Greedy algorithms

Optimization problems solved through a sequence of choices that are:

- *feasible*
- *locally optimal*
- *irrevocable*

Not all optimization problems can be approached in this manner!
Applications of the Greedy Strategy

Optimal solutions:
- change making
- Minimum Spanning Tree (MST)
- Single-source shortest paths
- simple scheduling problems
- Huffman codes

Approximations:
- Traveling Salesman Problem (TSP)
- Knapsack problem
- other combinatorial optimization problems
Minimum Spanning Tree (MST)

- *Spanning tree* of a connected graph G: a connected acyclic subgraph of G that includes all of G’s vertices.

- *Minimum Spanning Tree* of a weighted, connected graph G: a spanning tree of G of minimum total weight.

Example:

![Graph diagram with vertices labeled 1, 2, 3, 4 and edges with weights 1, 2, 3, 4, 6]
Prim’s MST algorithm

- Start with tree consisting of one vertex

- “grow” tree one vertex/edge at a time to produce MST
 - Construct a series of expanding subtrees T_1, T_2, \ldots

- at each stage construct T_{i+1} from T_i: add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 - choose from “fringe” edges
 - (this is the “greedy” step!)

- algorithm stops when all vertices are included
Examples:
Notes about Prim’s algorithm

- Need to prove that this construction actually yields MST

- Need priority queue for locating lowest cost fringe edge: use min-heap

- Efficiency: For graph with n vertices and m edges:

 $$(n - 1 + m) \log n$$

 - number of stages (min-heap deletions)
 - number of edges considered (min-heap insertions)

 $\Theta(m \log n)$
Another Greedy algorithm for MST: Kruskal

- Start with empty forest of trees
- “grow” MST one edge at a time
 - intermediate stages usually have forest of trees (not connected)
- at each stage add minimum weight edge among those not yet used that does not create a cycle
 - edges are initially sorted by increasing weight
 - at each stage the edge may:
 - expand an existing tree
 - combine two existing trees into a single tree
 - create a new tree
 - need efficient way of detecting/avoiding cycles
- algorithm stops when all vertices are included
Examples:

![Graph with labeled nodes and edges]

- Node 1 is connected to node 2 with weight 2.
- Node 2 is connected to node 3 with weight 6, and to node 4 with weight 3.
- Node 3 is connected to node 1 with weight 1.
- Node 4 is connected to node 2 with weight 3.
- Node a is connected to node b with weight 5, and to node d with weight 4.
- Node b is connected to node a with weight 1, and to node d with weight 6.
- Node d is connected to node a with weight 4, and to node c with weight 3, and to node e with weight 7.
- Node c is connected to node d with weight 3.
- Node e is connected to node d with weight 7.
Notes about Kruskal’s algorithm

- Algorithm looks easier than Prim’s but is
 - harder to implement (checking for cycles!)
 - less efficient $\Theta(m \log m)$

- Cycle checking: a cycle exists iff edge connects vertices in the same component.

- Union-find algorithms – see section 9.2
Shortest paths—Dijkstra’s algorithm

- **Single Source Shortest Paths Problem**: Given a weighted graph G, find the shortest paths from a source vertex s to each of the other vertices.

- Dijkstra’s algorithm: Similar to Prim’s MST algorithm, with the following difference:
 - Start with tree consisting of one vertex
 - “grow” tree one vertex/edge at a time to produce MST
 - Construct a series of expanding subtrees T_1, T_2, \ldots
 - Keep track of shortest path from source to each of the vertices in T_i
 - at each stage construct T_{i+1} from T_i: add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 - choose from “fringe” edges
 - (this is the “greedy” step!)
 - algorithm stops when all vertices are included

edge (v,w) with lowest $d(s,v) + d(v,w)$
Example:

```
Example:
```

Diagram:

- Nodes: a, b, c, d, e
- Edges and Weights:
 - a to b: 5
 - a to c: 1
 - a to d: 3
 - b to d: 6
 - b to e: 2
 - c to d: 4
 - d to e: 7
Notes on Dijkstra’s algorithm

- Doesn’t work with negative weights
- Applicable to both undirected and directed graphs
- Efficiency: