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ABSTRACT
Satellite image classification is a challenging problem that lies at
the crossroads of remote sensing, computer vision, and machine
learning. Due to the high variability inherent in satellite data, most
of the current object classification approaches are not suitable for
handling satellite datasets. The progress of satellite image analyt-
ics has also been inhibited by the lack of a single labeled high-
resolution dataset with multiple class labels. The contributions
of this paper are twofold – (1) first, we present two new satellite
datasets called SAT-4 and SAT-6, and (2) then, we propose a classi-
fication framework that extracts features from an input image, nor-
malizes them and feeds the normalized feature vectors to a Deep
Belief Network for classification. On the SAT-4 dataset, our best
network produces a classification accuracy of 97.95% and outper-
forms three state-of-the-art object recognition algorithms, namely -
Deep Belief Networks, Convolutional Neural Networks and Stacked
Denoising Autoencoders by ∼11%. On SAT-6, it produces a clas-
sification accuracy of 93.9% and outperforms the other algorithms
by ∼15%. Comparative studies with a Random Forest classifier
show the advantage of an unsupervised learning approach over tra-
ditional supervised learning techniques. A statistical analysis based
on Distribution Separability Criterion and Intrinsic Dimensionality
Estimation substantiates the effectiveness of our approach in learn-
ing better representations for satellite imagery.
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1. INTRODUCTION
Deep Learning has gained popularity over the last decade due to

its ability to learn data representations in an unsupervised manner
and generalize to unseen data samples using hierarchical represen-
tations. The most recent and best-known Deep learning model is
the Deep Belief Network [15]. Over the last decade, numerous
breakthroughs have been made in the field of Deep Learning; a no-
table one being [22], where a locally connected sparse autoencoder
was used to detect objects in the ImageNet dataset [11] producing
state-of-the-art results. In [27], Deep Belief Networks have been
used for modeling acoustic signals and have been shown to out-
perform traditional approaches using Gaussian Mixture Models for
Automatic Speech Recognition (ASR). They have also been found
useful in hybrid learning models for noisy handwritten digit clas-
sification [2]. Another closely related approach, which has gained
much traction over the last decade, is the Convolutional Neural
Network [23]. This has been shown to outperform Deep Belief
Network in classical object recognition tasks like MNIST [39], and
CIFAR [20].

A related and equally hard problem is Satellite1 image classifica-
tion. It involves terabytes of data and significant variations due to
conditions in data acquisition, pre-processing and filtering. Tradi-
tional supervised learning methods like Random Forests [6] do not
generalize well for such a large-scale learning problem. A novel
classification algorithm for detecting roads in Aerial imagery using
Deep Neural Networks was proposed in [26]. The problem of de-
tecting various land cover classes in general is a difficult problem

1Note that we use the terms satellite and airborne interchangeably
in this paper because the extracted features and learning algorithms
are generic enough to handle both satellite and airborne datasets.



considering the significantly higher intra-class variability in land
cover types such as trees, grasslands, barren lands, water bodies,
etc. as compared to that of roads. Also, in [26], the authors used
a window of size 64×64 to derive contextual information. For our
general classification problem, a 64×64 window is too big a con-
text covering a total area of 64m×64m. A tree canopy, or a grassy
patch can typically be much smaller than this area and hence we
are constrained to use a contextual window having a maximum di-
mension of 28m×28m.

Traditional supervised learning approaches require carefully se-
lected handcrafted features and substantial amounts of labeled data.
On the other hand, purely unsupervised approaches are not able to
learn the higher order dependencies inherent in the land cover clas-
sification problem. So, we propose a combination of handcrafted
features that were first used in [14] and an unsupervised learning
framework using Deep Belief Network [15] that can learn data
representations from large amounts of unlabeled data.

There has been limited research in the field of satellite image
classification due to a dearth of labeled satellite image datasets.
The most well known labeled satellite dataset is the NLCD 2006
[38], which covers the entire globe and provide a spatial resolu-
tion of 30m. However, at this resolution, it becomes extremely
difficult to distinguish between various landcover types. A high-
resolution dataset acquired at a spatial resolution of 1.2m was used
in [26]. However, the total area covered by the datasets namely
URBAN1 and URBAN2 was ∼600 square kilometers, which in-
cluded both training and testing datasets. The labeling was also
available only for roads. Satellite/airborne image classification at a
spatial resolution of 1-m was addressed in [1]. However, they per-
formed tree-cover delineation by training a binary classifier based
on Feedforward Backpropagation Neural Networks.

The main contributions of our work are twofold – (1) We first
present two labeled datasets of airborne images – SAT-4 and SAT-6
covering a total area of∼800 square kilometers, which can be used
to further the research and investigate the use of various learning
models for airborne image classification. Both SAT-4 and SAT-
6 are sampled from a much larger dataset [40], which covers the
whole of continental United States and can be used to create labeled
landcover maps, which can then be used for various applications
such as measuring ground carbon content or estimating total area
of rooftops for solar power generation.

(2) Next, we present a framework for the classification of satel-
lite/airborne imagery that a) extracts features from the image, b)
normalizes the features, and c) feeds the normalized feature vectors
to a Deep Belief Network for classification. On the SAT-4 dataset,
our framework outperforms three state-of-the-art object recogni-
tion algorithms - Deep Belief Networks, Convolutional Neural Net-
works and Stacked Denoising Autoencoders by ∼11% and pro-
duces an accuracy of 97.95%. On SAT-6, it produces an accuracy
of 93.9% and outperforms the other algorithms by ∼15%. We also
present a statistical analysis based on Distribution Separability Cri-
terion and Intrinsic Dimensionality Estimation to justify the effec-
tiveness of our feature extraction approach to obtain better repre-
sentations for satellite data.

2. DATASET2

Images were extracted from the National Agriculture Imagery
Program (NAIP [40]) dataset. The NAIP dataset consists of a total
of 330,000 scenes spanning the whole of the Continental United
States (CONUS). We used the uncompressed digital Ortho quarter

2THE SAT-4 AND SAT-6 DATASETS ARE AVAILABLE AT THE
WEB LINK [42]

quad tiles (DOQQs) which are GeoTIFF images and the area corre-
sponds to the United States Geological Survey (USGS) topographic
quadrangles. The average image tiles are ∼6000 pixels in width
and∼7000 pixels in height, measuring around 200 megabytes each.
The entire NAIP dataset for CONUS is∼65 terabytes. The imagery
is acquired at a 1-m ground sample distance (GSD) with a horizon-
tal accuracy that lies within six meters of photo-identifiable ground
control points [41]. The images consist of 4 bands – red, green,
blue and Near Infrared (NIR). In order to maintain the high vari-
ance inherent in the entire NAIP dataset, we sample image patches
from a multitude of scenes (a total of 1500 image tiles) covering
different landscapes like rural areas, urban areas, densely forested,
mountainous terrain, small to large water bodies, agricultural ar-
eas, etc. covering the whole state of California. An image labeling
tool developed as part of this study was used to manually label uni-
form image patches belonging to a particular landcover class. Once
labeled, 28×28 non-overlapping sliding window blocks were ex-
tracted from the uniform image patch and saved to the dataset with
the corresponding label. We chose 28×28 as the window size to
maintain a significantly bigger context as pointed by [26], and at
the same time not to make it as big as to drop the relative statis-
tical properties of the target class conditional distributions within
the contextual window. Care was taken to avoid interclass overlaps
within a selected and labeled image patch. Sample images from the
dataset are shown in Figure 1.

2.1 SAT-4
SAT-4 consists of a total of 500,000 image patches covering four

broad land cover classes. These include – barren land, trees, grass-
land and a class that consists of all land cover classes other than
the above three. 400,000 patches (comprising of four-fifths of the
total dataset) were chosen for training and the remaining 100,000
(one-fifths) were chosen as the testing dataset. We ensured that
the training and test datasets belong to disjoint set of image tiles.
Each image patch is size normalized to 28×28 pixels. Once gener-
ated, both the training and testing datasets were randomized using
a pseudo-random number generator.

2.2 SAT-6
SAT-6 consists of a total of 405,000 image patches each of size

28×28 and covering 6 landcover classes - barren land, trees, grass-
land, roads, buildings and water bodies. 324,000 images (compris-
ing of four-fifths of the total dataset) were chosen as the training
dataset and 81,000 (one fifths) were chosen as the testing dataset.
Similar to SAT-4, the training and test sets were selected from dis-
joint NAIP tiles. Once generated, the images in the dataset were
randomized in the same way as that for SAT-4. The specifications
for the various landcover classes of SAT-4 and SAT-6 were adopted
from those used in the National Land Cover Data (NLCD) algo-
rithm [43].

3. INVESTIGATION OF VARIOUS
DEEP LEARNING MODELS

3.1 Deep Belief Network
Deep Belief Network (DBN) consists of multiple layers of stochas-

tic, latent variables trained using an unsupervised learning algo-
rithm followed by a supervised learning phase using feedforward
backpropagation Neural Networks. In the unsupervised pre-training
stage, each layer is trained using a Restricted Boltzmann Machine
(RBM). Unsupervised pre-training is an important step in solving a
classification problem with terabytes of data and high variability. A



Figure 1: Sample images from the SAT-6 dataset

DBN is a graphical model [19] where neurons of the hidden layer
are conditionally independent of each other given a particular con-
figuration of the visible layer and vice versa. A DBN can be trained
layer-wise by iteratively maximizing the conditional probability of
the input vectors or visible vectors given the hidden vectors and a
particular set of layer weights. As shown in [15], this layer-wise
training can help in improving the variational lower bound on the
probability of the input training data, which in turn leads to an im-
provement of the overall generative model.

We first provide a formal introduction to the Restricted Boltz-
mann Machine. The RBM can be denoted by the energy function:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

hjwi,jvi (1)

where, the RBM consists of a matrix of layer weights W =
(wi,j) between the hidden units hj and the visible units vi. The
ai and bj are the bias weights for the visible units and the hidden
units respectively. The RBM takes the structure of a bipartite graph
and hence it only has inter-layer connections between the hidden
or visible layer neurons but no intra-layer connections within the
hidden or visible layers. So, the visible unit activations are mu-
tually independent given a particular set of hidden unit activations
and vice versa [7]. Hence, by setting either h or v constant, we can
compute the conditional distribution of the other as follows:

P (hj = 1|v) = σ(bj +
m∑
i=1

wi,jvi) (2)

P (vi = 1|h) = σ(ai +

n∑
j=1

wi,jhj) (3)

where, σ denotes the log sigmoid function:

f(x) =
1

1 + e−x
(4)

The training algorithm maximizes the expected log probability
assigned to the training dataset V . So if the training dataset V
consists of the visible vectors v, then the objective function is as
follows:

argmax
W

E
[ ∑
v∈V

logP (v)
]

(5)

A RBM is trained using a Contrastive Divergence algorithm [7].
Once trained, the DBN can be used to initialize the weights of the
Neural Network for the supervised learning phase [3].

Next, we investigate the classification accuracy of various archi-
tectures of DBN on both SAT-4 and SAT-6 datasets.

3.1.1 DBN Results on SAT-4 & SAT-6
To investigate the performance of the DBN, we experiment with

both big and deep neural architectures. This is done by varying the
number of neurons per layer as well as the total number of layers in
the network. Our objective is to investigate whether the more com-
plex features learned in the deeper layers of the DBN are able to
provide the network with the discriminative power required to han-
dle higher-order texture features typical of satellite imagery data.
The results from the DBN for various network architectures for
SAT-4 and SAT-6 are enumerated in Table 1. Each network was
trained for a maximum of 500 epochs and the network state with
the lowest validation error was used for testing. Regularization is
done using L2 norm-regularization. It can be seen from the table
that for both SAT-4 and SAT-6, the classifier accuracy initially im-
proves and then falls as more neurons or layers are added to the
network.

3.2 Convolutional Neural Network



Network Arch. Classifier Classifier
Neurons/layer Accuracy Accuracy

[Layers] SAT-4 (%) SAT-6 (%)
100 [2] 79.74 68.51
100 [3] 81.78 76.47
100 [4] 79.802 74.44
100 [5] 62.776 63.14
500 [2] 68.916 60.35
500 [3] 71.674 61.12
500 [4] 65.002 57.31
500 [5] 64.174 55.78

Table 1: Classification Accuracy of DBN with various architec-
tures on SAT-4 and SAT-6

Convolutional Neural Network (CNN) first introduced in [13] is
a hierarchical model inspired by the human visual cortical system
[16]. It was significantly improved and applied to document recog-
nition in [23]. A committee of 35 convolutional neural nets with
elastic distortions and width normalization [9] has produced state-
of-the-art results on the MNIST handwritten digits dataset. CNN
consists of a hierarchical representation using convolutional lay-
ers and fully connected layers, with non-linear transformations and
feature pooling.

They also include local or global pooling layers. Pooling can be
implemented in the form of subsampling, averaging, max-pooling
or stochastic pooling. Each of these pooling architectures has its
own advantages and limitations and numerous studies are in place
that investigate the effect of different pooling functions on repre-
sentation power of the model ([31],[30]). A very important feature
of Convolutional Neural Network is weight sharing in the convolu-
tional layers, which means that the same filter bank can be used for
all pixels in a particular layer; thereby generating sparse networks
that can generalize well to unseen data samples while maintaining
the representational power inherent in deep hierarchical architec-
tures.

We investigate the use of different CNN architectures for SAT-4
and SAT-6 as detailed below.

3.2.1 CNN Results on SAT-4 & SAT-6
For CNN, we vary the number of feature maps in each layer as

well as the total number of convolutional and subsampling layers.
The results from various network configurations with increasing
number of maps and layers is enumerated in Table 2. For the ex-
periments, we used both 3×3 and 5×5 kernels for the convolu-
tional layers and 3×3 averaging and max-pooling kernels for the
sub-sampling layers. We also use overlapping pooling windows
with a stride size of 2 pixels. The last sub-sampling layer is con-
nected to a fully-connected layer with 64 neurons. The output of
the fully-connected layer is fed into a 4-way softmax function that
generates a probability distribution over the 4 class labels of SAT-4
and a 6-way softmax for the 6 class labels of SAT-6. In Table 2, the
“Ac-Bs(n)” notation denotes that the network has a convolutional
layer with A feature maps followed by a sub-sampling layer with
a kernel of size B×B. ‘n’ denotes the type of pooling function
in the sub-sampling layer, ‘a’ denotes average pooling while ‘m’
denotes max-pooling. From the table, it can be seen that the small-
est networks consistently produce the best results. Also, both for
SAT-4 and SAT-6, using networks with convolution kernels of size
3×3 leads to a significant drop in classifier accuracy. The biggest
networks with 50 maps per layer also exhibit significant drop in

classifier accuracy.

Network Architecture Accuracy Accuracy
(Convolution kernel size) SAT-4 SAT-6

(%) (%)
6c-3s(a)-12c-3s(m) (5×5) 86.827 79.063
18c-3s(a)-36c-3s(m) (5×5) 82.325 78.704

6c-3s(a)-12c-3s(m)-12c 81.907 76.963
-3s(m)(5×5)

50c-3s(a)-50c-3s(m)-50c 73.85 75.689
-3s(m)(5×5)

6c-3s(a)-12c-3s(m) (3×3) 73.811 54.385
6c-3s(m)-12c-3s(m) (5×5) 85.612 77.636

Table 2: Classification Accuracy of CNN with various architec-
tures on SAT-4

3.3 Stacked Denoising Autoencoder
A Stacked Denoising Autoencoder (SDAE) [37] consists of a

combination of multiple sparse autoencoders, which can be trained
in a greedy-layerwise fashion similar to that of Restricted Boltz-
mann Machines in a DBN. Each autoencoder is associated with a
set of weights and biases. In the SDAE, each layer can be trained
independent of the other layers. Once trained, the parameters of an
autoencoder are frozen in place. The training algorithm consists of
two passes – a forward pass and a backward pass. The forward pass,
also called as the encoding phase encodes raw image pixels into an
increasingly higher-order representation. The backward pass sim-
ply performs the reverse operation by decoding these higher-order
features into simpler representations. The encoding step is given
as:

a(l) = f(z(l)) (6)

z(l+1) = W (l,1)a(l) + b(l,1) (7)

And the decoding step is as follows:

a(n+l) = f(z(n+l)) (8)

z(n+l+1) = W (n−l,2)a(n+l) + b(n−l,2) (9)

The hidden unit activations of the neurons in the deepest layer
are used for classification after a supervised fine-tuning using back-
propagation.

3.3.1 SDAE Results on SAT-4 & SAT-6
Different network configurations were chosen for the SDAE in

a manner similar to that described above for DBN and CNN. The
results are enumerated in Table 3. Similar to DBN, each network
is trained for a maximum of 500 epochs and the lowest test error
is considered for evaluation. As highlighted in the Table, networks
with 5 layers and 100 neurons in each layer produce the best results
on both SAT-4 and SAT-6. It can be seen from the table that on both
datasets, the classifier accuracy initially improves and then drops
with increasing number of neurons and layers, similar to that of
DBN. Also, the biggest networks with 500 and 2352 neurons in
each layer exhibit a significant drop in classifier accuracy.

4. DEEPSAT - A DETAILED
ARCHITECTURAL OVERVIEW



Figure 2: Schematic of the DeepSat classification framework

Network Arch. Classifier Classifier
Neurons/layer Accuracy Accuracy

[Layers] SAT-4 (%) SAT-6 (%)
100 [1] 75.88 74.89
100 [2] 76.854 76.12
100 [3] 77.804 76.45
100 [4] 78.674 76.52
100 [5] 79.978 78.43
100 [6] 75.766 76.72
500 [3] 63.832 54.37
2352 [2] 51.766 37.121

Table 3: Classification Accuracy of SDAE with various archi-
tectures on SAT-4 and SAT-6

Figure 2 schematically describes our proposed classification frame-
work. Instead of the traditional DBN model described in Section
3.1, which takes as input the multi-channel image pixels reshaped
as a linear vector, our classification framework first extracts fea-
tures from the image which in turn are fed as input to the DBN
after normalizing the feature vectors.

4.1 Feature Extraction
The feature extraction phase computes 150 features from the in-

put imagery. The key features that we use for classification are
mean, standard deviation, variance, 2nd moment, direct cosine trans-
forms, correlation, co-variance, autocorrelation, energy, entropy,
homogeneity, contrast, maximum probability and sum of variance
of the hue, saturation, intensity, and NIR channels as well as those
of the color co-occurrence matrices. These features were shown to
be useful descriptors for classification of satellite imagery in previ-
ous studies ([14], [32], [10]). Since two of the classes in SAT-4 and
SAT-6 are trees and grasslands, we incorporate features that are
useful determinants for segregation of vegetated areas from non-
vegetated ones. The red band already provides a useful feature
for discrimination of vegetated and non-vegetated areas based on
chlorophyll reflectance, however, we also use derived features (veg-
etation indices derived from spectral band combinations) that are
more representative of vegetation greenness – this includes the En-
hanced Vegetation Index (EVI [17]), Normalized Difference Vege-
tation Index (NDVI [29], [35]) and Atmospherically Resistant Veg-
etation Index (ARVI [18]).

These indices are expressed as follows:

EV I = G× NIR−Red
NIR+ cred ×Red− cblue ×Blue+ L

(10)

Here, the coefficients G, cred, cblue and L are chosen to be 2.5,
6, 7.5 and 1 following those adopted in the MODIS EVI algorithm
[41].

NDV I =
NIR−Red
NIR+Red

(11)

ARV I =
NIR− (2×Red−Blue)
NIR+ (2×Red+Blue)

(12)

The performance of our learner depends to a large extent on the
selected features. Some features contribute more than others to-
wards optimal classification. The 150 features extracted are nar-
rowed down to 22 using a feature-ranking algorithm based on Dis-
tribution Separability Criterion [5]. Details of the feature ranking
method along with the ranking for all the 22 features used in our
framework is listed in Section 6.1.1.

4.2 Data Normalization
The feature vectors extracted from the training and test datasets

are separately normalized to lie in the range [0, 1]. This is done
using the following equation:

Fnormalized =
F − Fmin

Fmax − Fmin
(13)

where, Fmin and Fmax are computed for a particular feature
type over all images in the dataset.

4.3 Classification
The set of normalized feature descriptors extracted from the in-

put image is fed into the DBN, which is then trained using Con-
trastive divergence in the same way as explained in Section 3.1.
Once trained the DBN is used to initialize the weights of a feedfor-
ward backpropagation neural network.

The neural network gives an estimate of the posterior probabili-
ties of the class labels, given the input vectors, which is the feature
vector in our case. As illustrated in [4], the outputs of a neural
network trained by minimizing the sum of squares error function
approximates the conditional averages of the target data



yk(x) = 〈tk|x〉 =

∫
tkp(tk|x)dtk (14)

Here, tk are the set of target values that represent the class mem-
bership of the input vector xk. For a binary classification problem,
in order to map the outputs of the neural network to the posterior
probabilities of the labeling, we use a single output y and a target
coding that sets tn = 1 if xn is from class C1 and tn = 0 if xn is
from class C2. The target distribution would then be given as

p(tk|x) = δ(t− 1)P (C1|x) + δ(t)P (C2|x) (15)

Here, δ denotes the Dirac delta function which has the properties
δ(x) = 0 if x 6= 0 and

∫ ∞
−∞

δ(x) dx = 1 (16)

From 14 and 15, we get

y(x) = P (C1|x) (17)

So, the network output y(x) represents the posterior probabil-
ity of the input vector x having the class membership C1 and the
probability of the class membership C2 is given by P (C2|x) =
1 − y(x). This argument can easily be extended to multiple class
labels for a generalized multi-class classification problem.

The feature extraction phase proves to be a useful dimensionality
reduction technique that helps improve the discriminative power of
the DBN based classifier significantly.

5. RESULTS AND COMPARATIVE STUD-
IES

The feature vectors extracted from the dataset are fed into DBNs
with different configurations. Since, the feature vectors create a low
dimensional representation of the data, so, DeepSat converges to
high accuracy even with a much smaller network with fewer layers
and very few neurons per layer. This speeds up network training by
several orders of magnitude. Various network architectures along
with the classification accuracy for DeepSat on the SAT-4 and SAT-
6 datasets are listed in Table 4. For regularization, we again use
L2 norm-regularization. From the Table, it is evident that the best
performing DeepSat network outperforms the best traditional Deep
Learning approach (CNN) by ∼11% on the SAT-4 dataset and by
∼15% on the SAT-6 dataset.

We also compare DeepSat with a Random Forest classifier to
investigate the advantages gained by unsupervised pre-training in
DBN as opposed to the traditional supervised learning in Random
Forests. On SAT-4, the Random forest classifier produces an ac-
curacy of 69% while on SAT-6, it produces an accuracy of 54%.
The highest accuracy was obtained for a forest with 100 trees. Fur-
ther increase in the number of trees did not yield any significant
improvement in classifier accuracy. It can be easily seen that the
various Deep architectures produce better classification accuracy
than the Random Forest classifier which relies solely on supervised
learning.

6. WHY TRADITIONAL DEEP ARCHITEC-
TURES ARE NOT ENOUGH FOR SAT-4
& SAT-6?

Network Arch. Classifier Classifier
Neurons/layer Accuracy Accuracy

[Layers] SAT-4 (%) SAT-6 (%)
10 [2] 96.585 91.91
10 [3] 96.8 87.716
20 [2] 97.115 86.21
20 [3] 95.473 93.42
50 [2] 97.946 93.916
50 [3] 97.654 92.65
100 [2] 97.292 89.08
100 [3] 95.609 91.057

Table 4: Classification Accuracy of DeepSat with various net-
work architectures on SAT-4 and SAT-6

While traditional Deep Learning approaches have produced state-
of-the-art results for various pattern recognition problems like hand-
written digit recognition [39], object recognition [20], face recog-
nition [33], etc., but satellite datasets have high intra and inter-
class variability and the amount of labeled data is much smaller
as compared to the total size of the dataset. Also, higher-order
texture features are a very important discriminative parameter for
various landcover classes. On the contrary, shape/edge based fea-
tures which are predominantly learned by various Deep architec-
tures are not very useful in learning data representations for satellite
imagery. This explains the fact why traditional Deep architectures
are not able to converge to the global optima even for reasonably
large as well as Deep architectures.

Also, spatially contextual information is another important pa-
rameter for modeling satellite imagery. In traditional Deep Learn-
ing approaches like DBN and SDAE, the relative spatial informa-
tion of the pixels is lost. As a result the orderless pool of pixel
values which acts as input to the Deep Networks lack sufficient dis-
criminative power to be well-represented even by very big and/or
deep networks. CNN however, involves feature-pooling from a lo-
cal spatial neighborhood, which justifies its improved performance
over the other two algorithms on both SAT-4 and SAT-6. Even
though our approach extracts an orderless pool of feature vectors,
the spatial context is already well-represented in the individual fea-
ture values themselves. We substantiate our arguments about the
effectiveness of our feature extraction approach from a statistical
point of view as detailed in the analysis below.

Dist. b/w Standard
Means Deviations

SA
T-

4 Raw Images 0.1994 0.1166
DeepSat Features 0.8454 0.0435

SA
T-

6 Raw Images 0.3247 0.1273
DeepSat Features 0.9726 0.0491

Table 5: Distance between Means and Standard Deviations for
raw image values and DeepSat feature vectors for SAT-4 and
SAT-6

6.1 A Statistical Perspective based on Distri-
bution Separability Criterion

Improving classification accuracy can be viewed as maximizing
the separability between the class-conditional distributions. Fol-
lowing the analysis presented in [5], we can view the problem of
maximizing distribution separability as maximizing the distance
between distribution means and minimizing their standard devi-
ations. Figure 3 shows the histograms that represent the class-



(a) Distribution of NIR on the SAT-4 classes (b) Distribution of a sample DeepSat feature (Autocorrelation
of Hue Color co-occurance matrix) on the SAT-4 classes

Figure 3: Distributions of the raw NIR values for traditional Deep Learning Algorithms and a sample DeepSat feature for various
classes on SAT-4 (Best viewed in color)

conditional distributions of the NIR channel and a sample feature
extracted in the DeepSat framework. As illustrated in Table 5,
the features extracted in DeepSat have a higher distance between
means and a lower standard deviation as compared to the original
image distributions, thereby ensuring better class separability.

6.1.1 Feature Ranking
Following the analysis proposed in Section 6.1 above, we can de-

rive a metric for the Distribution Separability Criterion as follows:

Ds =
‖δmean‖
δσ

(18)

where ‖δmean‖ indicates the mean of distance between means and
δσ indicates the mean of standard deviations of the class condi-
tional distributions. Maximizing Ds over the feature space, a fea-
ture ranking can be obtained. Table 6 shows the ranking of the
various features used in our framework along with the values of the
corresponding distance between means ‖δmean‖, standard devia-
tion δσ and Distribution Separability Criterion Ds.

6.1.2 Distribution Separability and Classifier Accu-
racy

In order to analyze the improvements achieved in the learning
framework due to the feature extraction step, we measured the Dis-
tribution Separability of the mean activation of the neurons in each
layer of the DBN and that of DeepSat. The results are noted in
Figure 4. It can be seen that the mean activation learned by each
layer of DeepSat exhibit a significantly higher distribution separa-
bility (by several orders of magnitude) than the neurons of a DBN.
This justifies the significant improvement in performance of Deep-
Sat (using the features) as compared to the DBN based framework
(using the raw pixel values as input). Also, a comparison of Figure
4 with Table 1 and Table 4 shows that the distribution separabilities
using the various architectures of the DBN and DeepSat are pos-
itively correlated to the final classifier accuracy. This justifies the

Rank Feature ‖δmean‖ δσ Ds

1 I CCM mean 0.4031 0.1371 2.9403
2 H CCM sosvh 0.2359 0.0928 2.5413
3 H CCM autoc 0.2334 0.1090 2.1417
4 S CCM mean 0.0952 0.0675 1.4099
5 H CCM mean 0.0629 0.0560 1.1237
6 SR 0.0403 0.0428 0.9424
7 S CCM 0.0260 0.0312 0.8354

2nd moment
8 I CCM 0.0260 0.0312 0.8354

2nd moment
9 I 2nd moment 0.0260 0.0312 0.8345

10 I variance 0.0260 0.0312 0.8345
11 NIR std 0.0251 0.0315 0.7980
12 I std 0.0251 0.0314 0.7968
13 H std 0.0252 0.0317 0.7956
14 H mean 0.0240 0.0314 0.7632
15 I mean 0.0254 0.0336 0.7541
16 S mean 0.0232 0.0319 0.7268
17 I CCM 0.0378 0.0522 0.7228

covariance
18 NIR mean 0.0246 0.0351 0.6997
19 ARVI 0.0229 0.0345 0.6622
20 NDVI 0.0215 0.0326 0.6594
21 DCT 0.0344 0.0594 0.5792
22 EVI 0.0144 0.0450 0.3207

Table 6: Ranking of features based on Distribution Separability
Criterion for SAT-6

effectiveness of our distribution separability metric Ds as a mea-
sure of the final classifier accuracy.



(a) Distribution Separability Criterion of DBN (b) Distribution Separability Criterion of DeepSat

Figure 4: Distribution Separability Criterion of the neurons in the layers of a DBN and DeepSat with various architectures on SAT-6

7. WHAT IS THE DIFFERENCE BETWEEN
MNIST, CIFAR-10 AND SAT-6 IN TERMS
OF DIMENSIONALITY?

We argue that handwritten digit datasets like MNIST and ob-
ject recognition datasets like CIFAR-10 lie on a much lower di-
mensional manifold than the airborne SAT-6 dataset. Hence, even
if Deep Neural Networks can effectively classify the raw feature
space of object recognition datasets but the dimensionality of the
airborne image datasets is such that Deep Neural Networks can-
not classify them. In order to estimate the dimensionality of the
datasets, we use the concept of intrinsic dimension[8].

7.1 Intrinsic Dimension Estimation using the
DanCo algorithm

To estimate the intrinsic dimension of a dataset, we use the DANCo
algorithm [8]. It exploits the twofold complementary information
conveyed both by the normalized nearest neighbor distances and by
the angles computed on couples of neighboring points.

Taking 10 rounds of 1000 random samples and averaging, we ob-
tain the intrinsic dimension for the MNIST, CIFAR-10 and SAT-6
datasets and the Haralick features extracted from the SAT-6 dataset.
The results are listed in Table 7.

Dataset Intrinsic Dimension
MNIST 16

CIFAR-10 17
SAT-6 115

Haralick Features extracted from SAT-6 4.2

Table 7: Intrinsic Dimension estimation using DANCo on the
MNIST, CIFAR-10, and SAT-6 datasets and the Haralick fea-
tures extracted from the SAT-6 dataset.

So, it can be seen that the intrinsic dimensionality of the SAT-6
dataset is orders of magnitude higher than that of MNIST. So, a
deep neural network finds it difficult to classify the SAT-6 dataset
because of its intrinsically high dimensionality. However, as seen in
the equation above, the features extracted from SAT-6 have a much

lower intrinsic dimensionality and lie on a much lower dimensional
manifold than the raw vectors and hence can be classified even by
networks with relatively smaller architectures.

7.2 Visualizing Data in an n-dimensional space
We can visualize the data as distributed in an n-dimensional unit

hypersphere
Volume of the sphere,

Vsphere =
π

n
2

Γ(n
2

+ 1)
Rn =

π
n
2

Γ(n
2

+ 1)
(19)

for n-dimensional Euclidean space and Γ is Euler’s gamma func-
tion. Now, the total volume of the n-dimensional space can be ac-
counted by the volume of an n-dimensional hypercube of length 2
embedding the hypersphere, i.e, Volume of the n-cube,

Vcube = Rn = 2n (20)

So, the relative fraction of the data points which lie on the sphere as
compared to the data points on the n-dimensional embedding space
is given as

Vrelative =
Vsphere
Vcube

=
π

n
2

2nΓ(n
2

+ 1)
(21)

Vrelative → 0 as n→∞ (22)

This means that as the dimensionality of sample data approaches
∞, the spread or scatter of the data points approaches 0 with re-
spect to the total search space. As a result, various classification
and clustering algorithms lose their discriminative power in higher
dimensional feature spaces.

8. RELATED WORK
Present classification algorithms used for Moderate-resolution

Imaging Spectroradiometer (MODIS)(500-m) [12] or Landsat(30-
m) based land cover maps like NLCD [38] produce accuracies of
75% and 78% resp. The relatively lower resolution of the datasets
makes it difficult to analyze the performance of these algorithms



for 1-m imagery. A method based on object detection using Bayes
framework and subsequent clustering of the objects using Latent
Dirichlet Allocation was proposed in [36]. However, their approach
detects object groups at a higher level of abstraction like parking
lots. Detecting the objects like cars or trees in itself is not ad-
dressed in their work. A deep convolutional hierarchical framework
was proposed recently by [28]. However, they report results on the
AVIRIS Indiana’s Indian Pines test site. The spatial resolution of
the dataset is limited to 20m and it is difficult to evaluate the per-
formance of their algorithm for object recognition tasks at a higher
resolution. An evaluation of various feature learning strategies was
done in [34]. They evaluated both feature extraction techniques as
well as classifiers like DBN and Random Forest for various aerial
datasets. However, since the training data was significantly limited,
the DBN was not able to produce any improvements over Random
Forest even when raw pixel values were fed into the classifier. In
contrast, our study shows that DBNs can be better classifiers when
there is significant amount of training data to initialize the neural
network at a global error basin.

9. CONCLUSIONS AND FUTURE DIREC-
TIONS

Our semi-supervised learning framework produces an accuracy
of 97.95% and 93.9% on the SAT-4 and SAT-6 datasets and signifi-
cantly outperforms the state-of-the-art by∼11% and∼15% respec-
tively. The Feature extraction phase is inspired by the remote sens-
ing literature and significantly improves the discriminative power
of the framework. For satellite datasets, with inherently high vari-
ability, traditional deep learning approaches are unable to converge
to a global optima even with significantly big and deep architec-
tures. A statistical analysis based on Distribution Separability Cri-
terion justifies the effectiveness of our feature extraction approach.

We plan to investigate the use of various pooling techniques like
SPM [21] as well as certain sparse representations like sparse cod-
ing [24] and Hierarchical representations like Convolutional DBN
[25] to handle satellite datasets. We believe that SAT-4 and SAT-
6 will enable researchers to learn better representations for satellite
datasets and create benchmarks for the classification of satellite im-
agery.
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