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Abstract 1. Introduction 
 

Insulin is one of the most important hormones in the 
body. It aids the body in converting sugar, starches and 
other food items into the energy needed for daily life. 
However, if the body does not produce or properly use 
insulin, the redundant amount of sugar will be driven 
out by urination. This phenomenon (or disease) is 
called diabetes. The cause of diabetes is still a mystery, 
although obesity and lack of exercise appear to 
possibly play significant roles. 

The Pima Indian diabetes (PID) dataset [1], 
riginally donated by Vincent Sigillito from the 
pplied Physics Laboratory at the Johns Hopkins 
niversity, is one of the most well-known datasets for 

esting classification algorithms. This dataset consists 
f records describing 786 female patients of Pima 
ndian heritage which are at least 21 years old living 
ear Phoenix, Arizona, USA. The problem is to predict 
hether a new patient would test positive for diabetes. 
owever, the correct classification percentage of 

urrent algorithms on this dataset is oftentimes 
oincidental. The root to the above critical problem is 
he overfitting and overgeneralization behaviors of a 
iven classification algorithm when it is processing a 
ataset. Although the above situation is of fundamental 
mportance in data mining, it has not been studied 
rom a comprehensive point of view. Thus, this paper 
escribes a new approach, called the Homogeneity-
ased Algorithm (or HBA) as developed by Pham and 
riantaphyllou in [2-3], to optimally control the 
verfitting and overgeneralization behaviors of 
lassification on this dataset. The HBA is used in 
onjunction with traditional classification approaches 
such as Support Vector Machines (SVMs), Artificial 
eural Networks (ANNs), or Decision Trees (DTs)) to 
nhance their classification accuracy. Some 
omputational results seem to indicate that the 
roposed approach significantly outperforms current 
pproaches. 

According to the American Diabetes Association 
[4] in November 2007, 20.8 million children and adults 
in the United States (i.e., approximately 7% of the 
population) were diagnosed with diabetes. Thus, the 
ability to diagnose diabetes early plays an important 
role for the patient’s treatment process. The World 
Health Organization [5] proposed the eight attributes, 
depicted in Table 1, of physiological measurements 
and medical test results for the diabetes diagnosis. 

 
Table 1: The eight attributes for the 
diabetes diagnosis. 

No. Attribute 
1 Number of times pregnant 
2 Plasma glucose concentration in an oral 

glucose tolerance test 
3 Diastolic blood pressure (mm/Hg) 
4 Triceps skin fold thickness (mm) 
5 2-hour serum insulin (µU/ml) 
6 Body mass index (kg/m2) 
7 Diabetes Pedigree function 
8 Age (years) 
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Furthermore, one of the many applications of data 
mining involves the analysis of data for which we 
know the class value of each data point. We wish to 
infer some patterns from these data which in turn could 
be used to infer the class value of new points for which 
we do not know their class values. For instance, a 
doctor could be interested in knowing whether a 
patient would test positive for diabetes based on the 
above eight attributes. This kind of data mining 
analysis is called classification or class prediction of 
new data points. 

The PID dataset [1], originally donated by Vincent 
Sigillito from the Applied Physics Laboratory at the 
Johns Hopkins University, is one of the most well-
known datasets for testing classification algorithms. 
This dataset consists of records describing 768 female 
patients of Pima Indian heritage which are at least 21 
years old living near Phoenix, Arizona, USA. From the 
768 patients in the PID dataset, classification 
algorithms used a training set with 576 patients and a 
testing dataset with 192 patients. However, the correct 
classification percentage of current algorithms on this 
dataset is oftentimes coincidental. 

For instance, Smith et al. in [6] used an early neural 
network to diagnose the onset of diabetes mellitus. 
Their approach yielded 76.0% accuracy. Similarly, 
Jankowski and Kadirkamanathan in [7] developed a 
radial basis function network suite called IncNet which 
used 100 neurons and trained for 5,000 iterations. This 
approach yielded 77.6% accuracy. Au and Chan in [8] 
attempted to improve the correct classification 
percentage on the PID dataset by using a fuzzy 
approach. Au and Chan first represented the revealed 
regularities and exceptions using linguistic terms, and 
then mined interesting rules for the classification based 
on membership degrees. Their approach yielded 77.6% 
accuracy. Rutkowski and Cpalka in [9] introduced a 
new neural-fuzzy structure called a flexible neural-
fuzzy inference system (FLEXNFIS). Based on the 
input and output data, they proposed the parameters of 
the membership functions and the type of the neuron 
systems (Mamdani or logical). However, their correct 
classification percentage on the PID dataset was 
78.6%. Davis in [10] developed a fuzzy neural 
network by using the BK-Square products. This fuzzy 
neural network was then tested on the PID dataset. The 
result of his approach yielded 81.8% accuracy. 
Furthermore, the results obtained from the StatLog 
project [11] when evaluating for many different 
classification algorithms on the PID dataset showed 
that their correct classification percentage was less 
than 78%. 

The root to the low accuracies is the overfitting and 
overgeneralization behaviors of a given classification 

algorithm when it is processing this dataset. Although 
the above situation is of fundamental importance in 
data mining, it has not been studied from a 
comprehensive point of view. Thus, the main goal of 
this paper is to apply a new approach, called the 
Homogeneity-Based Algorithm (or HBA), as described 
in [2-3], to optimally control the overfitting and 
overgeneralization behaviors on the PID dataset. That 
is, the HBA would minimize the total misclassification 
cost in terms of the false-positive, false-negative, and 
unclassifiable rates. By doing so, it is hoped that the 
classification/prediction accuracy of the inferred 
models will be very high or at least as high as it can be 
achieved with the available training data. 

The next section is a brief description of the HBA 
and it is adopted from [2-3]. That section shows how a 
balance between fitting and generalization has the 
potential to improve many existing classification 
algorithms. The third section discusses some promising 
results. These results give an indication of how this 
methodology may improve the classification/prediction 
accuracy. Finally, this chapter ends with some 
conclusions. 
 

2. Description of the HBA 
 
2.1 Problem Description 
 

As described in [2-3], many real-life applications 
have the following three different penalty costs: 
• A cost when a true-positive point is classified as 

negative.  
• A cost when a true-negative point is classified as 

positive.  
• A cost when a data point cannot be classified by any 

of the classification patterns.  
The first case is known as false-negative, while the 

second case is known as false-positive. The last case is 
known as unclassifiable. Furthermore, [2-3] showed 
that attempts to minimize any of the previous rates 
might affect to the other rates. Thus, we cannot 
separate the control of fitting and generalization into 
two independent studies. That is, we need to find a 
way to simultaneously balance fitting and 
generalization by adjusting the inferred systems (i.e., 
the positive and the negative systems) obtained from a 
classification algorithm. The balance of the two 
systems will attempt to minimize the total 
misclassification cost of the final system. 

In particular, let us denote CFP, CFN, and CUC as the 
unit penalty costs for the false-positive, the false-
negative, and the unclassifiable cases, respectively. Let 
RATE_FP, RATE_FN, and RATE_UC be the false-
positive, the false-negative, and the unclassifiable 

 2



rates, respectively. Then, the problem is to achieve a 
balance between fitting and generalization that would 
minimize, or at least significantly reduce, the total 
misclassification cost denoted as TC. Thus, the 
problem is defined as in the following expression: 

D
C hn
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Choosing a value for h plays the role of a 
smoothing parameter in the Parzen Windows 
approach. We propose a way for finding an appropriate 
value for h as follows: )  (1)  ___(min UCRATECFNRATECFPRATECTC UCFNFP ×+×+×=

This methodology may assist the data mining 
analyst to create classification systems that would be 
optimal in the sense that their total misclassification 
cost would be minimized. As mentioned in [2-3], there 
are two key issues regarding the HBA: 

Heuristic Rule 1: If h is set equal to the minimum 
value in set S and this value is used to compute d(x) by 
using Equation (4), then d(x) approaches to a true 
density. 

For instance, suppose that we determine all 
distances between all possible pairs formed by taking 
any two points from pattern C of size 5 (i.e., there are 
five points in C). Thus, there are 10 distances totally. 
For easy illustration, assume that these distances are as 
follows: 6, 1, 2, 2, 1, 5, 2, 3, 5, 5. Then, we define S as 
the set of the distances which have the highest 
frequency. For the previous illustrative example, we 
have set S equal to {2, 5} as both distances 2 and 5 
occur with frequency equal to 3 (which is the highest 
frequency). By using the concept of the previous set S, 
Heuristic Rule 1 proposes an appropriate value for h 
which is equal to 2. The following section briefly 
provides the key details of the HBA [2-3]. 

• The accuracy of the inferred classification systems 
can be increased if the derived patterns are, 
somehow, more compact and homogenous. A pattern 
C of size nC is a homogenous set if the pattern can be 
partitioned into smaller bins of the same unit size h 
and the density of these bins is almost equal to each 
other. 

• The accuracy of the inferred classification systems 
may also be affected by a density measure. Such a 
density could be defined as the number of data 
points in each inferred pattern per unit of area or 
volume. Therefore, this density will be called the 
homogeneity degree. Suppose that a homogenous set 
C is given. Then, HD(C) will denote its homogeneity 
degree. 

 
2.3 The HBA 

  
2.2 Non-parametric Density Estimation There are five parameters which are used in the 

HBA and are computed by using a Genetic Algorithm 
(GA) approach: 

 
As seen in Section 2.1, the density estimation of a 

typical bin plays an important role in determining 
whether a set is a homogenous set. One of the most 
appropriate approaches for the non-parametric density 
estimation is Parzen Windows [12]. That is, the Parzen 
Windows approach temporarily assumes that the bin R 
is a D-dimensional hypercube of unit size h. To find 
the number of points that fall within this bin, the 
Parzen Windows approach defines a kernel function 
φ(u) as follows: 

• Two expansion threshold values α+ and α- to be used 
for expanding the positive and the negative 
homogenous sets, respectively. 

• Two breaking threshold values β+ and β- to be used 
for breaking the positive and the negative patterns, 
respectively. 

• A density threshold value γ to be used for 
determining whether either a positive or a negative 
hypersphere is approximately a homogenous set. 





 ≤

=
otherwise
u

u
,0

,2/1,1
)(ϕ    (2) The HBA depicted in Figure 1 is summarized in 

terms of the following six phases: 
• Phase # 1: Randomly initialize the threshold values. 

Assume a training dataset T is given. We divide T 
into the two random sub-datasets: T1 whose size is 
equal to, say 90%, of T’s size and T2 whose size is 
equal to 10% of T’s size (these percentages are 
determined empirically). 

It follows that the quantity )(
h

ixx −
ϕ  is equal to 

unity if the point xi is inside the hypercube of unit size 
h and centered at x, and zero otherwise. In the D-
dimensional space, the kernel function can be 
presented as follows: • Phase #2: Apply a classification approach (such as 

SVMs, ANNs, or DTs) on the training dataset T1 to 
infer the two classification systems (i.e., the positive 
and the negative classification systems). Suppose 
that each classification system consists of a set of 

)()(
1 h

xx
h

xx m
i

mD

m

i −
=

− ∏
=

ϕϕ   (3) 

Let nC be the number of points in C and d(x) denote 
the x’s density, then: 
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patterns. Next, break the inferred patterns into 
hyperspheres. 

• Phase #3: Determine whether the hyperspheres 
derived in Phase #2 are homogenous sets or not. If 
so, then compute their homogeneity degree and go to 
Phase #4. Otherwise, break a non-homogenous set 
into smaller hyperspheres. Repeat Phase #3 until all 
of the hyperspheres are homogenous sets. 

• Phase #4: For each homogenous set, if its 
homogeneity degree is greater than a certain 
breaking threshold value, then expand it. Otherwise, 
break it into smaller homogenous sets. Phase #4 
stops when all of the homogenous sets have been 
processed. 

 
Input:  
� The training dataset T with the positive and the 

negative points. 
� A given classification algorithm. 
� The density threshold value γ. 
1. Divide T into T1  and T2 as described in Phase #1. 
2. Randomly initialize the values of the control 

parameters α+, α-, β+, and β-. 
3. Call Sub-Problem #1 with the training dataset T1 to 
infer the two classification models. 
4. Call Sub-Problem #2 to form the hyperspheres from 
the inferred patterns. 
5. For each hypersphere C, do: 
         Call Sub-Problem #3 with inputs C and γ to 

determine whether C is a homogenosu set. 
         If C is a non-homogenous set, then call Sub-

Problem #4 to break it and go to Step 5. 
6.  Sort the homogeneity degrees in decreasing order. 
7.  For each homogenous set C, do: 
         If HD(C) ≥ β+ (for positive sets) or HD(C) ≥ β- (for 

negative sets), then 
                       Call Sub-Problem #5 with inputs HD(C) 

and α+ or α- to expand C. 
        Else,       Call Sub-Problem #6 to break C. 
Notes:  
• Apply a GA approach on Steps 5 to 7 by using 

Equation (1) as the fitness function and T2 as a 
calibration dataset to find the classification model S1 
and the optimal threshold values 
( , , , ). 

+
*α −

*α +
*β −

*β

• For the unclassifiable points by S1 in T2, we use Steps 3 
to 7 with the optimal threshold values 
( , , , ) to infer the additional 
classification model S

+
*α −

*α +
*β −

*β

2. 
10. Let S = S1 ∪  S2. 
Output: A new classification system S. 

Figure 1: The HBA. 

 
• Phase #5: Evaluate the classification models (i.e., 

the homogenous sets processed in Phase #4) by 
using the dataset T2 as a calibration dataset. The 

evaluation returns the value of Equation (1). Next, 
apply a genetic algorithm (GA) with the expression 
in Equation (1) as the fitness function to find the 
new threshold values (α+, α-, β+, β-) and then go to 
Phase #4. After a number of iterations, Phase #5 
returns the optimal threshold values 
( , , , ) and the classification model S+

*α −
*α +

*β −
*β

1 
(i.e., the positive and the negative classification 
models) with the best value for Equation (1). 

Phase #6: Suppose that the calibration dataset T2 can 
be divided into the two sub-datasets: T2,1, which 
consists of the points classified by S1, and T2,2, which 
includes the unclassifiable points by S1. We apply 
Phases #2 to #4 on the sub-dataset T2,2 with the optimal 
threshold values ( , , , ). This phase 
infers the additional classification model S

+
*α −

*α +
*β −

*β

2. The final 
classification model is the union of S1 and S2. 

The six phases described above lead to the 
formulation of six sub-problems as follows: 
• Sub-Problem #1: Apply a data mining approach to 

infer the two classification systems.  
• Sub-Problem #2: Break the inferred patterns into 

hyperspheres. 
• Sub-Problem #3: Determine whether a hypersphere 

is a homogenous set or not. If so, then its 
homogeneity degree is estimated.  

• Sub-Problem #4: If a hypersphere is not a 
homogenous set, then break it into smaller 
hyperspheres. 

• Sub-Problem #5: Expand a homogenous set C by 
using HD(C) and the corresponding expansion 
threshold value plus some stopping conditions. 

• Sub-Problem #6: Break a homogenous set C into 
smaller homogenous sets. 
To solve Sub-Problem #1, one simply applies a 

traditional classification algorithm and then derives the 
classification patterns. Furthermore, a solution to Sub-
Problem #2 is similar to solutions for Sub-Problem #4. 
Therefore, the following sections present some 
summary procedures for solving Sub-Problems #2, #3, 
#5, and #6 and the GA approach. The explanation and 
the illustrative examples for Sub-Problems #1 to #6 are 
described in more detail in [2-3]. 
 
2.4 Solving Sub-Problem #2 

 
The goal of Sub-Problem #2 is to find the minimum 

number of hyperspheres that can cover a pattern C of 
size nC. A heuristic algorithm for Sub-Problem #2 is 
proposed as depicted in Figure 2.  

The algorithm starts by first estimating the densities 
of the nC points by using Equation (4). Assume that the 
value for K is going from 1 to nC. The algorithm will 
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pick K points in C with the highest densities. Next, it 
uses these K points as centroids in the K-means 
clustering approach. If the K hyperspheres which are 
obtained from the clustering approach cover C, then 
the algorithm will stop. Otherwise, we repeat the 
algorithm with the value for K increased by one. 
Obviously, the algorithm will stop after some iterations 
because a hypersphere of size one is a homogenous set. 

As seen above, the homogeneity degree HD(C) is a 
factor that may affect the total misclassification cost of 
the inferred classification systems. If an unclassified 
point is covered by a homogenous set C which has a 
higher homogeneity degree, then it may more 
accurately be assumed to be of the same class as the 
points covered by the homogenous set C. Thus, a 
definition for HD(C) is an important step in improving 
the accuracy of the classification systems. Pham and 
Triantaphyllou in [2-3] have proposed a way for 
computing HD(C) as follows: 

 
 

Input: Pattern C of size nC. 
1. Estimate the densities of the nC points by using 

Equation (4). 
2. For K=1 to nC do 
   Pick K points in C with the highest densities. 
   Use the K-means clustering approach to find K 

hyperspheres. 
   If the K hyperspheres cover C, then STOP. 
   Else, K = K + 1. 
Output: K hyperspheres. 

h
nCHD C )ln()( = .  (5) 

Intuitively, HD(C) depends on the value h defined 
in Heuristic Rule 1 and the number of points nC. If nC 
increases, then HD(C) would slightly increase since 
the volume of C does not change and C has more 
points. Furthermore, if h increases, then the average 
distance between pairs of points in homogenous set C 
increases. Obviously, this leads to HD(C) decreases. 
Hence, HD(C) is inversely proportional to h while 
HD(C) is directly proportional to nC. We use the 
function ln(nC) to show the slight effect of nC on 
HD(C). 

Figure 2: The algorithm for Sub-Problem #2. 
 

2.5 Solving Sub-Problem #3 
 

Let us consider hypersphere C of size nC. Sub-
Problem #3 determines whether or not hypersphere C 
is a homogenous set as follows. Hypersphere C is first 
divided into a number of small bins of unit size h and 
then approximates the density at the center x of each 
bin. If the densities at the centers are approximately 
equal to each other, then C is a homogenous set. 

 
2.6 Sub-Problem #5 

 
Suppose that we are given a positive homogenous 

set F with its homogeneity degree HD(F), the breaking 
threshold value β+, and the expansion threshold value 
α+. A similar definition exists for a negative 
homogenous set. According to the main algorithm 
depicted in Figure 1, if HD(F) is greater than or equal 
to β+, then the homogenous set F will be expanded by 
using the expansion threshold value α+. Otherwise, we 
will break the homogenous set F into smaller 
hyperspheres. 

A softer condition can be applied instead of 
requiring exactly the same density at the centers of the 
bins. That is, if the standard deviation of the densities 
at the centers of the bins is approximately less or equal 
to γ, say for γ = 0.01, then hypersphere C may be 
considered to be a homogenous set. The algorithm for 
Sub-Problem #3 is given in Figure 3. 

There are two types of expansion for F: a radial 
expansion in which a homogenous set F is expanded in 
all directions and a linear expansion in which a 
homogenous set F is expanded in a certain direction. 
The following section explains in detail these two 
expansion types [2-3]. 

 
Input: Hypersphere C and density threshold value γ. 
1.  Compute the distances between all pairs of points in 

C. 
2.  Let h be the distance mentioned in Heuristic Rule 1. 
3.  Superimpose C into hypergrid V of unit size h. 
4.  Approximate the density at the center x of each bin. 
5.  Compute the standard deviation of the densities at the 

centers of the bins. 
6.  If the standard deviation is less than or equal to γ, 

then  
        C is a homogenous set and its homogeneity degree 

HD(C) is computed by using Equation (5). 
     Else, C is not a homogenous set. 
Output: Decide whether C is a homogenous set. 

 
2.6.1 Radial Expansion 

 
Let M be a region expanded from F. Let RF and RM 

denote the radiuses of F and M, respectively. The 
radial expansion algorithm is depicted in Figure 4.  

The idea of this algorithm is to expand a 
homogeneous set F as much as possible by using a 
dichotomous search methodology. That is, RF is 
increased by a certain amount denoted as T, called a 
step-size increase, in each iteration. Thus, one gets: 

Figure 3: The algorithm for Sub-Problem #3. 
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RM = RF + T.   (6)  
2.6.3 Description of the Stopping Conditions  

Input: Homogenous set F with HD(F), RF, and α+ 
1. Set M = F (i.e., RF = RM). 
2. Set hypersphere G covering M with radius RG = 2 × 

RM. 
3. Repeat 
           Set E = M (i.e., RE = RM). 
           Expand M by using Equation (10). 
    Until (RM satisfies stopping conditions discussed in 

Section 2.6.3 or RM = RG). 
4. If RM satisfies stopping conditions, then STOP. 
    Else, go to Step 2. 
Output: An expanded region E. 

 
As described in [2-3] the stopping conditions of the 

radial expansion approach for homogenous set F of 
size nF must satisfy the following requirements:  
• Depend on the homogeneity degree HD(F). This has 

been mentioned in Section 2.1. 
• Stop when an expanded region reaches other 

patterns. However, this condition can be relaxed by 
accepting several noisy data points in the expanded 
region. If the homogeneity degree HD(F) is high, 
then the expanded region can accept more noisy data. 

To address the first stopping condition, an upper 
bound for RM should be directly proportional to the 
homogeneity degree HD(F), the expansion threshold 
value α+, and the original radius RF. The second 
stopping condition can be determined while 
expanding. Furthermore, an upper bound on the 
number of noisy points should be directly proportional 
to HD(F) and nF. The stopping conditions are 
summarized as follows: 

Figure 4: The algorithm for the radial 
expansion. 

 
A value for T is determined as follows. We first 

assume that there exists a hypersphere G which covers 
the homogenous set F. Without loss of generality, let 
us assume that the radius RG may be computed by: 

RG = 2 × RF   (7) 
By using RG and RF, we can derive the step-size 

increase T. That is, T must depend on the difference 
between RG and RF. One of the ways that T may be 
determined is as follows: 

+××≤ αFM RFHDR )( and 
the number of noisy points

Fn
FHD +×

≤
α)(  (11) 

Similar conditions exist for the expansion threshold 
value α-. 2

FG RRT −
=    (8) 

At the same time, T should depend on HD(F) 
because of the dichotomous search methodology. That 
is, if HD(F) gets higher, then T should get smaller. 
This means that HD(F) is inversely proportional to T. 
We may use a threshold value L to ensure that HD(F) 
is always greater than one. Thus, the value for T may 
be defined as follows: 

 
2.7 Sub-Problem #6 

 
Suppose a given positive homogenous set F is 

available. Recall that if its homogeneity degree HD(F) 
is less than β+, then the homogenous set F is broken 
into sub-patterns. The sub-patterns are also 
homogenous sets. Thus, they can be expanded or 
broken down even more. 

 
)(

1
2 FHDL

RRT FG

×
×

−
=  (9) 

 If we substitute back into Equation (6), RM becomes: 
2.8 A Genetic Algorithm (GA) Approach for 

Finding the Threshold Values )(
1

2 FHDL
RRRR FG

FM ×
×

−
+=  (10) 

  
2.6.2 Linear Expansion Recall that the main algorithm depicted in Figure 1 

uses the four threshold values α+, α-, β+, and β- to 
derive a new classification system. If the breaking 
threshold values (i.e., β+, and β-) are too high, then this 
would result in the overfitting problem. On the other 
hand, too low breaking threshold values may not be 
sufficient to overcome the overgeneralization problem. 
The opposite situation is true with the expansion 
threshold values (i.e., α+ and α-). 

 
The linear approach expands a homogenous set F in 

a certain direction. There is a difference between the 
method presented in the previous section and the one 
presented in this section (i.e., linear vs. radial). That is, 
now the homogenous set F is first expanded to 
hypersphere M by using the radial expansion. Then, 
hypersphere M is expanded in a given direction by 
using the radial approach until it satisfies the stopping 
conditions mentioned next in Section 2.6.3. The final 
region is the union of all the expanded regions. 

Since the ranges for the threshold values depend on 
each individual application, the search space may be 
large. In this investigation an exhaustive search would 
be impractical. Thus, we propose to use a GA 
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approach to find approximate optimal threshold values 
as follows. The HBA uses Equation (1) as the fitness 
function and the dataset T2 as a calibration dataset. The 
GA approach has been applied here because Equation 
(1) is not unimodal. Furthermore, each chromosome 
consists of four genes corresponding to the four 
threshold values (α+, α-, β+, β-) as depicted in Figure 5. 
The initial population size is 20 (this size was 
determined empirically). 

In order to help motivate the mutation function, let 
us consider a parent chromosome, say, (2, 1, 5, 7). 
Assume that (α+, α-) are in the range [0, 3], while (β+, 
β-) are in the range [0, 10]. Also suppose that the 
chromosome, which is created by using the Gaussian 
distribution, is (10, 6, 3, 7). The mutation child is 
presented in Figure 7. The GA stops if there is no 
improvement in the fitness function during successive 
iterations. 

  
α+ α- β+ β- g1 g2 g3 g4 

((2 or 10) or 
0) and 3 = 2 

((1 or 6) or 
0) and 3 = 3 

((5 or 3) or 
0) and 10 = 2 

((7 or 7) or 
0) and 10 = 2 

Figure 5: An illustrative example of a 
chromosome consisting of the four genes. 

Figure 7: An illustrative example of the 
mutation function.  

The algorithm creates the crossover children by 
combining pairs of parents in the current population. 
At each coordinate of the child’s chromosome, the 
crossover function randomly selects the gene at the 
same coordinate from one of the two parents and 
assigns it to the child. 

 

3. A Computational Study 
 
3.1 Experimental methodology 

 
From the 768 patients, the HBA divided the PID 

dataset into a training dataset T with 576 patients and a 
testing dataset with 192 patients. 

Chromosome A +
1α  −

1α  +
1β  −

1β  
     

Chromosome B +
2α  −

2α  +
2β  −

2β  
     

Chromosome C +
1α  −

2α  +
2β  −

1β  
Suppose that we are given a certain 3-tuple of the 

unit penalty costs (CFP, CFN, CUC). The experiments 
were done as follows: Figure 6: An illustrative example of the 

crossover function. Step 1: The original algorithm was first trained on the 
training dataset T and then derived the value for TC by 
using the testing dataset.  

In order to help motivate the crossover function, we 
consider the two chromosomes A and B depicted in 
Figure 6. Assume that the chromosomes A and B 
consist of the four genes ( ) and 
( ), respectively. The algorithm 
randomly selects the gene at the same coordinate from 
one of the chromosomes A and B and then assigns it to 
child C. Thus, the chromosome C may be 
( ). 

−+−+
1111 ,,, ββαα

−+−+
2222 ,,, ββαα

−+−+
1221 ,,, ββαα

Step 2: The HBA was trained on the training dataset T1 
as described in Section 2.2 and then derived the value 
for TC by also using the testing dataset. It was 
assumed that β+ and β- were in [0, 2] while α+ and α- 
were in [0, 20]. 
Step 3: Compare the two values for TC returned in 
steps 1 and 2, respectively. 

On the other hand, if we are given different values 
for the 3-tuple (CFP, CFN, CUC), then we expect that the 
value for TC after controlling the fitting and 
generalization problems would be less than or at most 
equal to what was achieved by the original algorithms. 

The algorithm creates the mutation child (g1, g2, g3, 
g4) by randomly changing the genes of the parent 
chromosome (α+, α-, β+, β-). Suppose that the first two 
genes α+ and α- are in the range [a, b], while the last 
two genes β+ and β- are in the range [c, d]. The 
algorithm first randomizes a chromosome (t1, t2, t3, t4) 
by using the Gaussian distribution. Next, one would 
prefer that the genes in the mutation child are also in 
the corresponding ranges. Thus, for each gene at the 
same coordinate from the parent, the algorithm uses 
either one of the following Equations (12) or (13) to 
create the corresponding gene for the mutation child: 

 
3.2 Experimental Results 
 

The experiments were run on a PC with 2.8GHZ 
speed and 3GB RAM under the Windows XP 
operating system. The original classification 
algorithms used in these experiments are based on 
SVMs, ANNs, and DTs. There were more than 54 
experiments done on the PID dataset with different 
values for the 3-tuple (CFP, CFN, CUC). Furthermore, we 
used the libraries in Neural Network Toolbox 6.0, 
Genetic Algorithm and Direct Search Toolbox 2.1, and 
Statistics Toolbox 6.0 [13] for implementing the 

 
g1 = ((α+ or t1) or a) and b, g2 = ((α- or t2) or a) and b (12) 
g3 = ((β+ or t3) or c) and d, g4 = ((β- or t4) or c) and d (13) 
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classification algorithms, the GA approach, and the 
density estimation approach. The experimental details 
are as follows: 

Table 3 presents a comparison between the 
achieved classification percentages of the different 
classification algorithms. Clearly, the results by the 
HBA when it was combined with the traditional 
approaches were more accurate than those by the stand 
alone algorithms. 

Case 1: At first we studied the case of a 3-tuple 
(CFP, CFN, CUC) in which the application would not 
penalize for the unclassifiable cases while the 
application would penalize at the same cost, say one 
unit, for the other two types of error. Under this 
scenario, the problem is equivalent to the evaluation of 
the current classification algorithms which require 
either positive or negative outputs (see Table 4). Thus, 
the objective function in this case was assumed to be: 

Case 2: Now we consider a case in which the 
application would penalize the same way, say three 
units, for the false-positive, the false-negative, and the 
unclassifiable cases. Thus, the objective function in 
this case was assumed to be: 

TC = 3×RATE_FP + 3×RATE_FN +3×RATE_UC. 
TC = 1×RATE_FP + 1×RATE_FN. The results are presented in Table 4. In this case, 

Table 4 shows that after 100 generations, SVM-HBA, 
DT-HBA, and ANN-HBA found the optimal value for 
TC which was less than the value of TC achieved by 
the original algorithms by about 50.48%. 

Table 2: Results for minimizing TC = 
1×RATE_FP + 1×RATE_FN on the PID 
dataset. 
Algorithm RATE_FP RATE_FN RATE_UC TC % of 

improvement
SVM 0 74 0 74  
DT 27 36 0 63  

ANN 22 39 0 61  
SVM-HBA 0 10 0 10 86.49% 
DT-HBA 0 16 0 16 74.60% 

ANN-HBA 0 10 0 10 83.61% 

 
Table 4: Results for minimizing TC = 
3×RATE_FP + 3×RATE_FN + 3×RATE_UC on 
the PID dataset. 
Algorithm RATE_FP RATE_FN RATE_UC TC % of 

improvement 
SVM 0 74 109 549  
DT 27 36 118 543  

ANN 22 39 118 537  
SVM-HBA 2 40 54 288 47.54% 
DT-HBA 1 61 24 258 52.49% 

ANN-HBA 1 57 29 261 51.40% 

 
The results are presented in Table 2. In this case, 

Table 2 shows the three rates and the value of TC 
obtained from the algorithms. The notation “SVM-
HBA” means that the HBA used the classification 
models first obtained by using the SVM algorithm 
before controlling the fitting and generalization 
problems. Two similar notations are used for DT-HBA 
(the Decision Tree algorithm and the HBA) and ANN-
HBA (the Artificial Neural Network algorithm and the 
HBA). Table 2 presents that after 100 generations, 
SVM-HBA, DT-HBA, and ANN-HBA found the 
optimal TC to be equal to 10, 16, and 10 units, 
respectively. These values of TC were less than the 
average value of TC achieved by the original 
algorithms (i.e., the SVM, DT, and ANN) by about 
81.57%. The values for α+, α-

, β+, and β- when ANN-
HBA found the optimal TC by using the GA approach 
are 0.39, 18, 0.23, and 0.35, respectively. 

 
Case 3: Now we consider a case in which the 

application would penalize much more for the false-
negative cases than for the other types of error. Thus, 
the objective function in this case was assumed to be: 

TC = 1×RATE_FP + 20×RATE_FN +3× RATE_UC. 

The results are presented in Table 5. In this case, 
Table 5 shows that after 100 generations, SVM-HBA, 
DT-HBA, and ANN-HBA found the optimal value for 
TC which was less than the value of TC achieved by 
the original algorithms by about 51.59%. 

 
Table 5: Results for minimizing TC = 
1×RATE_FP + 20×RATE_FN + 3×RATE_UC 
on the PID dataset. 
Algorithm RATE_FP RATE_FN RATE_UC TC  % of 

improvement
SVM 0 74 109 1,807  
DT 27 36 118 1,101  

ANN 22 39 118 1,156  
SVM-HBA 0 16 105 635 64.86% 
DT-HBA 5 10 136 613 44.32% 

ANN-HBA 0 10 143 629 45.59% 

 
Table 3: Results for the PID dataset. 

Algorithm % Accuracy % of 
improvement 

[6] 76.0%  
[7] 77.6%  
[8] 77.6%  
[9] 78.6%  

[10] 81.8%  
[11] 77.7%  

SVM-HBA 94.79% 16.57% 
ANN-HBA 94.79% 16.57% 
DT-HBA 91.67% 13.45% 

 
We also experimented with the following different 

objective functions on this dataset: 
TC = 20×RATE_FP + 2×RATE_FN + 1×RATE_UC,  
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TC = 20×RATE_FP + 20×RATE_FN + 1×RATE_UC, [3] H. N. A. Pham, and E. Triantaphyllou, "An Optimization 
Approach for Improving Accuracy by Balancing 
Overfitting and Overgeneralization in Data Mining," 
submitted for publication, January 2008. 

TC = 20×RATE_FP + 1×RATE_FN +20×RATE_UC,  
TC = 1×RATE_FP + 20×RATE_FN +20×RATE_UC, 
and TC = 3×RATE_FP + 6×RATE_FN. 

In all these tests we concluded that the HBA always 
found the optimal combinations of α+, α-, β+, and β- by 
using the GA approach in order to minimize the value 
of TC. Furthermore, the value for TC in all these cases 
was significantly less than or at most equal to what 
was achieved by the original algorithms. 

[4] American Diabetes Association,  website: 
http://www.diabetes.org/home.jsp, 2007. 

[5] World Health Organization, “Diabetes Mellitus: Report 
of a WHO Study Group. Geneva: WHO,” Technical 
Report Series 727, 1985. 

[6] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. 
Knowler, and R. S. Johannes, “Using the ADAP 
learning algorithm to forecast the onset of diabetes 
mellitus,” Proceedings of 12th Symposium on Computer 
Applications and Medical Care, Los Angeles, 
California, USA, 1988, pp. 261 - 265. 

 
 

4. Conclusions 
 

Millions of people in the United States and the 
world have diabetes. Many of these people do not even 
know they have it. The ability to predict diabetes early 
plays an important role for the patient’s treatment 
process. However, the correct prediction percentage of 
current algorithms is oftentimes low. Thus, this chapter 
applied a new approach, called the Homogeneity-
Based Algorithm (HBA), for enhancing the diabetes 
prediction. That is, the HBA is first used in 
conjunction with traditional classification approaches 
(such as SVMs, DTs, ANNs). A GA approach was 
then used to find optimal (or near optimal) values for 
the four parameters of the HBA. The Pima Indian 
diabetes dataset was used for evaluating the 
performance of the HBA. The obtained results appear 
to be very important both for accurately predicting 
diabetes and also for the data mining community, in 
general. 

[7] N. Jankowski and V. Kadirkamanathan, “Statistical 
control of RBF-like networks for classification,” 
Proceedings of the 7th International Conference on 
Artificial Neural Networks (ICANN), Lausanne, 
Switzerland, 1997, pp. 385 - 390. 
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