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An effective cloud computing environment requires both good performance and high efficiency of computing
resources. Through extensive experiments using a representative n-tier benchmark application (RUBBoS), we
show that the soft resource allocation (e.g., thread pool size and database connection pool size) in component
servers has a significant impact on the overall system performance, especially at high system utilization sce-
narios. Concretely, the same software resource allocation can be a good setting in one hardware configuration
and then becomes an either under or over-allocation in a slightly different hardware configuration, causing a
significant performance drop. We have also observed some interesting phenomena that were caused by the
non-trivial dependencies between the soft resources of servers in different tiers. For instance, the thread pool
size in an Apache web server can limit the total number of concurrent requests to the downstream servers,
which surprisingly decreases the CPU utilization of the C-JDBC clustering middleware as the workload
increases. To provide a globally optimal (or near-optimal) soft resource allocation of each tier in the system,
we propose a practical iterative solution approach by combining a soft resource aware queuing network
model and the fine-grained measurement data of every component server. Our results show that to truly scale
complex distributed systems such as n-tier web applications with expected performance in the cloud, we need
to carefully manage soft resource allocation in the system.
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1 INTRODUCTION
An important advantage of cloud computing environment is the scalability: an application can scale
the underlying computing resources (e.g., number of virtual machines) to always meet the demand
of the fluctuation workload for both good performance and high resource efficiency [13, 39]. For
long-term cloud users, scalability is especially important because the low operational cost brought
by efficient resource utilization can justify the savings of avoiding building a dedicated cluster.
For cloud vendors, scalability is also very important because they can save infrastructure cost by
using less amount of computing resources and power through efficient resource utilization. So
scalability and the associate efficient resource utilization are important requirements for shared
cloud computing environment.
A key challenge of achieving efficient resource utilization through scalability is the intelligent

mapping of cloud resources to the real-time resource demands of running applications. This is
because typical cloud applications such as e-commerce usually have large fluctuating and sometimes
unpredictable workload (e.g., peak load ten times higher than average) [9]. In addition, these
applications may have strict quality of service (QoS) requirements such as bounded response time.
To achieve such an intelligent mapping, significant previous work has been done in hardware
resource scaling, for example, scaling hardware resources such as virtual machines or CPU cores
based on offline configuration plans [36] or pre-defined online adaptation policies (e.g., CPU
utilization larger than 80%) [20, 23, 27, 43].
In this paper, we show that an intelligent mapping of cloud resources to real-time resource

demands of n-tier applications needs to take both hardware and software resources into account.
This is because of the complex dependencies between hardware and software resources (e.g., thread
pool, connection pool which we refer to as soft resources in this paper) from each tier of the system.
For example, the number of threads in an upstream tier of an n-tier system can control the level
of concurrent requests flowing into downstream tiers, which may lead to either under-utilization
or over-utilization of the critical hardware resource in the system. To study the impact of soft
resource allocation on n-tier application performance, we developed tools to conduct fine-grained
monitoring of both hardware (CPU, memory, I/O) and soft resources (thread/DB connection pool)
of each tier of the system. Then we analyze the relationship between application performance
metrics (e.g., throughput, response time) and the fine-grained measurement of hardware and soft
resource usage by varying the soft resource allocation in each tier of the system.

The first contribution is the quantitative evaluation of the impact of soft resource allocation on
the performance of n-tier applications with different hardware configurations. Using the RUBBoS
benchmark [44], we show that a sub-optimal soft resource allocation (e.g., thread/DB connection
pool) can easily degrade the performance of an 4-tier system from 31% to 110%, depending on the
SLA specifications (see Figure 2). We also show that a set of near-optimal soft resource allocation
for one hardware configuration can become a very bad choice when the system scales out to a
different size (hardware resource scaling) (comparing Figure 2 and 3).
The second contribution is the sensitivity analysis of two policies of soft resource allocation:

either conservative or liberal allocation leads to inferior performance. We show that a conservative
soft resource allocation (e.g., small thread pool size) may lead to under-utilization of the critical
hardware resource because of not enough workload concurrency in the system. On the other hand,
a liberal allocation of soft resources (e.g., large DB connection pool size) may degrade the efficiency
of the critical hardware resource in the system because of the increased overhead in CPU and
memory. For example, our experiments show that allocating a few hundreds of threads in a Tomcat
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server can cause frequent Java garbage collection activities that waste the critical CPU resource of
the bottleneck server up to 9%.
The third contribution is a practical solution that recommends a near-optimal soft resource

allocation for each tier of an n-tier system. Our solution combines a soft resource aware queuing
network model and fine-grained measurement data of each tier in the system. The model abstracts
the request processing in an n-tier system composed of typical thread-based servers and character-
izes the relationship of proper allocation of soft resources in each tier of the system. The parameters
of the model can be obtained through fine-grained measurement of the system, which enables the
prediction of optimal (or near-optimal) allocation of soft resources in each tier of the system.

In general, our results suggest that soft resources should be treated as essential components when
scaling n-tier applications in the cloud. This is due to the strong dependencies between soft and
hardware resources within each component server and among different servers in the system [41].
For example, scaling out/in the servers of one tier not only affects the workload concurrency in
itself, but also affects the workload concurrency in both the upstream and downstream tiers (see
Section 3). In fact, complex systems like n-tier applications can be truly scalable only if hardware
and soft resources are treated as a whole.

The rest of the paper is organized as follows. Section 2 demonstrates the impact of soft resource
allocation on n-tier application performance with different hardware configurations. Section 3
conducts a sensitivity analysis of two soft resource allocation policies: liberal and conservative
allocation. Section 4 describes our soft resource-aware queuing network model and a practical
algorithm for near-optimal soft resource allocation in the system. Section 5 summarizes the related
work and Section 6 concludes the paper.

2 BACKGROUND ANDMOTIVATION
2.1 Background Information
2.1.1 Soft Resources in n-Tier Systems. When conducting the performance evaluation of com-

puter systems, hardware resources (e.g., CPU, disk, memory, network) are usually well-defined
monitoring components for performance analysis and reasoning. We use soft resources to refer
the software components such as threads and TCP connections that use hardware resources. For
example, threads use CPU and memory, and TCP connections use the network. We also expand the
definition of soft resources to refer the software components that use soft resources or synchronize
the use of both soft and hardware resources. For example, a lock is a soft resource that synchronizes
the use of data structures and CPU. In general, the function of soft resources is to facilitate the
sharing of hardware resources. For example, threads facilitate the sharing of the CPU resources
through concurrency and parallelism. As a result, soft resources are indispensable components of
the critical job execution path in the system.

More importantly, soft resources create dependencies among components in the system because
of the classic synchronous RPC style inter-server communication. For example, a request arrives
in an Apache server, which dispatches the request to the downstream application server such as
Tomcat, which sends queries to a downstream database server such as MySQL to fetch persistent
state of the system. Soft resources such as processing threads in an upstream server will not be
released until a downstream server finishes all the processing, creating non-trivial dependencies in
the long invocation chain.

2.1.2 Experimental Environment. We use RUBBoS, a representative n-tier application benchmark
to conduct our experiments in our VMware vSphere cluster. RUBBoS benchmark application is
modeled after the famous tech news website Slashdot [2]. It can be configured as 3-tier (web server,
application server, and database server) or 4-tier (add C-JDBC database clustering middleware [17]).
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Web Server

Application Server

Cluster middleware

Software Stack

Apache 2.2.31

Apache Tomcat 7.0.56

C-JDBC 2.0.2

System monitor Collectl v4.0, Sysstat 10.0.0

Database server MySQL 5.6.35

Operating system RHEL 6.4 (kernel 2.6.32)

Sun JDK jdk1.7.0_06

Hypervisor VMware ESXi v6.0

(a) Software setup

Type

Small (S)

# vCPU

1

CPU limit

1.60GHz

CPU 
shares

Normal

VM Configuration

CPU

Memory

2 * Intel Xeon E5-2603, 1.60GHz Hexa-Core

16GB

Model Dell Power Edge R430  

ESXi Host Configuration

Storage 7200rpm SATA local disk

vRAM

2GB

vDisk

20GB

(b) Hardware node setup

Workload

Clients Web server App server
Cluster 

middleware DB server

(c) Sample topology

Fig. 1. Experimental setup of the VMware ESXi cluster

Figure 1 shows the software stack, hardware specification, and a sample configuration that we
have used in our experiments. The RUBBoS workload consists of 24 web transactions such as
ViewStory and StoryOfTheDay. The workload generator of RUBBoS simulates a certain number of
users sending real HTTP requests to interact with the benchmark application; each user navigates
between different web transactions by following a Markov chain model abstracted from the trace
of real user behaviors [16]. For example, the average think time between every two consecutive
web transactions follows a normal distribution with 7 seconds as its mean. Such a user behavior
model has been widely used by other typical n-tier benchmark applications such as RUBiS [45],
TPC-W, and CloudStone [48].

We ran our experiments in our VMware vSphere cluster. We use #Web/#App/#CM/#DB to
represent the hardware topology of a 4-tier system, which means the number of web servers,
application servers, database clustering middleware, and database servers. Each server (including
Apache, Tomcat, C-JDBC, and MySQL) is running in a VM deployed on a dedicated physical
machine (the specification of each machine is similar to the EC2 g2 dedicated host [7]), in this case,
we are able to eliminate complicated factors like VM interference and focus on the study of the
impact of soft resource allocation on the n-tier system performance. For example, in our 1/4/1/4
configuration case, the 4-tier system uses 10 VMs, each of which is deployed on a dedicated Dell
Power Edge R430 as shown in Figure 1(b). Except for database servers, every other server has a
thread pool to handle requests from the upstream tier and a connection pool to communicate with
the downstream tier. For each hardware topology, we choose three representative soft resources
for our evaluation, which we denote as #Wthreads -#Athreads -#ADBConn , meaning the thread pool
size in a web server, the thread pool size in an application server, and the DB connection pool size
in an application server. So for a hardware configuration like 1/2/1/2 (Figure 1(c)), the associate
soft resource allocation can be 400-150-60, which means 400 Apache threads, 150 Tomcat threads,
and 60 Tomcat DB connections. Since there are two Tomcat servers, the total number of threads
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Fig. 2. The goodput comparison between two different soft resource allocations under the same
hardware configuration. 1/2/1/2 represents the hardware configuration,meaning oneApache (web
server), two Tomcat (application servers), one C-JDBC (database clustering middleware), and two
MySQL (database servers). The 3 numbers separated by hyphens refer to soft resource allocation,
for example, 400-100-100 means thread pool size (400) in one Apache server, the thread pool size
(100) in one Tomcat server, and the DB connection pool size (100) in the same Tomcat server. 400-
100-100 is considered as a reasonable soft resource allocation by practitioners from industry.

and DB connections doubles in the application server tier. Other soft resource allocations are fixed
to limit the exponential experiment space.

2.2 SLA Based Performance Requirements
Web applications such as e-commerce are sensitive to response time variation. Amazon reported
that every 100ms increase in page load is positively correlated with 1% decrease in sales [29].
Google requires all the queries to return within 500ms [19]. Thus, only those requests returning
within certain response time limit can generate a positive impact on service providers’ business.
In a cloud computing environment, service level agreements (SLA) are typically used to specify
desired response time, usually in one or two seconds, depending on the sensitivities of the target
application for response time.
Our previous research shows a general SLA model which evaluates the impact of different

response time range on a target service provider’s revenue [37]. In this paper, we adopt a simplified
SLA model to integrate throughput and response time together for system performance evaluation.
In our simplified SLAmodel, we use a simple response time threshold. We only consider the requests
with response time lower than the threshold, which satisfy our SLA and count as goodput. Requests
with response time above the threshold are counted as badput. Goodput and badput putting together
equal the classic definition of throughput. By considering both goodput and badput, we can refine
our traditional throughput model by taking user-perceived response time into account, leading to a
more realistic system performance analysis.

2.3 Performance Decrease with Simplified SLA Model
In this section, we use concrete measurements to show the significance of soft resource allocation
on n-tier application performance by applying our simplified SLA model. The goal is to illustrate
the importance of the problem; a more detailed explanation is in Section 3.

2.3.1 Impact of Under-Allocation. Figure 2 shows the goodput comparison between two soft
resource allocations 400-100-100 and 400-8-20 under the same hardware topology 1/2/1/2. 400-
100-100 is based on rule-of-thumb practice from industry while 400-8-20 is a more conservative
configuration. We choose the workload range from 10000 to 17000 because it well captures the
keen of system goodput as workload increases. The three subfigures show that the goodput of the
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Fig. 3. Performance degradation of the previous reasonable allocation 400-100-100 after the sys-
tem hardware configuration scales from 1/2/1/2 with 1/4/1/4

400-8-20 case starts to degrade much earlier than the 400-100-100 case, indicating the significant
impact of soft resource allocation on n-tier application performance.

Readers may immediately question the choice of the conservative 400-8-20 allocation, since it is
“obviously” too low. However, as we will see in Section 2.3.2, the conservative allocation 400-8-20
will significantly outperform the original rule-of-thumb allocation 400-100-100 once the system
scales from 1/2/1/2 to 1/4/1/4, suggesting that a good soft resource allocation may not always be
good as the system scales to a different size.

Figure 2 also shows that the impact of soft resource allocation on system goodput is sensitive to
the response time threshold. For example, at workload 14500, we show the goodput gap between
the 400-100-100 case and 400-8-20 increases from 31% to 110% when the target response time
threshold decreases from 3s to 500ms as shown in Figure 2(a), 2(b), and 2(c). We note that we
choose the allocation 400-100-100 as the baseline because it is considered as a good choice by
practitioners from industry. Such results indicate that even if the overall throughput may be the
same, the goodput can be very different, depending on the SLA specification.

2.3.2 Impact of Over-Allocation. Figure 3 shows the performance comparison of the same soft
resource allocations as in Section 2.3.1 after we scale the underlying hardware configuration from
1/2/1/2 to 1/4/1/4. As we can see that the previously inferior allocation 400-8-20 now outperforms
significantly the “rule-of-thumb” configuration 400-100-100. As we decrease the response time
threshold from 3s to 500ms, the goodput gap between these two cases becomes wider. The main
reason is that of the unintentional over-allocation of soft resources after system scales out, causing
significant overhead to the critical resource in the downstream tiers. More details are in Section 3.2.

Overall, SLAmodels connect economic goals with technical performancemeasurements, enabling
a more realistic view of the impact of soft resource allocations on the service providers’ business.
For the rest of the paper, we will use 3 seconds as response time threshold for goodput calculation
of different combinations of soft resource allocation and hardware resource configuration.

In the following Section 3 we will explain the reasons for performance difference under different
combinations of soft resource allocation and hardware configuration we have seen so far.

3 EVALUATION OF DIFFERENT SOFT RESOURCE ALLOCATION STRATEGIES
In this section, we conduct a sensitivity analysis of the impact of different soft resource allocation
strategies on n-tier application performance. We found some similarities and differences between
hardware and soft resources. Section 3.1 shows a case of similarity that too low allocation of soft
resources in one tier under-utilizes the hardware resources of the tier, and becomes the bottleneck of
the system. Section 3.2 shows one case of difference; unlike hardware resources, too high allocation
of soft resources degrades the system performance by causing the high overhead of the critical
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Fig. 4. Performance degradation caused by Tomcat thread pool under-allocation. The hardware
configuration is 1/2/1/2

hardware resource in the system. For example, high allocation of threads can cause more frequent
Java garbage collection activities in C-JDBC, causing high overhead of the C-JDBC CPU, which is
the critical hardware resource of the system. Section 3.3 shows a more interesting case of similarity.
Since soft resources create dependencies between different tiers, we show that a non-obvious “low”
allocation of soft resources in the frontmost tier (Apache) leads to the under-utilization of the
critical hardware resource in the downstream C-JDBC server.

3.1 Conservative Soft Resource Allocation
The first strategy of soft resource allocation is the straight-forward conservative allocation. The
purpose of conservative allocation is to avoid unnecessary overhead caused by abundant soft
resources. Since a virtual machine in a cloud computing platform typically has a small number of
CPU cores (e.g., 1 to 4), a conservative allocation (e.g., 10) of threads or connections should be able
to fully utilize the underlying hardware resources and avoid high concurrency overhead caused by
scheduling and context switches. Our results show that a reasonable conservative allocation of soft
resources is non-trivial to gain; the traditional wisdom of one or two threads per CPU core does
not apply to component servers in the context of n-tier systems.

We use Tomcat thread pool as an example to illustrate the impact of conservative soft resource
allocation. The hardware configuration is 1/2/1/2, where the Tomcat CPU is the critical hardware
resource of the system (we will show later). The number of threads in Apache and database
connections in Tomcat are fixed at 400 and 200, respectively. The liberal allocation of these soft
resources are supposed to be abundant and never become the bottleneck in the system. We only
change Tomcat thread pool size, from 8 to 200. We note that each Tomcat VM only has 1 vCPU
core, thus 8 threads in Tomcat should be sufficient to utilize the 1 vCPU core in Tomcat.

The system goodput under the increasing number of threads in Tomcat is shown in Figure 4(a).
This figure shows that the system goodput increases as the Tomcat threads increase from 8 to 20.
For example, the goodput of the 400-20-200 case is 47% higher than that of the 400-8-200 case,
indicating that 8 threads in Tomcat are not enough to fully utilize the Tomcat CPU. This hypothesis
is confirmed in Figure 4(b), which shows the CPU utilization of the first Tomcat server in the
system. We omit the second Tomcat CPU utilization since it is similar as the first one because of
the well-functioned load-balancer in the upstream tier (the Apache web server). This figure shows
that 8 threads in Tomcat are not able to saturate Tomcat CPU. For example, at workload 16000,
the Tomcat CPU utilization is only 83% in the 400-8-200 case while the number is about 100% in
the 400-20-200 case. This result indicates that all the threads in the small thread pool allocation
cases (i.e., the 8 and 12 threads case) are either processing the current requests or busy waiting for
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Fig. 5. Performance degradation caused by Tomcat DB connection pool over-allocation. The hard-
ware configuration is 1/4/1/4.

the response from the downstream C-JDBC. As a result, there is no available thread in Tomcat to
process new requests, leading to the idle state of Tomcat CPU.

A detailed analysis of Tomcat thread pool utilization is shown in Figure 4(c). This figure shows
that the smaller the Tomcat thread pool is, the earlier the pool becomes saturated. For example,
thread pool size 8 saturates at the workload of 14500 while the pool size 12 saturates at about
15500, and pool size 20 saturates at about 16000. On the other hand, the pool size 200 is far from
saturation (e.g., only 50% utilized) even under high workload range. This is because Tomcat CPU
becomes a bottleneck (see Figure 4(b)) before the thread pool is exhausted for request processing.
This result suggests that we need to monitor both soft and hardware resources to get a full picture
of performance analysis. Only monitoring hardware resources (e.g., using vmstat, sar, collectl) will
miss the real performance bottleneck as shown in the cases 400-8-200 and 400-12-200.

Figure 4(a) and 4(b) show another interesting phenomenon: the highest goodput achieved in the
200 threads case is significantly lower than that of the 20 threads case, suggesting that monolithically
increasing threads allocation could lead to sub-optimal system performance. This is due to the
non-trivial overhead caused by liberal soft resource allocation, as we will discuss in the next
subsection.

3.2 Liberal Soft Resource Allocation
The second soft resource allocation strategy we want to evaluate is the straight-forward liberal
allocation, with the purpose of fully utilizing the underlying hardware resources. This allocation
strategy shows the differences between soft and hardware resources. Unlike hardware resources,
soft resources such as threads and database connections consume other hardware resources even
if they are idle. Traditional wisdom assumes that the cost for maintaining soft resources is low
(e.g., a small amount of memory or CPU cycles). So liberal allocation of soft resources is considered
reasonable as long as there is enough memory.
Our experimental results show that liberal allocation of soft resources can cause significant

overhead to the critical hardware resource when the system is approaching saturation. In this
set of experiments, we scale the hardware configuration from 1/2/1/2 in Section 3.1 to 1/4/1/4
in order to resolve the Tomcat bottleneck. We fix the number of threads in Apache and Tomcat
to be 400 and 200 to avoid any bottleneck of these soft resources. Then we change the database
connection pool size in Tomcat from 8 to 200 and see the impact of such an increase on system
performance. Figures 5(a) and 5(b) show the system performance degradation as we increase the
database connections in Tomcat. We note that each database connection in Tomcat corresponds
to one thread in C-JDBC, which in turn corresponds to one thread in the database server MySQL
due to the synchronous RPC-style communication between consecutive tiers. So higher number of
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Fig. 6. Performance degradation caused by under-allocation of Apache threads. The hardware con-
figuration is 1/4/1/4.

database connections means a higher number of threads in C-JDBC and MySQL for query routing
and actual query processing.

Figure 5(a) shows the significant system goodput degradation as we increase the Tomcat database
connection pool size from 8 to 200. For example, at workload 19500, the goodput of 400-200-8 is
34% higher than that of the 400-200-200 case. Figure 5(b) shows the average CPU utilization of
C-JDBC server at the same workload range. This figure shows the C-JDBC CPU utilization is above
95% at high workload range (after 19000) under all the four configurations, suggesting that C-JDBC
CPU is the critical hardware resource in the system.

A further analysis of C-JDBC CPU utilization shows an opposite trend of system goodput as the
number of database connections increases in Tomcat. For example, at workload 19500, the C-JDBC
CPU utilization of the 400-200-8 case is the lowest while the corresponding system goodput is
the highest (see Figure 5(a)), suggesting significant CPU overhead in C-JDBC as we increase the
database connections in Tomcat from 8 to 200. Remember each database connection corresponds to
one thread in C-JDBC, so the significant CPU overhead is caused by the high number of threads in
C-JDBC. The well-known multithreading overhead includes context switches and scheduling. Here
we show another major source of high overhead for C-JDBC CPU: the JVM (Java Virtual Machine)
garbage collection as the number of threads increases in C-JDBC.

The JVM garbage collection affects system goodput in two ways. First, the JVM garbage collection
consumes C-JDBC CPU, which is the critical hardware resource of the system. The CPU time used
for JVM garbage collection cannot be used for request processing, thus reducing the maximum
achievable throughput of the system. Figure 5(c) compares the accumulated JVM garbage collection
time of the C-JDBC server during a 3-minute runtime experiment. This figure shows that at
workload 19500, the total JVM garbage collection time is above 16 seconds (9% of total) in the
400-200-200 case while about 4 seconds (2% of total) in the 400-200-8 case. Second, during the
JVM garbage collection period, the JVM will freeze for cleaning garbage (unreferenced objects)
in memory, which lengthens the waiting time of the queued requests and further decreases the
system goodput.

3.3 Buffering Effect of Soft Resources
In the previous two subsections, we always keep the Apache thread pool size to be 400. Considering
that the Apache VM only has one vCPU core, 400 threads appear to be more than enough. In
this subsection, we show that allocating a high number of soft resources in the front-most tier
(Apache in this case) of the system is important to achieve good performance. Unlike the significant
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Fig. 7. Analysis of performance degradation of the 30-6-200 case as workload increases from 16000
to 19500. Comparing (a) and (b), althoughmore Apache threads are busy atWL 19500, the number
of threads connecting to Tomcat is lower, limiting the number of concurrent requests flowing to
downstream tiers. This is because the percentage of time of Apache threads in connecting Tomcat
ThreadconnTomcat over total activeThreadactive at WL 19500 is significantly lower than that at WL
16000 by comparing (c) and (d).

overhead caused by the over-allocation of soft resources as introduced in Section 3.2, liberal
allocation of soft resources in the front-most tier (e.g., Apache server) functions as a buffer for
clients’ requests, stabilizing the requests flowing to the downstream tiers and improves the overall
system performance.

The experiments here still use the 1/4/1/4 hardware configuration, where the critical hardware
resource in the system is C-JDBC CPU as shown in the previous subsection. We keep a fixed number
of threads (6) and database connections (200) in each of the four Tomcat servers. Then we vary the
thread pool size of the front-most Apache server from 30 to 400 and see its performance impact.
Figure 6(a) shows that the system goodput keeps increasing as we increase the Apache thread pool
size from 30 to 400. For example, under workload 19500, the 400 threads case outperforms the 30
threads case by 53% in system goodput. Intuitively, readers may believe that the 30 threads case is
just a simple soft resource under-allocation case as we have seen in Section 3.1, where the scarcity
of soft resources becomes the system bottleneck, limiting the full utilization of the critical hardware
resource in the system.
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Fig. 8. # of Apache threads in connecting Tomcat among the total active Apache threads in the 400-
6-200 case at workload 19500. 400 threads in the Apache server enables high number of Apache
threads in connecting Tomcat, allowing high number of concurrent requests to downstream tiers.

We have observed two interesting phenomena that make the 30 threads case a special soft
resource under-allocation case. First, it is not clear why 30 threads in Apache is the bottleneck since
the total number of threads in the Tomcat server tier is just 24 (4 Tomcat servers and 6 threads each).
Given that soft resources control the concurrent requests flowing to the downstream tiers, it should
be the 24 threads in the Tomcat tier, not the 30 threads in Apache that limit the concurrent requests
flowing to the downstream bottleneck server C-JDBC. Second, the utilization of the C-JDBC CPU
(the critical hardware resource of the system) keeps decreasing as the workload increases from
16000 and 20000 in the 30 threads case, which is counter-intuitive to our normal understanding that
higher workload should lead to higher hardware resource utilization before saturation. For example,
the CPU utilization of C-JDBC at workload 19500 is about 10% lower than that at workload 16000.
Our detailed analysis of the thread status in Apache reveals that both the above interesting

phenomena are due to the small request buffer size (30 threads case) in the front-most tier of the
system. Figure 7 shows a 40-second runtime status of Apache threads in the 30 threads case at work-
load 16000 and 195000, respectively. We consider two periods of an Apache thread: Threadactive
and ThreadconnTomcat . The former period means that the Apache thread receives a request from a
client but is not released to process the next request, meaning the thread is active (or occupied); the
latter period is a sub-period of the active period, means the Apache thread just routes the request
to the downstream Tomcat but has not received the response from Tomcat.
The first phenomenon (30 threads is not enough) can be explained by counting the number of

Apache threads in ThreadconnTomcat period in the 30-6-200 at workload 195000. Figure 7(b) shows
that about 25 threads in the Apache thread pool are active, however, the actual number of threads
connecting to Tomcat is only 15 in average, less than the total number of threads (24) in the Tomcat
tier. Thus, it is the Apache tier, not the Tomcat tier that limits the concurrent requests flowing to
the downstream bottleneck server C-JDBC, causing the C-JDBC CPU under-utilization.
The second phenomenon (CPU utilization in CJDBC decreases as workload increases) can

be explained by comparing Figures 7(a) and 7(b), which shows that the number of threads in
ThreadconnTomcat period at workload 19500 is even lower than that at workload 16000. For example,
the average number of ThreadconnTomcat is about 15 in the former case while 18 in the latter case.
Fewer worker threads interacting with Tomcat means a fewer number of concurrent requests been
pushed to the downstream tiers including CJDBC, resulting in reduced the CPU utilization of the
C-JDBC server at workload 19500.
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Readers may wonder why ThreadconnTomcat at workload 195000 is lower than that at 16000.
Figures 7(c) and 7(d) show the average time that a worker thread in Threadactive period (gray line)
and also in ThreadconnTomcat period (red line) when the system is at 16000 and 19500, respectively.
It is clear that the thread time in Threadactive period at workload 19500 is averagely higher than
that at workload 16000, while the thread time in ThreadconnTomcat period at the two workloads
are similar. In this case, the percentage of time that a worker thread in Apache interacting with
the Tomcat tier over the total active time (ThreadconnTomcat

Threadact ive
) at workload 195000 is less than that

at workload 16000. As a result, less number of Apache threads connecting to Tomcat at workload
195000. We note that the main contributor of the high thread time in Threadactive period at
workload 19500 is that Apache waits for FIN replies from clients that close their corresponding
TCP connection. We observed that at a high workload, this wait time becomes longer than that
at higher workload (higher workload means more congestion in the network), which delays the
release of the corresponding Apache worker thread.

The above two interesting phenomena do not happen in the 400-6-200 case because 400 threads
in Apache provide a large buffer which stabilizes the number of concurrent requests flowing to
downstream tiers. Figure 8 shows the Apache threads status in 400-6-200 at workload 19500. While
in this case the Apache threads still need to wait for FIN reply from clients, the number of Apache
threads connecting to the downstream Tomcat tier is much more than the concurrency limit in the
Tomcat tier (24). Thus, Apache can always push a stable amount of workload to downstream tiers,
saturating the critical hardware resource of the system–the CJDBC CPU (see Figure 6(b)).

4 DETERMINING SOFT RESOURCE ALLOCATIONS
So far we evaluated the impact of two soft resource allocation strategies on n-tier system perfor-
mance. In this section, we first summarize the challenges and opportunities of optimal soft resource
allocations. We then introduce a model of n-tier systems with explicit soft resource allocations in
each tier. Based on the model we design an empirical algorithm of choosing a “Goldilocks” soft
resource allocation for each hardware configuration, followed by experimental validation.

4.1 Challenges and Opportunities of Good Soft Resource Allocation
Our previous experimental results can be summarized as follows. Too low soft resource allocation
may under-utilize the critical hardware resource in the system (Section 3.1 and 3.3); too high
allocation may cause high overhead on the critical system resource (Section 3.2). Thus, a key
principle of a good soft resource allocation is to maximize the utilization of the critical hardware
resource in the systemwhile avoiding unnecessary overhead on it. However, searching for a globally
good soft resource allocation is challenging due to the following three reasons:

(1) The optimal soft resource allocation is highly related to the location of the critical hardware
resource in an n-tier system, however, the location may shift when the system scales to a
different size due to workload variation. For example, the critical hardware resource in the
1/2/1/2 configuration is the Tomcat CPU (Section 3.1) while it is C-JDBC CPU in 1/4/1/4
(Section 3.2).

(2) The system performance (both throughput and response time) in general is not sensitive to
over- or under-allocation of soft resources until some critical hardware resource approaches
saturation. The impact of a bad soft resource allocation may not be revealed when the system
is at low utilization.

(3) The state space for the allocation of each soft resource is usually very large (e.g., from 1 to
unlimited). The complexity increases exponentially to find good combinations formultiple soft
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Fig. 10. Illustration of a sample request processing in a 4-tier application.

resources. Brute-force search for optimal allocation of soft resources by running experiments
exhaustively is impractical.

Although challenging, there are still opportunities to reduce the complexity of good soft resource
allocation given the characteristics of n-tier systems. Our previous analysis (Section 3.2 and 3.3)
shows that the soft resource allocations in different tiers are correlated with each other. So given a
good allocation of soft resources in one tier, it may be possible to infer good soft resource allocations
in other tiers given such “hidden” correlation. For example, Figure 9 shows a sample interaction
between a Tomcat and a C-JDBC server when they process an HTTP request. The HTTP request
arrives in Tomcat triggers two subsequent DB queries to the downstream C-JDBC. The response
time of the HTTP request in Tomcat is T while t ′1 and t

′
2 for the following two queries to C-JDBC.

Thus, a worker thread in Tomcat is busy during the entire periodT while the corresponding worker
thread in C-JDBC is busy only during t ′1 and t

′
2. In this case, the Tomcat server needs to obtain at

least N0 ∗T /(t
′
1 + t

′
2) threads in order to keep N0 threads busy in C-JDBC.

The above example only shows the relationship between processing threads in Tomcat and
CJDBC. Other important soft resources in the system such as database connections are not shown.
A more detailed picture of the request processing in a 4-tier application is shown in Figure 10. This
figure shows that when a processing thread in any server (except database) receives a request, it
pre-processes the request first and then fetches a connection to communicate with the downstream
tier. The boxes under each server show the busy time of a processing thread and the corresponding
connection for downstream communication. To achieve high performance of such a 4-tier system,
we need to choose a good allocation of soft resources in each tier in a coordinated manner.

In the following subsection, we generalize the relationship of soft resources between different
tiers in an n-tier system through an analytical model.
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Fig. 11. A simplemodel of n-tier applicationswith soft resources. Except the last tier (database tier),
every server has a thread pool to process incoming requests and a connection pool to communicate
with the consecutive downstream tier.

Table 1. Descriptions of parameters in our model

Symbol Description
N Number of tiers
ThreadPooli Thread pool size in tier i
ConnPooli Connection pool size in tier i
TPi Average throughput of tier i (1 ≤ i ≤ N )
RTi Average response time of tier i
RT conn

i Average connection busy time in tier i
Qi Average queued requests of tier i
Vi j Request visit ratio between tier i and tier j
RT i j

ratio Average response time ratio between tier i and tier j

4.2 Soft Resource Aware Modeling of n-Tier Systems
Consider that a web application with n tiers is denoted by T1,...,Tn as shown in Figure 11. For
simplicity, we assume each tier only has one server 1. We only consider the soft resources that
are responsible to communicate with other tiers. Concretely, each server has a thread pool to
receive/process the incoming requests and a connection pool to communicate with the downstream
tier. The size of thread pool and connection pool in tier Ti is ThreadPooli and ConnPooli . We omit
other potential soft resources inside a server since they are implementation specific. Table 1 shows
the description of all the parameters in our model.

Based on the Little’s Law and Forced Flow Law, we can get the following equations for each tier:

Qi = TPi ∗ RTi (1)

TPi = TPj ∗Vi j (2)

Where Qi , TPi , and RTi are the number of queued requests, the average throughput, and the
average response time in tier Ti . Vi j is the visit ratio between the Ti and Tj .
Combining Equation 1 and 2, we have the following:

Q j = Qi ∗
TPj

TPi
∗
RTj

RTi

= Qi ∗Vji ∗
RTj

RTi
(3)

1Multiple servers in one tier can be viewed as one big server with all the soft resources of the same type added together.
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Let RT i j
ratio denote the ratio between RTi and RTj , the above equation can turn into the following

equation:
Q j = Qi ∗Vji ∗ RT

ji
ratio (4)

Equation 4 shows that in an n-tier system, once we determine the number queued requests in
tier Ti , we are able to infer the number of queued requests in any other tier Tj , given the visit ratio
Vji and response time ratio RT ji

ratio . We know that Vji depends on the workload characteristics.
Both Vji and RT ji

ratio can be measured in the runtime based on each server’s processing log, which
usually records the start time and the response time of each processed request. For example, the
visit ratio Vji is approximated as the ratio of the number of requests between tier Ti and Tj .

Assume that each queued request in a server requires a dedicated thread, Equation 4 can be
transformed to:

ThreadPoolj = ThreadPooli ∗Vji ∗ RT
ji
ratio (5)

Other than the thread pool size, the connection pool size in tier Tj can also be derived from
Equation 3. In this case, we need to record the timestamps when a connection is fetched by a worker
thread and when the same connection is released back to the connection pool. We denote the time
gap as the connection busy time RT conn

i . By replacing RTi with RT conn
i in Equation 3, we can get

the following:

ConnPoolj = Qi ∗Vji ∗
RT conn

j

RTi

= ThreadPooli ∗Vji ∗
RT conn

j

RTi
(6)

Combining Equation 5 and 6, we are able to determine the relationship between thread pool size
and connection pool size in different tiers, given the proper measurement of request visit ratio and
response time of each tier.
We note that the above general soft resource aware model does not make any assumptions on

the implementation of the benchmark application as long as the application uses thread-based
servers to process business logic and connection pools for inter-tier communication. In fact, the
model can be applied to any multi-stage execution pipelined systems with synchronous/blocking
remote function invocation. Concretely, the parameters of the general model can be derived from
detailed measurements from any specific n-tier benchmark applications (e.g., RUBBoS, RUBiS [45],
CloudStone [48]). This general model characterizes the relationship of appropriate soft resource
allocations between any two tiers in an arbitrary n-tier system, providing a solid foundation for
our soft resource allocation algorithm to derive the optimal soft resource allocation in each tier of
the target system, which is the topic of the following subsection.

4.3 Soft Resource Allocation Algorithm
The model described in the previous subsection only quantifies the relationship of soft resource
allocations in different tiers, however, how to determine the “optimal” soft resource allocation in
each tier is still undetermined. In this section, we describe a soft resource allocation algorithm
based on the previous model. Our algorithm is based on the following three assumptions:
(1) Only a single critical hardware resource in the system.
(2) When the system is saturated, our monitoring tools are able to identify the critical hardware

resource (e.g., C-JDBC CPU).
(3) Response time of every request is logged in every component server.
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The first assumption is to avoid complex multi-bottleneck scenarios. In a multi-bottleneck
scenario, multiple hardware resources may saturate in a fast alternating pattern (e.g., millisecond
lifespan) due to the inter-resource dependencies [55] [38]. In such a case, the average utilization of
each involved hardware resources can be far from saturation (e.g., 60%) while the system already
achieves the maximum throughput. Thus, the key challenge in a multi-bottleneck scenario is to
identify the involved critical hardware resources that participate in the fast alternating pattern.
However, normal monitoring tools with coarse monitoring granularity (e.g., seconds or minutes)
may fail to detect any hardware resources that present transient saturation. Designing low-overhead
fine-grained monitoring tools to detect transient resource saturation in an n-tier system is the key
to expend our solution to a multi-bottleneck scenario, which is beyond the scope of this paper. The
latter two assumptions assume that we have proper monitoring tools (e.g., collectl and Log4j) to
record both the system and the application level events during experiments.

The algorithm to find a good soft resource allocation has the following three steps (pseudo-code
in Algorithm 1):

(1) Identify the critical hardware resource. This step identifies the hardware resource that
saturates first as the workload increases. Such a hardware resource is critical because it limits
the entire system throughput.

(2) Infer the “optimal” soft resource allocation of the server that uses the critical hard-
ware resource. This step is to find the just-right allocation inside the bottleneck server to
avoid either under- or over-utilization of the critical hardware resource in the system.

(3) Infer a good allocation of other soft resources. This step allocates soft resources of the
tiers other than the bottleneck tier. We use the soft resource aware model (Equation 5 and 6)
that we derived in Section 4.2 to infer the appropriate soft resource allocations in other tiers
based on detailed measurements and the soft resource allocation in the bottleneck tier.

Currently the above three steps are implemented in an offline style, during the system profiling
phase by exploiting our automated experimental infrastructure [25] (the overhead analysis is in
Section 4.5). In the following we will explain each of the three steps in more detail.

4.3.1 Identifying the critical hardware resource. This step is to identify the critical hardware
resource of the system by increasing the workload gradually until the system reaches the highest
throughput. H0 and S0 represent the initial hardware configuration and soft resource allocation,
respectively. Function RunExperiment(H , S,workload) runs an experiment with the given hard-
ware/software configuration at specificworkload . During the experiment period, our monitoring
infrastructure monitors all the hardware and soft resources and the saturated ones are recorded in
Hb and Sb , respectively. We increase the workload one step each time until the system reaches the
highest throughput. At this moment, either some hardware or soft resource limits the continual
increase of the system throughput. If Hb is not empty, this step of the algorithm successfully
identifies the critical hardware resource and returns. Otherwise, if Sb is not empty, the system
encounters the soft resource bottleneck, causing the under-utilization of the critical hardware
resource. In this case, we double all the soft resource allocations and repeat the experiment.

4.3.2 Inferring an “optimal” allocation of soft resources in the bottleneck tier. This step infers
a good allocation of soft resources (e.g., threads) in the bottleneck tier that can saturate the
critical hardware resource without causing additional overhead. In a thread-based server, each job
requires one dedicated thread to process it; the optimal threads number should equal the minimum
concurrent jobs that saturate the critical hardware resource in the server. In this case, the critical
hardware resource will neither be under- nor over-utilized.
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Algorithm 1: Pseudo-code for soft resource allocation
1 procedure FindCriticalResource
2 workload = step, T Pcurr = 0, T Pmax = -1;
3 S = S0, H = H0;
4 while T Pcurr > T Pmax do
5 T Pmax = T Pcurr ;
6 (Bh ,Bs , T P ) = RunExperiment(H , S , workload );
7 if (Bh , ϕ) then
8 /∗cr it ical hardware resource f ound ∗ /

9 Sr eserve = S ;
10 return Bh ;
11 else if (Bs , ϕ) then
12 /∗sof t r esource bottleneck ∗ /

13 workload = step, T P = 0, T Pmax = -1;
14 S = 2S ;
15 else
16 workload = workload + step;
17 end
18 end

19 procedure InferMinConncurentJobs
20 workload = smallStep, i = 0, T Pcurr = 0, T Pmax = -1;
21 S = Sr eserve ;
22 while T Pcurr > T Pmax do
23 T Pmax = T Pcurr ;
24 WL[i] = workload ;
25 (RTT [i], T P [i], T Pcurr ) = RunExperiment(H , S , workload );
26 workload = workload + smallStep;
27 i++;
28 end
29 /∗f ind the minimum workload ∗ /

30 WLmin = i − 1;
31 min Jobs = RTT [WLmin ] * T P [WLmin ];
32 criServer.threadpool =min Jobs ;
33 criServer.Connpool =min Jobs ;

34 procedure CalculateMinAllocation
35 for server in front tiers do
36 /∗apply sof t r esource allocation model ∗ /

37 server.threadpool=min Jobs * Vv isitRatio * RTTrat io ;
38 server.Connpool =min Jobs * Vv isitRatio * RTTrat io ;
39 end
40 for server in end tiers do
41 server.threadpool=min Jobs ;
42 server.Connpool =min Jobs ;
43 end

Applying Little’s law (see Equation 1), we can infer the average number of jobs inside a server
based on the average server throughput and response time. Both the two metrics can be easily
obtained from the server’s log. Therefore, to find the minimum concurrent jobs (minJobs) that
saturate the bottleneck server, we need to determine the minimum workload (WLmin ) that can just
achieve the highest system throughput. This can be achieved by gradually increasing the workload
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Table 2. Algorithm output for the hardware configuration 1/2/1/2 and 1/4/1/4. The results show
that as the hardware configuration changes, the “optimal” allocation of soft resources in each tier
also changes.

Hardware Configuration
1/2/1/2 1/4/1/4

Apache Tomcat CJDBC MySQL Apache Tomcat CJDBC MySQL

Critical hardware resource CPU CPU
Saturation WL [# Users] 15400 19200
RT [s] 0.050 0.028 0.045 0.020 0.005
RT conn [s] 0.034 0.013 0.023 0.009 0.003
TP [Reqs/s] 2101 2101 2625 2625 8426
Visit ratio V 1 1 3.21 3.21 1 1 3.21 3.21
min Jobs in the bottleneck tier 59 42
Size of total threads 105 60 60 60 118 52 42 42
Size of individual thread pool 105 30 (×2) 60 30 (×2) 118 13 (×4) 42 11 (×4)
Size of total connections 73 26 60 \ 60 32 17 \

Size of individual connection pool 73 13 (×2) 30 \ 60 8 (×4) 17 \

until the system reaches the highest throughput. Line 31 of the pseudo-code shows thatminJobs
can be calculated given the throughput and response time of the critical server at workloadWLmin .

4.3.3 Calculating a good allocation of other soft resources. This step of the algorithm applies
Equation 5 and 6 to calculate appropriate soft resource allocations in other tiers based on the
“optimal” soft resource allocations in the critical tier (determined in the second step). We note
that the calculated soft resource allocations in other tiers are just the minimum that allows the
critical hardware resource in the bottleneck tier to be saturated by the concurrent jobs (minJobs).
In practice, there are two optimization techniques to further improve the algorithm effectiveness.
First, to handle the naturally bursty workload from clients, the front-most tier (e.g., Apache

web server) should provide more soft resources than the minimum to act as a buffer that stabilizes
bursty workload to the downstream tiers (see Section 3.3). An appropriate value depends on the
burstiness level of the workload. Our experiments show that allocating 3 to 4 times of the calculated
minimum threads in the front-most Apache is able to achieve a good buffering effect for the default
RUBBoS workload, the request rate of which follows a normal distribution with the mean value
related to the number of clients. We note that randomly allocate a high number of threads (beyond
3 to 4 times) may again degrade the efficiency of the Apache server because threads will consume
resources such as the main memory and CPU cache even if they are idle, which may cause side
effects such as memory or cache thrashing.
Second, the soft resource allocations in the tiers behind the bottleneck tier (e.g., MySQL in

1/4/1/4) can directly assign the value ofminJobs . This is because according to Equation 5 and 6,
the minimum soft resource allocation in these downstream tiers are definitely less thanminJobs . 2
Since these downstream tiers are not the bottleneck, slightly over-allocation of soft resources does
not hurt the overall system performance while such optimization can speed up the soft resource
allocation process for the whole system.

4.4 Validation of the Algorithm
In this subsection, we apply our iterative algorithm to find the “optimal” (or near-optimal) soft
resource allocation under different hardware configurations and also validate the recommended
allocation through extensive experiments.

2Given that tier j is behind tier i , Figure 10 shows that both (Vji ∗ RT
ji
rat io ) and (Vji ∗

RT connj
RTi

) are less than 1.
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Fig. 12. Validation of each individual soft resource allocation recommended by our algorithm for
the hardware configuration 1/2/1/2 (the first row subfigures) and 1/4/1/4 (the second row subfig-
ures) with a 3-second target response time threshold. Each subfigure validates one parameter;
the other two parameters are chosen to be abundant in order to avoid being the main parameter
limiting the system performance. (a)(b)(d)(e) show that the recommended allocation of the cor-
responding soft resource is able to achieve the highest system goodput; either under-allocation
or over-allocation leads to degraded system goodput (see Section 3.1 and 3.2). In addition, (c)(f)
show that 3 to 4 times of the recommended allocation of threads in Apache (the front-most tier)
are needed to achieve a good buffering effect due to the natural burstiness of n-tier application
workload (see Section 3.3).

Table 2 summarizes the output of the three procedures of the algorithm for the two hardware
configurations that we have evaluated before: 1/2/1/2 and 1/4/1/4. The first procedure of the
algorithm reports that the critical hardware resource of the 1/2/1/2 configuration is Tomcat CPU
while C-JDBCCPU for the 1/4/1/4 configuration. The second procedure reports the average response
time and throughput for each individual server under the minimum saturation workload, and infer
the “optimal” allocation of soft resources in the bottleneck tier. In this procedure, we turned on the
logging function of each server in order to record the start time and response time of each request,
which is used to calculate the average response time and throughput of each server. The third
procedure calculates the minimum thread/conn pool size for other tiers based on Equation 5 and 6.

4.4.1 Validation of 1/2/1/2 case. Since the combination of soft resource allocation space is too
large in a 4-tier system, we validate the recommended allocation of each individual soft resource
one by one. Concretely, we vary the allocation of each individual soft resource and check whether
the algorithm recommended allocation is able to achieve the best performance under the same
workload. When validating one specific soft resource, we carefully choose the allocation for the
other soft resources in order to avoid being the main parameter affecting the system performance.
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Fig. 13. Validation results using a 500-millisecond target response time threshold. Compared to
the 3-second response time threshold case (Figure 12), this set of results show that smaller target
response time threshold (500-millisecond in this case) tends to lead to higher performance impact
of the recommended soft resource allocation (e.g., Figure 12(a) vs. 13(a)) on the same hardware
configuration (either 1/2/1/2 or 1/4/1/4).

More comprehensive evaluation such as exploring larger allocation space or varying the allocation
of multiple soft resources simultaneously will be our future work.
Figure 12(a) 12(b) 12(c) shows the validation results for three individual soft resources: the

Tomcat threads, Tomcat database connections, and Apache threads. The 4-tier system is always at
a high workload 16000 to make sure that the critical hardware resource (Tomcat CPU) can be fully
utilized given that soft resources are sufficient. Figure 12(a) and 12(b) show that the recommended
allocation given by our algorithm indeed outperforms all the other allocation cases. For example,
Figure 12(a) shows the goodput comparison when we increase the thread pool size in Tomcat
(the bottleneck tier) from 4 to 100. The workload is 16000, which is able to saturate the system
when there is no soft resource bottleneck. This figure shows that the optimal size of one Tomcat
thread pool is 30, matching the output given by our algorithm as shown in Table 2. Figure 12(c)
shows that the system goodput achieves the highest when Apache threads reach 300, 3 times as the
recommended value (105). This is because we need to allocate an adequate high number of threads
in the front-most Apache to achieve a good buffering effect and provide stable concurrent requests
to downstream tiers, as long as the Apache web server does not become the system bottleneck.

We also demonstrate the varying impact of soft resource allocations on n-tier application perfor-
mance when the response time threshold (the SLA objective) changes in Figure 13. For example, the
system with the recommended threads pool size in Tomcat (30) outperforms 60% in goodput than
the over-allocation case (150) in Figure 12(a), such a performance difference is enlarged to 214%
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Fig. 14. Validation of the global soft resource allocation recommended by our algorithm for the
hardware configuration 1/2/1/2 (the left) and 1/4/1/4 (the right). The soft resource allocation rec-
ommended by our algorithm (the top purple line) achieves the highest system goodput under
different hardware configurations. For both (a) and (b), we only compare with the cases of under-
allocation (half size of the recommended value) of each parameter at a time. This is because the
abundant allocation (more than the recommended value) of any one of three parameters will still
allow the system to achieve the highest system goodput as shown in Figure 12.

when the response time threshold changes to 500-millisecond in Figure 13(a). Such a result shows
that while the recommended soft resource allocation still outperforms the other testing allocation
cases, the performance gap tends to be wider when the target response time threshold is small (e.g.,
500-millisecond in Figure 13) on the same hardware configuration.

4.4.2 Validation of 1/4/1/4 case. The critical hardware resource under 1/4/1/4 hardware configu-
ration is C-JDBC CPU, however, we can not directly validate the recommended threads number
in C-JDBC because there is no explicit thread pool in current C-JDBC server implementation 3.
So for 1/4/1/4 we also show the validation for Tomcat threads, Tomcat database connections, and
Apache threads as we did in Section 4.4.1. Figure 12(d) and 12(e) show that the recommended soft
resource allocations (13 threads and 8 database connections in each Tomcat) by our algorithm
actually achieve the highest goodput comparing to other allocation cases. Figure 12(f) shows that,
compared to the 1/2/1/2 case, 400 Apache threads are needed to achieve a good buffering effect,
almost 4 times as the recommended value (116). This is because the 1/4/1/4 case under validation is
at a much higher workload (20000) compared to the 1/2/1/2 case, thus larger buffer size is needed
in the front-most tier.

4.4.3 Global optimal allocation. Astute readers may question the wisdom of validating each
recommended allocation of soft resources (i.e., Apache threads, Tomcat threads, and database
connections) one by one as shown in Figure 12. What about the global optimal soft resource
allocation? In fact, Algorithm 1 already gives the answer. The principle of a global optimal soft
resource allocation is to most efficiently utilize the critical (bottleneck) hardware resource in the
system, neither under- nor over-utilize it, in order to achieve the highest system goodput. In the
1/2/1/2 case, the critical hardware resource is Tomcat CPU while it is CJDBC CPU in the 1/4/1/4
case. The algorithm recommended allocation in each tier as shown in Table 2 is the minimum
that allows the concurrent jobs to saturate the critical hardware resource in the system. Thus,
controlling either the Tomcat thread pool or the database connection pool is able to achieve the

3A C-JDBC server launches a new request handling thread for each new database connection from the upstream Tomcat.
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highest system goodput. For example, Figure 12(a) and 12(b) show that either allocating 30 Tomcat
threads or 13 database connections allows the 1/2/1/2 system to achieve the highest goodput (about
2200 reqs/sec), as long as the allocation of other soft resources is abundant. We note that the
allocation of threads in the front-most Apache is special since it also serves as a buffer to stabilize
the bursty workload from clients, thus more than the recommended minimum is needed to serve
as an effective buffer, shown in Figure 12(c). The same analysis also applies to the 1/4/1/4 case as
shown in Figure 12(d), 12(e), and 12(f).
On the other hand, allocating less than the algorithm-recommended minimum of any soft

resource will lead to degraded system goodput. This is because such an under-allocation will
prevent the necessary number of concurrent jobs that saturate the critical hardware resource in
the system. Figure 14 validates this point for both 1/2/1/2 and 1/4/1/4. In both cases we half the size
of the recommended value of each of the three parameters (Apache threads, Tomcat threads, and
DB connections) one by one. The achieved system goodput is significantly lower than that of the
algorithm-recommended global optimal case (the top purple line) under the high workload range
when the system is approaching saturation or slightly overloaded.

4.5 Discussion
Overhead analysis of soft resource allocation algorithm. Since our algorithm is implemented
in an offline style, the performance overhead of applying the algorithm to the runtime system is
minimum. Concretely, during the offline training phase, our proposed algorithm is able to quickly
generate a near-optimal soft resource allocation policy for each hardware configuration (e.g., 1/2/1,
1/2/1/2, 1/4/1/4) by exploiting our automated Elba [25] experimental infrastructure, which is able
to generate scripts to automate the system deployment/configuration, experiments execution, data
collection, data analysis and visualization. For example, to generate a near-optimal soft resource
allocation for the 1/2/1/2 RUBBoS configuration in Table 2, the algorithm runs 10 workload steps
to identify the critical hardware resource, each of which runs about 10 minutes. So totally 100
minutes is needed to generate a near-optimal soft resource allocation for this specific hardware
configuration (1/2/1/2).
These offline-generated soft resource allocation policies will be adopted for online system

reconfiguration during the system scaling phase in the cloud. Concretely, when the system scaling
out/in is triggered during runtime, the application scaling controller just needs to dynamically
change the soft resource allocation of the involved servers based on the offline-generated soft
resource allocation policies. We note that these offline-generated soft resource allocation policies
need to be re-trained when the workload characteristic is detected to change significantly over
time (e.g., from CPU-intensive to I/O-intensive). Although web application workload is naturally
bursty (e.g., number of users), the workload characteristic (transaction mix) is relatively stable. So
we expect the regeneration of soft resource allocation policies would not happen frequently for
real production n-tier systems.
Soft resource allocation algorithm for other types of soft resources. Our definition of soft
resources in this paper is to refer to the software components such as threads and TCP connections
that use hardware resources or synchronize the use of both soft and hardware resources. For example,
a lock is one of the soft resources that synchronizes the use of data structures and CPU. In general, the
function of soft resources is to facilitate the sharing of the hardware resources through concurrency.
Regardless of the types of soft resources, the optimal soft resource allocation/configuration is to
use the underlying hardware resources most efficiently with minimum overhead. This is the key
principle of the second and the third steps of our proposed soft resource allocation algorithm
described in Section 4.3.2 and 4.3.3.
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Multi-core scenario. The essential problem of soft resource allocation/configuration is how
to optimize the request processing concurrency (controlled by soft resource allocation) in each
server/tier of an n-tier system to most efficiently utilize the underlying hardware resources with
minimum overhead. Thus, the difference between VMs with single-core and multi-core relies on
the number of soft resources (e.g., server threads) needed to most efficiently utilize the capacity of
the CPU resources (assume CPU is the bottleneck resource). We note that a multi-core CPU may
not be able to be fully utilized by simply increasing the number of threads due to the inter-thread
dependency and synchronization issue, especially when the number of cores is large (e.g., more
than eight [14]), but this is beyond the scope of this paper.
Dealing with asynchronous event-driven servers.We note that some recent web applications
start to use event-driven asynchronous component servers (e.g., Nginx [42] and Node.js [33]), the
performance of which are less affected by the request processing concurrency, however, thread-
based servers are still widely used in today’s production web systems and sometimes difficult to be
replaced by their asynchronous counterparts (e.g., database servers) due to the complexity of the
asynchronous programming model. We believe our conclusions on soft resource allocations and
the general soft resources aware model are still important contributions for building truly scalable
n-tier systems in the cloud.

5 RELATEDWORK
In this section, we classify previous work on system performance optimization into four main
categories–server design, analytical models, feedback control, and experimental-based software
engineering approach.
Asynchronous event-driven server design has been explored for high performance servers [30,
46], with Nginx [42] and Node.js [33] as a few emerging asynchronous web servers. Some previous
work [10, 57] even advocates a hybrid design of combining both threads and events for high-
performance servers. Nevertheless, many mainstream Internet servers such as Apache and Tomcat
still adopt the classic thread-based architecture because of its simple and natural programming
style. Regardless of which design that an internet server (either thread-based, asynchronous event-
driven, or the hybrid design server) adopts, soft resource allocation controls the request processing
concurrency and has a significant impact on server/system performance. While previous research
typically focuses on the performance impact of single soft resource allocation (e.g., threads) on a
single web server [10, 26, 46, 54], this paper focuses on highly distributed n-tier applications with
inter-dependent servers.
Analytical models have been proposed for system performance prediction and the optimal
resource allocation [1, 3, 8, 12, 15, 18, 21, 40, 52]. For example, Franks et al. [21] propose a layered
queuing network model which characterizes the dependencies of software and hardware resources
across nodes in a distributed system. Urganonkar et al. [52] propose a queue based model to capture
the performance characteristics of each tier and application idiosyncrasies. Bhimani et al. [12]
propose a performance approximation approach to model the computing performance of iterative
and multi-stage applications using Stochastic Markov Model and Machine Learning Model. These
analytical models generally extend the classic queuing network model and are meant to capture
some key features that affect the target system performance such as the dynamic changes of
workload characteristics, concurrency bound, or server replicas. These models, although have been
shown to work very well in some specific scenarios, may not apply to realistic n-tier applications
because of certain strict assumptions. For example, these models do not consider the practical
factors such as non-linear multithreading overhead or JVM GC activities, which are very related to
soft resource allocation and can significantly degrade server efficiency as shown in this paper.
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Feedback-control have been applied to adapt system resource provisioning based on run-time
workload variation [4, 11, 22–24, 28, 31, 32, 34, 51, 58]. The feedback signal is usually generated based
on certain resource utilization boundaries or a pre-defined SLA specification such as response time
threshold. Previous work mainly focuses on how (e.g., live migration [43]) and when (e.g., pro- [22,
24] and re-active scaling [23]) to add or remove hardware resources such virtual machines/Docker
containers to change the system capacity. For example, Amazon provides AWS Auto Scaling [5]
in its cloud platform, which adopts a re-active scaling strategy to enable the dynamic scaling of
virtual machines based on the average CPU utilization measured by its monitoring tool–Amazon
CloudWatch [6]. Gandhi et al. [22, 24] dynamically allocate system capacity (number of servers) by
taking advantage of both pro- and re-active scaling strategies based on an offline-trained workload
forecasting model. Alsarhan et al. [4] use reinforcement learning (RL) to derive scaling policies
(number of VMs) that can adapt to system changes in order to guarantee the QoS for all client
classes. Nevertheless, how to re-adapt request processing concurrency to match the hardware
provisioning changes is usually neglected. As shown in this paper, request processing concurrency
controlled by soft resources such as server threads and connections have a significant impact on
n-tier web application performance. Thus, when a scaling action is triggered, reallocating soft
resources is necessary to maximize the efficiency of the underlying hardware resources.
Software performance engineering approaches for optimal system configuration (both hard-
ware and software) are closest to our study [35, 47, 49, 50, 53, 59, 60]. For example, Zheng et al. [59]
design an automation framework to generate configurations automatically for a cluster of servers
in a web system by using a parameter dependency graph derived from runtime measurement
data. Zhu et al.[60] propose an automated approach for optimal system configuration given the
conditions of limited computing resources and a fixed application workload. Tang et al. [50] present
Facebook’s holistic configuration management stack for managing applications’ dynamic runtime
configuration, for example, gating product rollouts, managing application-level traffic, and running
A/B testing experiments. However, these previous approaches, in general, do not seriously consider
the non-trivial dependencies among soft and hardware resources provisioning.

6 CONCLUSIONS
In this paper, we studied the impact of soft resource allocation on n-tier application performance.We
found that the system goodput (requests within SLA bound) is sensitive to soft resource allocations
at high concurrency levels; given a good soft resource allocation in one hardware configuration,
it may become inappropriate (either under or over-allocation) when the hardware configuration
scales (Section 2.3). Concretely, we showed that too low allocation of Tomcat threads (Section 3.1)
or Apache threads (Section 3.3) degrades system goodput several tens of percent by underutilizing
the critical hardware resource in different manners. On the other hand, over-allocation of Tomcat
DB connections causes significant overhead on the downstream C-JDBC CPU and also degrades
system goodput several tens of percent (Section 3.2). We note that we have conducted similar
experiments on Emulab with much older hardware configuration and software versions [56], and
the same conclusion has been reached as in our new VMware ESXi cluster environment, given all
the hardware and software upgrades since 2011.

To achieve a good soft resource allocation, we provide a novel model of n-tier systems with soft
resources as explicit components, upon which we described a practical soft resource allocation
algorithm followed by extensive validation experiments (Section 4). More generally, to truly scale
complex systems such as n-tier applications, soft resources have to be treated as first-class citizens
(analogous to hardware) during the system scaling management.
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