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Abstract—Accurate tree cover estimates are useful to derive
Above Ground Biomass (AGB) density estimates from Very High
Resolution (VHR) satellite imagery data. Numerous algorithms
have been designed to perform tree cover delineation in high
to coarse resolution satellite imagery, but most of them do not
scale to terabytes of data, typical in these VHR datasets. In this
paper, we present an automated probabilistic framework for the
segmentation and classification of 1-m VHR data as obtained
from the National Agriculture Imagery Program (NAIP) for
deriving tree cover estimates for the whole of Continental United
States, using a High Performance Computing Architecture. The
results from the classification and segmentation algorithms are
then consolidated into a structured prediction framework using
a discriminative undirected probabilistic graphical model based
on Conditional Random Field (CRF), which helps in capturing
the higher order contextual dependencies between neighboring
pixels. Once the final probability maps are generated, the
framework is updated and re-trained by incorporating expert
knowledge through the relabeling of misclassified image patches.
This leads to a significant improvement in the true positive rates
and reduction in false positive rates. The tree cover maps were
generated for the state of California, which covers a total of
11,095 NAIP tiles and spans a total geographical area of 163,696
sq. miles. Our framework produced correct detection rates of
around 88% for fragmented forests and 74% for urban tree cover
areas, with false positive rates lower than 2% for both regions.
Comparative studies with the National Land Cover Data (NLCD)
algorithm and the LiDAR high-resolution canopy height model
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showed the effectiveness of our algorithm for generating accurate
high-resolution tree-cover maps.
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I. INTRODUCTION

An unresolved issue with medium-to-coarse resolution
satellite-derived forest cover maps is their inaccuracy, partic-
ularly over heterogeneous landscapes, and the high degree of
uncertainty they introduce when they are used for forest carbon
mapping applications. Previous efforts have acknowledged the
issues pertaining to misclassification errors in coarser reso-
lution satellite-derived land cover products, however, limited
studies are in place that demonstrate how very high resolution
(VHR) land cover products at 1-m spatial resolution could im-
prove regional estimations of Above Ground Biomass (AGB).
This paper develops techniques and algorithms designed to im-
prove the accuracy of current satellite-based AGB maps as well
as provide a reference layer for more accurately estimating
regional AGB densities from the Forest Inventory and Analysis
(FIA). The VHR tree-cover map can be used to compute tree-
cover estimates at any medium-to-coarse resolution spatial
grid, reducing the uncertainties in estimating AGB density
and mitigating the present shortcomings of medium-to-coarse
resolution land-cover maps.

The principal challenges in computing VHR estimates of
tree cover at 1-m are associated with (a) the high variability
in land cover types as recognizable from satellite imagery,
(b) data quality affected by conditions during acquisition and
pre-processing, and (c) corruption of data due to atmospheric
contamination and associated filtering techniques. Land cover
class identification is difficult even through visual interpre-
tation owing to high variance in atmospheric and lighting
conditions, and manual delineation of tree cover from millions
of imagery acquisitions is neither feasible nor cost-effective.
Tree cover delineation can be mapped to an object recognition
problem ( [1], [2], [3], [4], [5]), which can be framed in
two ways: a boundary delineation problem that can be solved
by perceptual grouping or a bounding box extraction prob-
lem that is addressed using a classification framework that
performs a binary/multi-class classification on the bounding
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box. Perceptual grouping employs a segmentation module
that clusters contextually related objects/object parts into a
single unified region ( [6], [7], [8], [9]). On the other hand, a
classification framework uses a variety of learning algorithms,
such as boosting ( [10], [11]), random forests ( [12], [13],
[14]), Support Vector Machines [15] and various others for
performing both supervised and unsupervised classification of
image patches based on visual and spectral characteristics.
Our work combines both of these approaches into a unified
framework that performs a classification for individual pixels
using feature descriptors extracted from a neighborhood (de-
fined on a window centered at the pixel of interest) and then
performs a perceptual grouping of pixels sharing similar visual
and spectral signatures.

Present classification algorithms used for Moderate-
resolution Imaging Spectroradiometer (MO-DIS) [16] or
Landsat-based land cover maps, such as National Land Cover
Data (NLCD) [17], produce accuracies of 75% and 78%, re-
spectively. The MODIS algorithm works on 500-m resolution
imagery; the NLCD works at 30-m resolution. The accuracy
assessment is performed on a per-pixel basis and the relatively
lower resolution of the dataset makes it difficult to analyze the
performance of these algorithms for 1-m imagery. Thus, there
is a pressing need for creating high resolution forest cover
maps at a resolution of 1 m to improve accuracy in land cover
maps and to improve several prognostic and diagnostic models
that require land cover maps as input. An automated approach
for tree crown delineation was proposed in [18], based on
the identification of tree apexes and the maximum rate of
change in spectral reflectance along transect extending outward
from the tree center. The algorithm was applied to sub-meter
resolution imagery (at most up to 30 cm) but its accuracy
decreased consistently and non-linearly with increasing pixel
spacing or decreasing sampling resolution. Other approaches
for tree crown delineation based on the distribution of pixel
brightness are proposed in [19] and [20]. [19] proposed
evaluating the brightness distribution within the radius of a
circle centered on each tree, with values near the center of
crown being larger than at the periphery showing a test for
a 150m by 150m IKONOS image. [20] applies a similar
concept with the valley forming approach of [21], which treats
variation in brightness in the imagery as topography, where
bright pixels are peaks (the crowns) interspersed by valleys
(the darker inter-tree spaces). Also here results are reported for
a small test-area of 620×550 meter and hence it is unknown
how the algorithm would perform on a larger test area with
higher variability. Other novel classification algorithms based
on Deep Neural Networks have been used in ( [22], [23]). The
framework in [22] is used for the recognition of roads in aerial
images. Detecting trees is a much harder problem considering
the significantly higher variability in tree-cover – trees can
have various color and texture characteristics while roads have
little variation in color or texture and belong to a fixed set
of classes, such as concrete, mud, gravel, sand, etc. Another
important feature in road detection is the incorporation of
contextual information that improves accuracy of the classifier.
On the other hand, a tree can be present beside another tree,
a road, a building or even a water body. Thus, incorporating

inter-class contextual information into our framework does not
lead to significant improvements of the classification. [22] use
a 64x64 detection window, which is a very large context for
a tree-delineation problem in which an image patch might
contain multiple classes, such as bare ground, roads, rooftops
etc. and hence not suitable for the tree-classification problem.
A method based on object detection using a Bayes framework
and a subsequent clustering of the objects into a hierarchical
model using Latent Dirichlet Allocation was proposed by [23],
but accurate delineation of tree-cover areas demands the use of
a different approach because of the need for higher accuracy
and lack of useful contextual information (for e.g., detecting
a parking lot can use the presence of multiple cars and their
orientation as a useful feature, but, a tree-delineation problem
lacks the presence of such contextual information encoded in
neighboring objects of interest). Classification and/or Segmen-
tation of 1-m or sub-meter resolution imagery is possible with
commercial packages (ENVI, PCI Geomatica, etc.), but these
tools are not scalable across millions of scenes in an automated
manner. The algorithm proposed by [24] is similar to our
approach, which uses a segmentation module and a Random
Forest based classification module to assess tree cover in
the National Agriculture Imagery Program (NAIP) data [25].
The algorithm demonstrates a viable operational tool for the
classification of 1-m NAIP imagery and produces an overall
accuracy of 84.8%. However, the analysis is based on the
software Definiens Developer Professional [26], which affects
the scalability and cost-effectiveness of the implementation to
terabytes of data. Additionally, the authors limited the testing
of the methodology to Pembina County in North Dakota,
which covers an area of only 1,122 sq. miles as opposed to
the 163,696 sq. miles in our implementation.

In this paper, we present an automated probabilistic frame-
work for the segmentation and classification of 1-m VHR
NAIP data to derive accurate large-scale estimates of tree
cover. The results from the classification and segmentation
algorithms are consolidated using a discriminative undirected
probabilistic graphical model that performs structured predic-
tion and helps in capturing the higher order contextual depen-
dencies between neighboring pixels. A detailed description of
the dataset is given in Section II. A comprehensive summary of
the proposed framework and the High Performance Computing
(HPC) implementation details are provided in Section III.
Section IV discusses the results and performance analysis for
our pilot demonstration of the algorithm over California.

II. DATASET

The NAIP dataset consists of a total of 330,000 scenes span-
ning the whole of the Continental United States (CONUS). We
used the uncompressed Digital Ortho Quarter Quad tiles (DO-
QQs) which are GeoTIFF images with an area corresponding
to the United States Geological Survey (USGS) topographic
quadrangles. The average image tiles are ∼6000 pixels in
width and ∼7000 pixels in height, and are approximately 200
megabytes each. The entire NAIP dataset for the Continental
Unites State is ∼65 terabytes. The imagery was acquired at a
1-m ground sample distance (GSD) with a horizontal accuracy
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that lies within six meters of photo-identifiable ground control
points [27]. The images consist of 4 bands – red, green, blue
and Near Infrared (NIR). We performed the preliminary test
of our algorithm and obtained tree-cover maps for the entire
state of California, a total of 11,095 image tiles in the NAIP
dataset. Figure 1 shows some sample image patches from the
NAIP dataset containing tree and non-tree areas.

The tree cover maps generated by our algorithm were
validated against two high-resolution airborne LiDAR data
footprints. The first set of LiDAR data (henceforth referred
to as Area 1) was collected over the Teakettle Experimental
Forest in the western Sierra Nevada mountain range, Cali-
fornia. The LiDAR was flown in the summer of 2008 with
the University of Florida OPTECH GEMINI ALSM unit,
operating at 100-125 kHz with a maximum 25◦ scanning
angle. Data were flown 600-750 m above ground, with 50%-
75% swath overlap yielding an average return density of
approximately 18 pts/m2. LiDAR processing was conducted at
the University of Maryland following [28]. A Digital Elevation
Model (DEM) was fit to the lowest returns from the raw
LiDAR returns, and smoothed to represent local topography.
The elevation of the corresponding DEM pixel was subtracted
from each raw LiDAR return. The maximum LiDAR height
in each pixel was used to produce a Canopy Height Model
(CHM) at a resolution of 0.5 m. For the purpose of validation,
the LiDAR data were resampled to 1 m spatial resolution.

The second set of LiDAR data (henceforth referred to as
Area 2) was obtained in the Chester area in California, using
the NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-
LiHT) Airborne Imager [29]. NASA’s Cessna 206 was used
for acquiring the G-LiHT data. The Cessna was fitted with
the VQ-480 (Riegl USA, Orlando, FL, USA) airborne laser
scanning (ALS) instrument and was flown at an altitude of
335 m. The data acquired had a swath width of 387 m and a
Field of View of 60◦. The sampling density was 6 pulses/m2.
The spatial resolution of the final LiDAR data was 1 m.

Fig. 1: A sample of image patches from the NAIP dataset
showing tree and non-tree areas.

III. METHODOLOGY

We have designed and implemented a scalable semi-
automated probabilistic framework for the classification and
segmentation of millions of scenes using a HPC architecture.
The framework is robust to account for variability in land
cover data as well as atmospheric and lighting conditions.
Our framework consists of the following modules: (1) Seg-
mentation, (2) Feature Extraction, (3) Classification, and (4)
Labeling.

A. Unsupervised Segmentation

A segment can be considered to be any region having pixels
with uniform spectral characteristics. The aim of segmentation
is to find regions with uniform values for the different spectral
bands representing a particular land cover class. Segmentation
is performed using the Statistical Region Merging (SRM)
Algorithm [30]. We use a generalized SRM algorithm that
incorporates values from all four bands. The SRM algorithm
initially considers each pixel as a region and merges them to
form larger regions based on a merging criterion. The merging
criterion that we use in this case is as follows: Given the
differences in red, green, blue and NIR values of neighboring
pixels that correspond to dR, dG, dB and dNIR, respectively,
merge two regions if (dR<threshold & dG<threshold &
dB<threshold & dNIR<threshold). The merging criterion can
be formalized as a merging predicate that is evaluated as true
if two regions are merged and false otherwise. The generalized
version of the merging predicate (adopted from [30]) can be
formally written as follows:

P (R,R′) =


true, if ∀c ∈ {R,G,B,NIR}

|R̄′c − R̄c| ≤
√
b2(R) + b2(R′)

false otherwise.
(1)

where R̄c and R̄′c denote the mean value of the color
channel c for regions R and R′ respectively. b is a function
defined as follows:

b(R) = g

√
1

2Q|R|
ln

( |R|R||
δ

)
(2)

where g is the number of possible values for each color
channel (256 in our case). |R| denotes the cardinality of a
segment, i.e., the number of pixels within the boundaries of
an image region R. R|R| represents the set of all regions
that have the same cardinality as R. δ is a parameter that is
inversely proportional to the image size. Q is the quantization
parameter that controls the coarseness of the segmentation.
A careful analysis of Equation 1 and Equation 2 shows that a
higher value of Q results in a lower threshold thereby reducing
the probability of two segments getting merged into a bigger
segment, thus giving a finer segmentation. A lower value of
Q results in a higher threshold and a coarser segmentation.
The algorithm calculates the differences between neighboring
pixels and sorts the pairs using radix sort. If the merging
criterion is met, then it merges corresponding segments into
one. We set a low threshold (or a higher Q value of 215) in
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order to perform over-segmentation. Each class (e.g. forest,
grass, etc.) might be divided into multiple segments, but one
segment would ideally not contain more than one class. This
is useful for eliminating the possibility of inter-class overlap
within a segment. Figure 2 shows an under-segmented and an
over-segmented image. As can be seen in the under-segmented
version, the same segment may contain both vegetated and
non-vegetated areas.

(a) Input Image (b) Under-segmentation

(c) Over-segmentation

Fig. 2: Example NAIP input image and under-segmented and
over-segmented outputs from the Statistical Region Merg-
ing Algorithm. Under-segmentation creates interclass overlap
within a segment while in over-segmentation, each segment
ideally contains regions belonging to a single class and there
is no inter-class overlap.

In the case of an over-segmented image, areas within
large homogeneous patches of vegetated pixels are split into
multiple segments in the presence of spectral variability
induced by factors such as shadows cast by tree/non-tree
regions or the presence of dry brown patches within grassy
areas, improving overall classification accuracy. SRM is more
efficient compared to other segmentation algorithms, such
as k-means clustering [31]. The lists of merging tests can
be sorted using radix sort with color difference as the keys
and hence has a time complexity of O(|I| log(g)) which
is linear in |I|. Here, |I| is the cardinality or size of the
input image. SRM segments a 512×512 image in about one
second on an Intel Pentium 4 2.4G processor and hence is
well suited for the current application involving terabytes of
data. However, SRM has high memory requirements, around 3
Gigabytes per 6000×7000 image. This is mitigated by splitting
the input image into 256×256 windows. This architectural
implementation is detailed in Section III-G.

B. Feature Extraction

Prior to the classification process, the feature extraction
phase computes 150 features from the input imagery. The key
features are mean, standard deviation, variance, 2nd moment,
direct cosine transforms, correlation, co-variance, autocorrela-
tion, energy, entropy, homogeneity, contrast, maximum prob-
ability and sum of variance of the hue, saturation, intensity,
and NIR channels as well as those of the color co-occurrence
matrices. These features were shown to be useful descriptors
for classification of satellite imagery in previous studies ( [32],
[33], [34]). The Red band already provides a useful feature
for delineating forests and non-forests based on chlorophyll
reflectance, however, we also use derived features (vegetation
indices derived from spectral band combinations) that are more
representative of vegetation greenness, such as the Enhanced
Vegetation Index (EVI) [35], Normalized Difference Vegeta-
tion Index (NDVI) ( [36], [37]) and Atmospherically Resistant
Vegetation Index (ARVI) [38].

These indices are expressed as :

EV I = G× NIR−Red
NIR+ cred ×Red− cblue ×Blue+ L

(3)

Here, the coefficients G, cred, cblue and L are chosen to be
2.5, 6, 7.5 and 1, following those adopted in the MODIS EVI
algorithm [27].

NDV I =
NIR−Red
NIR+Red

(4)

ARV I =
NIR− (2×Red−Blue)
NIR+ (2×Red+Blue)

(5)

The performance of our machine learning-based approach
depends to a large extent on the selected features. Some
features contribute more than others towards optimal classi-
fication. The 150 features extracted are narrowed down to
22 using a feature-ranking algorithm based on Distribution
Separability Criterion [39]. Some example image features are
shown in Figure 3.

Sample Dist. between Standard
Dataset Means Deviations

Raw Images 0.2163 0.1337
Extracted Features 0.6712 0.0751

TABLE I: Distance between Means and Standard Deviations
for raw image values and the Extracted feature vectors for a
sample set of 5000 randomly selected labeled image patches
from the NAIP dataset for the state of California.

1) Feature Ranking: Improving classification accuracy can
be viewed as maximizing the separability between the class-
conditional distributions. Following the analysis presented in
[39], we can view the problem of maximizing distribution
separability as maximizing the distance between distribution
means and minimizing their standard deviations. In order to
quantify the statistical distribution properties of the NAIP
dataset and to compare them to those of the extracted feature
vectors, we randomly selected 5000 image patches from the
NAIP tiles from the state of California and manually labeled
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I 2nd
moment

H CCM
Autoc

H CCM
Mean S Mean

DCT I Mean Simple
Ratio NIR Mean

H std
S CCM

2nd
Moment

NDVI I CCM 2nd
Moment

H CCM
Sum of
Variance

I Variance I CCM
Covariance NIR std

Fig. 3: Example Features extracted from a sample NAIP tile.

as tree/non-tree. The labeling was done in an unbiased way,
i.e., ∼50% of the samples are chosen from each class. Then
we measured the distance between the means of the class
conditional distributions and the standard deviations for both
the raw pixel values as well as the features extracted in our
framework. As illustrated in Table I, the extracted features
have a higher distance between means and a lower standard
deviation as compared to the original image distributions,
thereby ensuring better class separability. We can derive a
metric for the Distribution Separability Criterion as follows:

Ds =
‖δmean‖
δσ

(6)

where ‖δmean‖ indicates the mean of distance between means
and δσ indicates the mean of standard deviations of the class
conditional distributions. Maximizing Ds over the feature
space, a feature ranking can be obtained. Table II shows the
ranking of the various features used in our framework along
with the values of the corresponding distance between means
‖δmean‖, standard deviation δσ and Distribution Separability
Criterion Ds.

C. Classification

Classification is performed for each image pixel using fea-
ture descriptors defined on its neighborhood. A neighborhood
system for a pixel p is a set

∏
p defined as

∏
p

=
⋃

rL−pL≤τ

r (7)

Rank Feature ‖δmean‖ δσ Ds

1 I CCM mean 0.4031 0.1371 2.9403
2 H CCM sosvh 0.2359 0.0928 2.5413
3 H CCM autoc 0.2334 0.1090 2.1417
4 S CCM mean 0.0952 0.0675 1.4099
5 H CCM mean 0.0629 0.0560 1.1237
6 SR 0.0403 0.0428 0.9424
7 S CCM 0.0260 0.0312 0.8354

2nd moment
8 I CCM 0.0260 0.0312 0.8354

2nd moment
9 I 2nd moment 0.0260 0.0312 0.8345
10 I variance 0.0260 0.0312 0.8345
11 NIR std 0.0251 0.0315 0.7980
12 I std 0.0251 0.0314 0.7968
13 H std 0.0252 0.0317 0.7956
14 H mean 0.0240 0.0314 0.7632
15 I mean 0.0254 0.0336 0.7541
16 S mean 0.0232 0.0319 0.7268
17 I CCM 0.0378 0.0522 0.7228

covariance
18 NIR mean 0.0246 0.0351 0.6997
19 ARVI 0.0229 0.0345 0.6622
20 NDVI 0.0215 0.0326 0.6594
21 DCT 0.0344 0.0594 0.5792
22 EVI 0.0144 0.0450 0.3207

TABLE II: Ranking of features based on Distribution Separa-
bility Criterion for the sample dataset.

Here, rL and pL are the locations i.e., the ordered tuple
(x, y) for the pixels r and p respectively, where, x is the X-
coordinate (along the horizontal axis) and y is the Y-coordinate
(along the vertical axis).

rL−pL = δ if rL lies on a δ×δ window centered at pL (8)
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The neighborhood system for the pixel pL in shown in
Figure 4.

Fig. 4: The neighborhood system for the pixel pL where rL−
pL = δ

τ is the parameter that controls the extent of the neighbor-
hood. τ was chosen to be 4 by experiment and a Receiver
Operating Characteristic (ROC) Curve analysis as detailed in
the results section. The ROC Curve analysis was used to select
the optimum value for the parameter τ that resulted in the
highest True Positive Rates for the detection window.

Our classification module consists of a probabilistic Neural
Network framework that generates the posterior probability
maps of the tree-cover estimates in the imagery data. The
proposed network takes the form of a fully connected feed-
forward backpropagation Neural Network. In order to choose
the optimal network architecture for the Neural Network clas-
sifier, we experimented with various network configurations
along with the full set of 150 features as well as the set of 22
features selected in the feature selection stage highlighted in
Section III-B. The results are reported in Table III. Interest-
ingly, it can be observed from the table that the networks with
3 hidden layers produce lower classification accuracy than the
networks with 2 hidden layers. This can be attributed to the
limited amount of labeled training samples with respect to the
increased model complexity of the deeper architectures (for
instance, 22700 free parameters for the 100-100-100 neural
network) and hence resulting in over-fitting. In order to prevent
over-fitting of the deeper networks, we employ two techniques
- 1) L2-norm regularization [40] and 2) Dropout [41]. For L2

regularization we used a weight decay penalty of 10−4 and for
the Dropout, we used a dropout fraction of 0.5. The results
of the validation error of the 100-100 and 100-100-100 neural
networks with varying epochs of the learning algorithm are
presented in Figure 18. It can be seen that the 100-100-100
network with L2 norm regularization and Dropout perform
on an equal scale and produce lower validation error than
the non-regularized version. However, it is interesting to see
that the smaller non-regularized network with 2 hidden layers
and 100 neurons in each layer outperforms the network with

3 hidden layers and 100 neurons in each layer even with
regularization. So, it can be concluded from the experiments
that both Dropout and L2 norm regularization can act equally
well as regularization techniques for Deeper Neural Networks,
however, for a limited number of training samples, the shallow
network with 2 hidden layers still produces lower classification
errors on the held-out validation set. Following the results from
Table III, the best network was chosen as one with 2 hidden
layers each having 50 neurons and one output layer having one
neuron. The activation function is tansigmoid (tanhyperbolic)
for hidden layers and linear for output layer:

σ(t) = tanh(t) =
et − e−t

et + e−t
(9)

The weights and biases are initialized using the Nguyen-
Widrow Randomization algorithm [10]. We use the mean
squared error (MSE) as the performance function. In the
training phase around 100,000 training samples are chosen
from each class. They are chosen randomly from a multitude
of scenes ranging from densely forested areas to urban land-
scapes. An automated image labeling tool based on interactive
segmentation developed as part of this study displays images
randomly to a human expert who then labels the image patches
as a tree cover or non-tree area, which are in turn saved to
the training database along with proper labeling. We provide
details of the image labeling tool in Section III-F.

The neural network gives an estimate of the posterior prob-
abilities of the class labels, given the input vectors - the input
vectors are the feature vectors extracted from the input image.
As illustrated in [42], the outputs of a neural network trained
by minimizing the mean squared error function approximates
the conditional averages of the target data as

yk(x) = 〈tk|x〉 =

∫
tkp(tk|x)dtk (10)

where tk are the set of target values that represent the
class membership of the input vector xk and p(tk|x) is the
probability that the input vector x attains the target value tk.
Thus, dtk defines the differential over all target values tk.
To map the outputs of the neural network to the posterior
probabilities of the labeling, we use a single output y and a
target coding that sets tn = 1 if xn is from class C1 and
tn = 0 if xn is from class C2. The target distribution can then
be represented as

p(tk|x) = δ(t− 1)P (C1|x) + δ(t)P (C2|x) (11)

Here, δ denotes the Dirac delta function which has the
properties δ(x) = 0 if x 6= 0 and∫ ∞

−∞
δ(x)dx = 1 (12)

From (7) and (8), we get

y(x) = P (C1|x) (13)

The network output y(x) represents the posterior probability
of the input vector x having the class membership C1 and the
probability of the class membership C2 is given by P (C2|x) =
1− y(x).
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D. Conditional Random Field

A Conditional Random Field (CRF) [43] has been used
in the pattern recognition literature for performing structured
prediction [44]. In structured prediction the labeling of a pixel
depends not only on the feature values of that particular pixel
but also on the values assumed by “neighboring” pixels. The
word “neighboring” here can either mean a 4-connected or 8-
connected neighborhood or some custom metric defining the
notion of neighborhood. The concept of neighborhood is useful
in encoding contextual information. The final labeling of a
pixel as a vegetated pixel depends not only on whether that
pixel is classified as a tree, but also on the classification of
neighboring pixels. For example, if a pixel has been classified
as a tree pixel by the classifier and all the neighboring pixels
have been classified as non-tree pixels, then, it is safe to
assume with a high probability that the result of the classifier
is due to random classification noise. A Conditional Random
Field (CRF) is a type of discriminative undirected probabilistic
graphical model that encodes contextual information using
an undirected graph [43]. The probability distributions are
defined using a random variable X over a set of observations
and another random variable Y over corresponding label
sequences. Y is indexed by the vertices of an undirected
graph G = (V,E) such that Y = (Yv)v∈V . The tuple
(X,Y ) is known as a Conditional Random Field if the random
variable Y conditioned on X exhibits the Markov property
with respect to the graphical model, i.e., p(Yv|X,Yw, w 6=
v) = p(Yv|X,Yw, w∼v), where, w∼v means that w and
v are neighbors in G. Following the conventions defined
in [45], the random variable X is defined over a lattice
V = 1, 2, ..., n and a neighborhood system N . It is to be
noted that this neighborhood system N should not be confused
with the neighborhood system

∏
p defined in Equation 7.∏

p indicates the neighborhood for the classification algorithm
that determines the bounds of the decision boundaries for the
classifier outcome for a particular pixel p, whereas, N denotes
the system characterized by uniform probability distributions
owing to similar visual and spectral characteristics, which
takes the form of a segment in this case. A CRF defines a
set of random variables XC conditionally dependent on each
other as a clique c. A probability distribution associated with
any random variable Xi of a clique is conditionally dependent
on the distributions of all other random variables in the clique.
The objective function we use takes the form

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj) +
∑
c∈S

ψc(xc) (14)

where, ψi(xi) is the unary potential, ψij(xi, xj) is the
pairwise potential and ψc(xc) is the function associated with
higher order region consistency potential defined over a seg-
ment S.

The unary potential term is defined as

ψi(xi) = θNψN (xi) + θbandψband(xi) (15)

where, θNψN (xi) denotes the potential due to the output
produced by the neural network classifier described in Section

III-C and θbandψband(xi) is the potential from the band values
from the NAIP images.

We can define the potential ψN (xi) derived from the
classifier output as

ψN (xi) = − logP (Ci|x) = − log yi (16)

Here, P (Ci|x) denotes the normalized distribution gener-
ated by the classifier and yi denotes the output distribution
from the classifier.

Similarly, the pairwise term ψij(xi, xj) is updated to encode
the band information as:

ψij(xi, xj) =

{
0, if xi = xj

θP + θV exp(−θβ ||Bi −Bj ||2), otherwise.
(17)

Here, Bi and Bj are the band vectors for pixels i and j
respectively. The model parameters θN , θband, θP , θV and θβ
are learnt from the training data. The term ψc(xc) denotes the
region consistency potential as defined in [45] and is given
by:

ψc(xc) =

{
0, if xi = lk

θR|c|θα , otherwise.
(18)

Here, |c| is the number of pixels in the segment and lk
denotes the label assigned to the segment c. θR|c|θα denotes
the cost associated with labelings that do not confirm with
the labeling of the other pixels in the segment. This term
ensures that the labels assigned to the pixels belonging to
the same segment are consistent with one another, i.e., pixels
belonging to the same segment are likely to belong to the same
object/class. As illustrated in [45], this is useful in obtaining
object segmentations with fine boundaries and particularly
helpful for accurate delineation of tree cover areas in aerial
images, where a single pixel denotes an area of 1m2. The CRF
output with the unary, pairwise and the region consistency
terms ψi(xi), ψij(xi, xj) and ψc(xc) are shown in Figure 5.
It can be seen that the pairwise term improves the classification
accuracy of the unary term by reducing the probability values
associated with the false positives as evident from the fact that
the probability values of most of the yellow (high probability)
pixels appearing among the barren patch of land in figure
(a) for unary potential are effectively reduced (denoted by
blue/purple pixels) by the pairwise term in figure (b). Sim-
ilarly, the region consistency term (or the segmentation term)
improves upon the unary and pairwise terms by reducing the
false positives further – most of the blue/purple pixels in figure
(b) for the pairwise term are cleaned using the segmentation
term/ the region consistency term in figure (c).

1) The CRF Learning Algorithm: The energy minimization
in CRF is done using the α-expansion and αβ-swap algorithms
[46]. In the α-expansion algorithm, for a given label α, an
arbitrary set of pixels are assigned to this class label. For
the αβ-swap algorithm, given a set of pixels with labeling
α and another set of pixels with labeling β, the algorithm
swaps the class labels for these set of pixels until the energy
cannot be minimized any further. Details of the algorithms
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Fig. 5: (a) A sample NAIP tile and the CRF output probability
maps with (b) the unary term ψi(xi), (c) the combination of
the unary term ψi(xi) and the pairwise term ψij(xi, xj) and
(d) the combination of the unary term ψi(xi), the pairwise
term ψij(xi, xj) and the region consistency term ψc(xc).

are provided in Algorithm 1 and Algorithm 2. The key step
in both algorithms is Step 5 where ŷ is computed using graph
cuts [46].

Algorithm 1 Alpha Expansion Algorithm

1: procedure ALPHAEXPANSION
2: Assign an arbitrary labeling y to the pixels of the

image.
3: done← 0
4: for each label α ∈ L do
5: find ŷ ← argminE(y′) among y′ where y′ lies

within one α-expansion of y
6: if E(ŷ) < E(y) then
7: y ← ŷ
8: done ← 1
9: if done = 1 then

10: goto 3.
11: return y.

2) Learning the Model Parameters: The optimal values of
the model parameters were learnt by minimizing the cross
validation error of the final pixel labeling assigned to the
validation image set. Multiple rounds of cross-validation was
used by selecting different subsets of the images for training
and validation. The combined space of the parameter values
θN , θband, θP , θV , θβ and θα of the CRF is exponential in
the number of individual parameter values and to determine
the optimal values by an exhaustive search over the parameter

Algorithm 2 Alpha-Beta Swap Algorithm

1: procedure ALPHABETASWAP
2: Assign an arbitrary labeling y to the pixels of the

image.
3: done← 0
4: for each pair of labels α,β ∈ L do
5: find ŷ ← argminE(y′) among y′ where y′ lies

within one αβ-swap of y
6: if E(ŷ) < E(y) then
7: y ← ŷ
8: done ← 1
9: if done = 1 then

10: goto 3.
11: return y.

space is computationally intractable. A heuristic approxima-
tion technique was used by first optimizing the unary model
parameters θN and θband followed by the parameters θP , θV
and θβ for the pairwise potential terms and finally the higher
order parameters θR and θα.

E. Online Update of the Training Database

Once the final results are obtained, the training database
is updated online with incorrectly labeled examples using
expert knowledge on the fly. It should be noted that “expert
knowledge” here means using humans with domain knowledge
to hand-label image patches related to various landcover
classes. This is done as follows – After the generation of
tree-cover maps from a certain number NAIP tiles (100,
here), 10 (10% in general) maps are chosen at random and
a reference to the NAIP tiles corresponding to these maps
are saved to a database. An automated image-rendering tool
(developed as part of our framework) allows experts to re-
label misclassified image patches. The details of this image
relabeling tool are provided in Section III-F. These re-labeled
patches are then saved to the training database with the correct
labeling. This improves the quality of results produced by
the classifier in subsequent iterations. Choosing 10% of the
image tiles randomly after the generation of every 100 tiles
helps in maintaining the homogeneity of candidate selection
for relabeling among the generated probability maps. 100
consecutively processed NAIP tiles cover a relatively small
geographical area. Hence, a random 10% of the tiles represent
a uniform selection of tiles from every spatial window and
choosing every 100 images ensures a uniform selection from
the entire mapped region. Every time the training dataset is
updated, automated online training is done. This online update
stage is very similar to a supervised post-processing of the
classifier just like the boosting algorithm in machine learning
[47] which recursively updates a strong learner by higher re-
weighting of misclassifications by weak learners. The online
update phase helps in reducing the False Positive Rate and
at the same time, significantly increases the True Positive
Rate. Figure 6 lists the variation of the User’s and Producer’s
accuracy (omission and commission errors) with changing
epochs of the online update algorithm. It can be seen that both
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the User’s and Producer’s accuracy improve with the number
of re-training epochs for the online update algorithm until 8
to 10 iterations. After that both accuracies remain stable up to
about 14 epochs, after which they start dropping. This can be
attributed to overfitting of the classification algorithm due to an
excessive number of training samples fed into the supervised
learner.

Fig. 6: Variation of Omission and Commision Errors with
changing epochs of the online update algorithm.

F. Image Labeling and Re-labeling using Interactive Segmen-
tation

We use an interactive image segmentation tool to extract and
label the training samples as well as to re-label misclassified
image patches in the online update phase described above.
The interactive segmentation module uses a Random Walk
based image segmentation algorithm first presented in [48].
In this method, at first a certain number of pixels are labeled
as foreground and background pixels. These act as seeds for
the segmentation algorithm. For any given unlabeled pixel in
the original image, a random walk is initialized at the pixel.
It is possible to determine the probability that the random
walker starting at each unlabeled pixel will first reach one
of the pre-labeled seed pixels. For k seed pixels, we get a
k×1 probability vector for each unlabeled pixel, each element
of which represents the probability that the random walker
starting at that pixel will reach the corresponding seed pixel
first. Then we can assign a class label to each unlabeled
pixel based on which element in the probability vector has
the highest value. Figure 7 shows a sample NAIP tile with
tree and non-tree masks generated by the Random walk
based segmentation algorithm by selecting a certain number
of foreground and background seed pixels corresponding to
tree and non-tree areas. The foreground and background seed
pixels are marked with yellow and red circles, respectively.
The red boxes in Figure 7b and Figure 7c represent the training
samples extracted from the image which are in turn saved to

the training database with the correct label. Note that only
complete boxes representing 4×4 training images are saved to
the database while the rest are discarded. It should be noted
that the masks shown in Figure 7 are generated by manually
selecting a certain set of seed pixels. Choosing a different set
of seeds can create a different segmentation mask.

(a) Sample NAIP tile (b) Tree mask

(c) Non-tree mask

Fig. 7: A sample NAIP tile with tree and non-tree cover masks
generated by the Random Walker Segmentation module by
selecting a certain set of foreground and background seed
pixels. The small red squares indicate the training samples
extracted from the image which are in turn saved to the training
database with the correct label. Note that only complete
squares representing 4×4 training images are saved to the
database while the rest are discarded.

G. Implementation details and the High Performance Com-
puting Architecture

We have deployed the abovementioned modules as stand
alone on the NASA Earth Exchange (NEX) supercomputing
cluster. The deployment was done through QSub routines and
the Message Passing Interface (MPI). The data was accessed
through a MySQL database. The NAIP tiles were processed
in parallel in the cores of the NASA Earth Exchange High
Performance Computing (NEX HPC) platform. Each node in
the cluster having Harpertown CPUs consists of 8 gigabytes
of memory and 8 cores with 3GHz processors per node [49].
In order to process 8 tiles in parallel, one tile per core, the
memory requirement per core has to be kept lower than 1
Gigabyte. However, the problem arises with the use of the
Statistical Region Merging (SRM) algorithm illustrated in
Section III-A. Despite being fast, the algorithm has to store all
the indices in memory while sorting them using radix sort as
it makes decisions about region boundaries using global scene
level image descriptors. This has space complexity of the order
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Fig. 8: High Performance Computing Architecture of our approach.

of O(n2), which indicates all image gradients in a n×n image,
which is of the order of ∼3 Gigabytes for a typical NAIP
tile. In order to address this memory-performance tradeoff,
each image was split into λ×λ windows and then fed in a
pipeline to each core in the HPC node. λ was chosen to
be 256 for our experiments, because, higher values led to
a higher memory requirement while lower values resulted
in a substantial increase of processing time. The current
architecture takes a maximum of approximately 4 hours to
process each NAIP tile. The details of the architecture are
illustrated in Figure 8.

Network Arch. Classifier Classifier
Neurons/layer Accuracy Accuracy

[Layers] 150 features(%) 22 features(%)
10 [2] 88.81 90.59
20 [2] 88.9 91.63
50 [2] 90.16 92.24
100 [2] 89.34 89.93
10 [3] 84.53 87.97
20 [3] 83.72 85.23
50 [3] 89.4 86.42
100 [3] 88.85 76.015

TABLE III: Classification Accuracy of the classifier with
various network architectures using the entire set of 150
features and the set of 22 features derived using the feature
selection method presented in Section III-B

Densely Fragmented Urban Overall
Forested Forests Forests

Total Samples 12000 12000 12000 36000
Tree Samples 6000 6000 6000 18000

Non-tree Samples 6000 6000 6000 18000
True Positive Rate 85.87 88.26 73.65 82.59
False Positive Rate 2.21 0.99 1.98 1.73

TABLE IV: Preliminary classification accuracy assessment.

Actual Class
Predicted Tree Non-tree Total User’s

class pixels accuracy
Tree 14832 317 15149 97.9%

Non-tree 3168 17683 20851 84.8%
Total pixels 18000 18000 36000

Producer’s accuracy 82.4% 98.23% 90.31%

TABLE V: Confusion Matrix

IV. RESULTS AND DISCUSSION

A rudimentary implementation of our framework produced
encouraging results. We chose 1500 image tiles at random
covering the following three types of landscapes (1) Densely
forested, (2) Fragmented forests, and (3) Urban forested areas.
A total of 36000 sampling points were chosen at random
from the test images - 12000 samples for each land-cover
type. The sample validation points are shown in Figure 19.
The classifier accuracy was measured and averaged over 100
iterations. The results are tabulated in Table IV, which shows
that our framework produces true positive rates higher than
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Fig. 9: ROC Curves for the three types of landscapes consid-
ered – fragmented, urban and densely forested (The numbers
indicate the corresponding window sizes). One representa-
tive NAIP tile was chosen for each landscape – a densely
forested tile from the Gasquet region in Northwestern Cali-
fornia (7750m × 6380m), a tile with fragmented forests from
the Susanville region in Northeastern California (7610m ×
6000m), and an urban tile from a region in San Jose, California
(7620m×6240m). 5000 points were chosen randomly from
each image tile, labels for these representative points were
assigned by a human expert and the tree cover maps were
validated against these ground truth data to generate the true
positive and false positive rate for the ROC Curves.

NLCD-30m NAIP-1m
Total samples 1000 1000
Tree samples 500 500

Non-tree samples 500 500
True Positive Rate(%) 72.31 87.13
False Positive Rate(%) 50.8 1.9

NLCD-30m NAIP-1m
Total samples 1000 1000
Tree samples 500 500

Non-tree samples 500 500
True Positive Rate(%) 2.88 79.64
False Positive Rate(%) 3.23 1.68

TABLE VI: Comparative results with NLCD for fragmented
forests (top) and urban forested areas (bottom).

85% for both densely forested and fragmented areas. However,
the results degraded for urban areas where we achieved correct
detection rates of about 74%. This can be attributed primarily
to the presence of trees in urban regions with canopies having
dimensions of less than 4m in any direction (the value of our
neighborhood parameter τ ). However, experimenting with τ
values less than 4 did not improve the performance of the
framework as evident from the ROC Curve analysis presented
in Figure 9. The ROC curves represent the change in True
Positive Rate with the change in False Positive Rate by
varying a certain adjustable parameter of a model (window
size τ here). The degradation in performance of the framework
after the adjustable parameter τ is increased beyond a certain

Fig. 10: Performance of the Neural Network training algorithm
for a set of (randomly chosen) 3500 training samples, 750
validation samples and 750 test samples from a NAIP tile
from Blocksburg, California (7610m × 6000m). The X-axis
marks the iterations/epochs of the training algorithm, while the
mean-squared error is noted along the Y-axis. The blue line
indicates the mean squared error at various epochs during the
training phase of the Neural Network, the green line indicates
the mean squared validation error and the red line indicates
the mean squared test error. The best performance is attained
at iteration 72.

(a) Train ROC (b) Validation ROC

(c) Test ROC (d) All ROC

Fig. 11: ROC Curves for the Neural Network Training al-
gorithm for the same dataset used in Figure 10 – ROC curve
generated for training, validation, test sets and taking the mean
of the true positive rate and false positive rate of the training,
validation and test dataset respectively.

value (4, here) can be attributed to a flat response from the
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(a) Training Confusion Matrix (b) Validation Confusion Ma-
trix

(c) Test Confusion Matrix (d) All Confusion Matrix

Fig. 12: Confusion Matrix for the Neural Network training
algorithm for the dataset used in Figure 10 and Figure 11. A
total of 3500 samples are used for training, 750 samples for
validation and 750 samples for testing.

classification module due to reduced discriminative power of
the class separability criterion. Table V shows the confusion
matrix, where, the columns represent the instances of the
actual class while the rows represent the instances of the
predicted class. It can be seen from the table that our frame-
work produces an overall accuracy of 90.31%. ROC Curves
generated by varying the neighborhood parameter τ (defined
in Section III-C) for various land-cover types (fragmented
forests, densely forested and urban areas) is shown in Figure
9. τ was chosen to be 4 by doing a ROC Curve analysis
as illustrated in Figure 9, such that the True Positive Rate
is maximized. The error minimization of the Neural Network
training algorithm is shown in Figure 10. It can be seen that
the best validation performance with a mean-squared error of
0.14191 is attained at epoch 30 of the Neural Network training
algorithm. Figure 11 and Figure 12 show the ROC Curves and
confusion matrix for the Neural Network training algorithm.
Comparative studies with the 2001 National Land Cover Data
(NLCD) [50] 30-m are enumerated in Table VI. It can be
seen that results from our probabilistic framework outperforms
NLCD by nearly 15% for fragmented forests and nearly 77%
for urban areas. Figure 13 shows the sample output for two
tiles - one for a fragmented area in Hoopa, California, north of
the Klamath River and another for an urban area in San Jose,
California using NLCD and NAIP. The comparative studies
with NLCD clearly show that our algorithm outperforms the
NLCD approach for the classes of land-cover types (tree-cover
areas) considered in this study. This can be primarily attributed
to the higher resolution of the NAIP dataset as compared to
LANDSAT imagery which has 30 times lower resolution than

(a) NLCD output for Hoopa,
California

(b) NAIP output for Hoopa,
California

(c) NLCD output for San Jose,
California

(d) NAIP output for San Jose,
California

Fig. 13: Results for an image tile with fragmented trees in
Hoopa, California, north of the Klamath River and an urban
area in San Jose, California for NLCD and NAIP.

Fig. 14: ROC Curve generated by varying the sample size of
the training data. The region of study was the same as that of
Figure 10 – an area with fragmented forests in the Blocksburg
region in northwestern California (7610 m × 6000 m). The
numbers denote the number of training samples.
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Fig. 15: ROC Curve generated by varying the Quantization
Level in the SRM algorithm for the same area as considered
in Figure 14. The training sample size is 5000 - consisting of
2500 tree and 2500 non-tree samples chosen at random from
the NAIP tile. The numbers denote the corresponding Qlevel
values.

NAIP. Moreover, our structured prediction framework helps
us in decreasing false positives by considering intra and inter-
class votes towards the labeling algorithm. Figure 14 shows
the ROC Curve generated by varying the sample size of the
training dataset from 1000 samples per class to 2500 per class
in steps of 100 for a particular tile in the NAIP dataset with
fragmented forest cover. The flat response towards the end of
the curve indicates that increasing the training sample size has
minimal effect beyond a point, which is around 2200 training
samples for this exercise. This shows the robustness of the
algorithm and the fact that minimal amount of training samples
is sufficient for training the classifier. Figure 15 shows a ROC
Curve generated by varying the Quantization Level (Qlevel) in
the Statistical Region Merging algorithm. The analysis of this
curve helped us in selecting a Qlevel of 215 for our framework
as is evident from the maxima attained at Q = 215 in the
figure. Figure 16 shows the probability maps generated by the
classification algorithm and the Conditional Random Field.
Figure 17 shows the final probability map generated for a
sample tile from the NAIP database using our framework.
Figure 27 shows a sample NAIP tile from the Blocksburg
area in California and the corresponding binary tree-cover map
generated by our framework. To generate this binary tree cover
map, the output probability map from the CRF is filtered with
a threshold τ to eliminate pixels with output probability less
than the threshold. The threshold τ is set as 0.5. For the CRF
output probability for a pixel x being Pr(x), the final output
map value for pixel x,

O(x) =

{
1, if Pr(x)≥0.5

0, otherwise.
(19)

Fig. 16: Probability Maps for the probabilistic NN classifier
results (a-c) and CRF output (d-f) for various training sample
sizes (1300,1800 and 2500 samples per class from left to
right) for a sample NAIP tile from Blocksburg, California.
The color maps show the probabilities on a scale of 0 to 1.
The probability maps for the NN represent the probability
of a pixel being classified as a tree by the Neural Network
and the probability maps for the CRF output represent the
final probabilities assigned to the pixels by the CRF labeling
algorithm. A pixel assuming a value of 1 in the probability
map is marked as a tree and a pixel assuming a value of 0
is marked as a non-tree, with intermediate pixels values being
marked as tree/non-tree according to the problem (here, we use
a 50% threshold, i.e., a pixel is marked as tree if probability
is greater than 0.5).

Fig. 17: (a) A sample image with (b) the final Probability
Map generated by our framework for a region in Blocksburg,
California. This final probability map is the same as the map
generated by the CRF based labeling algorithm as shown in
Figure 16. The CRF algorithm combines the probability values
assumed by the classifier outputs for individual pixels and
generates the final probability map as shown above.

Figure 28 shows the final tree-cover map generated by our
framework for the whole of California covering 11,095 NAIP
tiles.
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Fig. 18: The validation error rate for the same dataset used in
Figure 10 for the 100-100 and 100-100-100 neural networks
without regularization, and the 100-100-100 neural network
with L2 norm regularization and Dropout.

A. Validation with High Resolution Airborne LiDAR Canopy
Height Model

The tree-cover maps generated by the Canopy Height Model
(CHM) from the LiDAR data and the probabilistic framework
for the NAIP dataset for both Area 1 and Area 2 are presented
in Figure 20.

A Random Forest (RF) based classifier was independently
trained on the same dataset used for the probabilistic Neural
Network classifier. The RF classifier was implemented using
a random forest package [51], available in the R interface
[52]. The number of trees, node size and maximum number
of terminal node trees in the forest were varied in iterations
to achieve a stable solution with maximum accuracy. The
number of trees was set to 250, node size was set to 5
and maximum number of terminal nodes was set to 500.
Number of trees is selected in such a way so that every input
row gets predicted at least few times. Node size is usually
set as a small number as setting this number larger causes
smaller trees to be grown although it may take less time.
The number of terminal nodes decides the maximum possible
size of the growth of the trees (also subject to limits by
node size). The final values of the parameters were obtained
empirically depending on the minimum execution time and
memory requirements when further parameter variations did
not increase the accuracy. A sliding window analysis (with a
window size of 50 pixels) was performed on the two scenes
and the percentage of tree-cover pixels and non-tree pixels
are presented in Figure 21 and Figure 22. As can be seen
from Figure 21, the tree-cover predictions generated by both
the Probabilistic Neural Network (NN) framework and the
Random Forest (RF) based framework have a high positive
correlation with LiDAR, while NLCD produces significantly
less accurate results, having error rate more than 40% on

Fig. 19: A satellite image showing the validation points chosen
for our experiments over California. The red circles denote the
validation points. A total of 36000 sampling points were cho-
sen to represent densely forested areas, fragmented forests and
urban forested areas of California. The green grid represents
the individual NAIP tiles. In order to display the locations from
which the validation points were sampled, multiple points were
clustered into subgroups and hence each red circle in the figure
represents multiple validation points.

average with LiDAR tree cover estimates considered as ground
truth, while the Neural Network classifier produces a mean
error rate less than 5% with the same ground truth data.
The Random Forest implementation has a higher error rate
averaging around 15%. An evaluation of the True Positive
Rates and False Positive Rates for the NN and RF algorithms
for the NAIP data and NLCD algorithm for LANDSAT
data for Area 1 is enumerated in Figure 23a and 23b. The
significantly higher values of the True Positive Rates for
NLCD can be attributed to the significant loss of resolution
of the dataset. Therefore, a tree-cover region is classified in
its entirety and approximated as either a tree-cover or non-
tree region based on whether most of the pixels are tree
or not. In other words, in NLCD, a single pixel represents
an area of 30 sq. m. The highest resolution attainable for
NLCD is of the order of at least 8-10 full-grown trees. This
argument can be substantiated by the NLCD output shown in
Figure 13. As can be seen in Figure 13, non-tree regions are
approximated as tree-cover regions in a comparatively densely
forested region while for urban areas, tree-cover regions are
classified as non-tree regions owing to its presence amidst
a sparsely forested landscape. Figure 13 explains the high
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Fig. 20: The final tree-cover maps generated using LiDAR
(left) and NAIP (right) for Area 1 (top) and Area 2 (bottom).
The green regions represent tree cover areas, the white re-
gions represent non-tree areas and the black regions represent
the areas with null values in the LiDAR data (these black
regions were masked out from the NAIP tree cover maps for
comparative studies with the corresponding LiDAR maps).

False Positive Rate for NLCD as illustrated in Figure 23b.
The same validation technique was applied to Area 2 and
the results of the percentage of tree and non-tree pixels are
presented in Figure 24 and Figure 25. As highlighted by both
figures, our probabilistic Neural Network based framework
produces near optimal results, which are highly correlated
to the LiDAR output and outperforms the Random Forest
based classification algorithm. This is substantiated by the
True Positive and False Positive Rates enumerated in Figure
26a and 26b. It can be easily seen that the algorithm produces
a significantly high accuracy with mean True Positive Rate as
high as 97% and mean False Positive Rate around 8%. On
the other hand, though NLCD produces True Positive Rate of
around 92% (almost same as NN) for the area, but it produces
False Positive Rate as high as 88%. It also outperforms the
Random Forest classifier, which produces True Positive Rate
of around 82%.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Our probabilistic framework has been proved to be a useful
tool for analyzing 1-m NAIP imagery for large-scale tree-cover
mapping. Preliminary results on the NAIP tiles for California
have produced positive detection rates of ∼86% for densely
forested areas and ∼74% for urban areas. Comparative studies
with NLCD show the effectiveness of our approach towards

Fig. 21: Percentage of forest cover obtained using Neural
Network and Random Forest (for NAIP), and NLCD and
LiDAR in Area 1 (the Teakettle Experimental Forest in the
western Sierra Nevada mountain range, California). A 50×50
sliding window was used to obtain the percentage of tree-cover
pixels in both NAIP and NLCD with LiDAR as the ground
truth.

Fig. 22: Percentage of non-forest area obtained using Neural
Network and Random Forest (for NAIP), and NLCD and
LiDAR in Area 1 (same as the area in Figure 21). The sliding
window size was 50×50.

creating the NAIP 1-m “Golden Dataset”. Validation with
high-resolution airborne LiDAR data shows average positive
detection rates of around 83% and average false positive rate as
low as 10%. This proves the effectiveness of our approach in
generating high-resolution tree-cover maps for the entire coun-
try. The algorithm scales seamlessly to millions of scenes and
can handle high variations, which is often the case for aerial
imagery. The use of handcrafted features extracted from the
Hue, Saturation, Intensity and NIR channels provides a useful
framework for classifying NAIP imagery. The integration of
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(a) True Positive Rate

(b) False Positive Rate

Fig. 23: True Positive Rate (TPR) and False Positive Rate
(FPR) of Neural Network and Random Forest (for NAIP) and
NLCD with LiDAR as ground truth for Area 1 (same as the
area in Figure 21). The sliding window size was 50×50.

the structured prediction framework based on Conditional
Random Field helped to increase the True Positive Rates while
reducing the False Positive Rate by incorporating classifier
outputs from the neighboring pixels located within the same
neighborhood system. The Near Infrared channel in the NAIP
dataset was also useful in segregating regions with chlorophyll
from others and proved to be a very useful discriminative
feature for addressing the tree/non tree classification of the
1-m NAIP dataset. We plan to create tree-cover maps for
the entire continental United States and incorporate and train
the framework for more classes, such as different types of
tree canopies, grasslands, croplands, etc., in the future. We
also plan to integrate man-made classes like roads, rooftops,
parking lots, etc. into the framework.

Fig. 24: Percentage of forest cover obtained using Neural
Network and Random Forest (for NAIP), and NLCD and
LiDAR for Area 2 (the Chester area in California). The sliding
window size was kept as 50×50.

Fig. 25: Percentage of non-forest area obtained using Neural
Network and Random Forest (for NAIP), and NLCD and
LiDAR for Area 2 (same as Figure 24) with the sliding window
size kept constant at 50×50.
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