not

exceed '(n). The Hansel Theorem can be viewed
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as the worst case scenario analysis. Recall, from

section 2, that all of the 2n questions are nec-

essary to restore a general boolean function.

Gainanov, [9] proposed three other criteria for

evaluating the e�ciency of algorithms used to

infer isotone boolean functions. One of them is

the average case scenario and the two others con-

sider two di�erent ways of normalizing the Shan-

non function by the size of the target function.

4. Hansel Chains.

The vectors in En can be placed in chains (se-

quences of vectors) according to monotonicity .

The Hansel chains is a particular set of chains

that can be formed using a dimensionally re-

cursive algorithm [11]. It starts with the single

Hansel chain in E 1:

H1 = f<0>;<1>g:

To form the Hansel chains in E 2, 3 steps are

required as follows:
Step

1:

Attach the element "0" to the front

of each vector in H 1 and get chain

C2min.

C2min = f<00>;<01>g:

Step

2:

Attach the element "1" to the front

of each vector in H 1 and get chain

C2max.

C2max = f<10>;<11>g:

Step

3:

Move the last vector in C 2max, i.e.

vector <11>, to the end of C2min.

H2;1 = f<00>;<01>;<11>g;

H2;2 = f<10>g:

To form the Hansel chains in E 3, the above 3

steps are repeated:
Step

1:
C3;1min=f<000>;<001>;<011>g;

C3;2min=f<010>g:

Step

2:
C3;1max=f<100>;<101>;<111>g;

C3;2max=f<110>g:

Step

3:
H3;1=f<000>;<001>;<011>;<111>g;

H3;2=f<100>;<101>g;

H3;3=f<010>;<110>g:

Note that since there is only one vector in the

C3;2max chain, it can be deleted after the vec-

tor <110> is moved to C3;2min. This leaves the

three chains listed in Table 1. In general, the

Hansel chains in En can be generated recursively

from the Hansel chains in En�1by following the

3 steps described above.

Table 1. Hansel chains for E
3
.

Chain Number Vector In-Chain Index Vector

1 1 000

2 001

3 011

4 111

2 1 100

2 101

3 1 010

2 110

A nice property of the Hansel chains is that

all the vectors in a particular chain are arranged

in increasing order. That is, if the vectors Vj and

Vk are in the same chain then Vj < Vk (i.e., Vj
strictly precedes V k when j < k). Therefore,

if the underlying boolean function is isotone,

then one can classify vectors within a chain eas-

ily. For example, if a vector Vj is negative (i.e.,

f(Vj) = 0), then all the vectors preceding Vj in

the same chain are also negative (i.e., f(Vk) = 0

for any k < j). Similarly, if a vector V j is

positive, then all the vectors succeeding Vj in

the same chain are also positive. The monotone

ordering of the vectors in Hansel chains moti-

vates the composition of an e�cient question-

asking strategy discussed in the next section.

5. Devising a Smart Question-Asking

Strategy.

The most straight forward question-asking

strategy, which uses Hansel chains, sequentially

moves from chain to chain. Within each chain

one may also sequentially select vectors to pose

as questions. After an answer is given, the vec-

tors (in other chains also) that are classi�ed as a

result of monotonicity are eliminated from fur-

ther questioning. Once all the vectors have been

eliminated, the underlying function is revealed.

The maximum number of questions for this

method, called the Sequential Hansel Chains

monotonicity



Question-Asking Strategy , will not exceed the

upper limit '(n), given in the Hansel theorem,

as long as the chains are searched in increasing

size..

Although the sequential question-asking

strategy is easy to implement and e�ective in

reducing the total number of questions, there

is still room for improvements. Sokolov, [25] in-

troduced an algorithm that sequentially moves

between the Hansel chains in decreasing size and

performs a middle vector search of each chain.

His algorithm does not require storing all the

Hansel chains since at each iteration it only

requires a single chain. This advantage is ob-

tained at the cost of asking more questions than

needed.

In an entirely di�erent approach, Gainanov

[9] presented a heuristic that has been used in

numerous algorithms for inferring a monotone

boolean function, such as in [3] and in [18]. This

heuristic takes as input an unclassi�ed vector

and �nds a border vector (maximal false or min-

imal true) by sequentially questioning neighbor-

ing vectors. The problem with most of the infer-

ence algorithms based on this heuristic is that

they do not keep track of the vectors classi�ed,

only the resulting border vectors. Note that for

an execution of this heuristic, all of the vec-

tors questioned are not necessarily covered by

the resulting border vector, implying that valu-

able information may be lost. In fact, several

border vectors may be unveiled during a sin-

gle execution of this heuristic, but only one is

stored. Many of these methods are designed to

solve large problems where it might be ine�cient

or even infeasible to store all of the informa-

tion gained within the execution of the heuristic.

However, these methods are not e�cient (not

even for small size problems), in terms of the

number of queries they require.

One may look at each vector as carrying a

\reward" value in terms of the number of other

vectors that will be classi�ed concurrently. This

reward value is a random variable that takes

on one of two (one if the two values are the

same) values depending on whether the vector

is a positive or a negative example of the tar-

get function. The expected reward is somewhere

between these two possible values. If one wishes

to maximize the expected number of classi�ed

vectors at each step, the probabilities associated

with each of these two values need to be com-

puted in addition to the actual values. Finding

the exact probabilities is hard, while �nding the

reward values is relatively simple for a small set

of examples.

This is one of the underlying ideas for the

new inference algorithm termed the Binary

Search/Hansel Chains Question-Asking Strat-

egy . This method draws its motivation, for cal-

culating and comparing the \reward" values for

the middle vectors in each Hansel chain, from

the widely used binary search algorithm (see, for

instance, [19]). Within a given chain, a binary

search will dramatically reduce the number of

questions (to the order of log2 while the sequen-

tial search is linear). Once the \reward" values of

all the middle vectors have been found, the most

promising one will be posed as a question to the

oracle. Because each vector has two values, se-

lecting the most promising vector is subjective

and several di�erent evaluative criteria can be

used.

The Binary Search/ Hansel Chains Question-

Asking Strategy can be divided into the follow-

ing steps:
Step

1:

Select the middle vector of the unclas-

si�ed vectors in each Hansel chain.

Step

2:

Calculate the reward values for each

middle vector. That is, calculate the

number of vectors that can be classi-

�ed as positive (denoted as P) if it is

positive and negative (denoted as N)

if it is negative.

Step

3:

Select the most promising middle vec-

tor, based on the (P, N) pairs of the

middle vectors, and ask the oracle for

its membership value.

Sequential Hansel Chains Question-Asking Strategy

Binary Search/Hansel Chains Question-Asking Strategy

binary search algorithm



Step

4:

Based on the answer in Step 3, elimi-

nate all the vectors that can be classi-

�ed as a result of the previous answer

and the property of monotonicity.

Step

5:

Rede�ne the middle vectors in each

chain as necessary.

Step

6:

Unless all the vectors have been clas-

si�ed, go back to step 2.

The inference of a monotone boolean func-

tion on E 3 by using the Binary Search/ Hansel

Chains Question-Asking Strategy is illustrated

below. The speci�cs of iteration 1, described be-

low, are also shown in Table 2. At the begin-

ning of �rst iteration, the middle vectors in each

Hansel chain (as described in Step 1) are selected

and marked with the ` ' symbol in Table 2.

Then, according to Step 2, the reward value for

each one of these middle vectors is calculated.

For instance, if < 001 > (the second vector in

chain 1) has a function value of 1, then the three

vectors < 000 >;< 001 > and < 010 > are also

classi�ed as positive. That is, the value of P for

vector < 001> equals 4. Similarly, < 000> will

be classi�ed as 0 if <001> is classi�ed as 0 and

thus its reward value N equals 2.

Once the \reward" values of all the middle

vectors have been evaluated, the most promis-

ing middle vector will be selected based on their

(P, N) pairs. Here we choose the vector whose

min(P, N) value is the largest among the middle

vectors. If there is a tie, it will be broken ran-

domly. Based on this evaluative criterion, vector

2 is chosen in chain 1 and is marked with \ "

in the column \Selected middle vector with the

largest Min(P, N)" After receiving the function

value of 1 for vector <001>, its value is placed

in the \answer" column. This answer is used to

eliminate all of the vectors succeeding < 001>.

The middle vector in the remaining chains are

updated as needed. At least one more iteration

is required, as there still are unclassi�ed vectors.



Table 2. Iteration 1.

Chain

#

Index

of

Vec-

tors

In the

Chain

Vector Vector

Classi-

�ed

Middle

Vector

in the

Chain

Reward

P if the

Vector is

Positive

Reward

N if the

Vector is

Negative

Selected

Middle

Vector

with the

Largest

Min(P,N )

Answer Other

Vectors

Deter-

mined

1 1 000

2 001  4 2  1

3 011 1

4 111 1

2 1 100  4 2

2 101 1

3 1 010  4 2

2 110



Table 3. Iteration 2.The vector <100> is chosen and based on the answer,

the class membership of the vectors <100> and <000> is determined.

Chain

#

Vector

In-

Chain

Index

Vector Vector

Classi-

�ed

Middle

Vector

in the

Chain

Reward

P if the

Vector is

Positive

Reward

N if the

Vector is

Negative

Selected

Middle

Vector

with the

Largest

Min(P;N)

Answer Other

Vec-

tors

Deter-

mined

1 1 000  4 1 0

2 001 1

3 011 1

4 111 1

2 1 100  2 2  0

2 101 1

3 1 010  2 2

2 110
After the second iteration, no unclassi�ed vectors are left in chains 1 and 2, and the middle of

these chains need not be considered anymore. Therefore, an \X" is placed in the column called

\middle vector in the chain" in Table 4. At the beginning of the third iteration, the vector <010>

is chosen and the function value of the remaining two vectors <010> and <110> are determined.

At this point all the vectors have been classi�ed and the question-asking process stops.
Table 4. Iteration 3.

Chain

Num-

ber

Vector

In-

Chain

Index

Vector Vector

Classi-

�ed

Middle

Vector

in the

Chain

Reward

P if the

Vector is

Positive

Reward

N if the

Vector is

Negative

Selected

Middle

Vector

with the

Largest

Min(P,N )

Answer Other

Vec-

tors

Deter-

mined

1 1 000 0

2 001 1 X

3 011 1

4 111 1

2 1 100 0 X

2 101 1

3 1 010  2 1  1

2 110 1
The algorithm posed a total of 3 questions in order to classify all the examples. The �nal classi-

�cations listed in Table 5 corresponds to the monotone boolean function x2
W
x3.



Table 5.

The Resulting Class Memberships.

Chain

Num-

ber

Vector

In-

Chain

Index

Vector Function

Value

1 1 100 0

2 101 1

2 1 010 1

2 110 1

3 1 000 0

2 001 1

3 011 1

4 111 1

6. Conclusions.

This paper described some approaches and

some of the latest developments in the problem

of inferring monotone boolean functions. As it

has been described here, by using Hansel chains

in the sequential question-asking strategy, the

number of questions will not exceed the upper

bound stated in the Hansel theorem. However,

by combining the binary search of Hansel chains

with the notion of an evaluative criterion, the

number of questions asked can be further re-

duced. At present, the Binary Search/Hansel

Chains Question-Asking Strategy is only applied

to Hansel chains with a dimension of less than

10. However, it is expected that this method can

be applied to infer monotone boolean functions

of larger dimensions with slight modi�cations.
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