
TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36

Mitigating Tail Response Time of n-Tier Applications: 1

The Impact of Asynchronous Invocations 2

QINGYANG WANG and SHUNGENG ZHANG, Louisiana State University–Baton Rouge, USA

YASUHIKO KANEMASA, Fujitsu Laboratories Ltd., Japan

CALTON PU, Georgia Institute of Technology, USA

3
Consistent low response time is essential for e-commerce due to intense competitive pressure. However, prac- 4
titioners of web applications have often encountered the long-tail response time problem in cloud data centers 5
as the system utilization reaches moderate levels (e.g., 50%). Our fine-grained measurements of an open 6
source n-tier benchmark application (RUBBoS) show such long response times are often caused by Cross-tier 7
Queue Overflow (CTQO). Our experiments reveal the CTQO is primarily created by the synchronous nature 8
of RPC-style call/response inter-tier communications, which create strong inter-tier dependencies due to the 9
request processing chain of classic n-tier applications composed of synchronous RPC/thread-based servers. 10
We remove gradually the dependencies in n-tier applications by replacing the classic synchronous servers 11
(e.g., Apache, Tomcat, and MySQL) with their corresponding event-driven asynchronous version (e.g., Nginx, 12
XTomcat, and XMySQL) one-by-one. Our measurements with two application scenarios (virtual machine 13
co-location and background monitoring interference) show that replacing a subset of asynchronous servers 14
will shift the CTQO, without significant improvements in long-tail response time. Only when all the servers 15
become asynchronous the CTQO is resolved. In synchronous n-tier applications, long-tail response times 16
resulting from CTQO arise at utilization as low as 43%. On the other hand, the completely asynchronous 17
n-tier system can disrupt CTQO and remove the long tail latency at utilization as high as 83%.

Q1

18

CCS Concepts: • General and reference → Performance; Measurement; Experimentation; Design; • In- 19
formation systems → E-commerce infrastructure; 20

Additional Key Words and Phrases: n-tier systems, asynchronous, performance, scalability, cloud computing 21

ACM Reference format: 22
Qingyang Wang, Shungeng Zhang, Yasuhiko Kanemasa, and Calton Pu. 2019. Mitigating Tail Response Time 23
of n-Tier Applications: The Impact of Asynchronous Invocations. ACM Trans. Internet Technol. 19, 3, Article 24
36 (July 2019), 25 pages. 25
https://doi.org/10.1145/3340462 26

This research has been partially funded by National Science Foundation by CISE’s CNS (Grants No. 1566443 and No.

1421561), SAVI/RCN (Grants No. 1402266 and No. 1550379), CRISP (Grant No. 1541074), SaTC (Grant No. 1564097) programs,

an REU supplement (Grant No. 1545173), Louisiana Board of Regents under Grant No. LEQSF (2015-18)-RD-A-11, and gifts,

grants, or contracts from Fujitsu, HP, Intel, and Georgia Tech Foundation through the John P. Imlay, Jr. Chair endowment.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science Foundation or other funding agencies and companies mentioned

above.

Authors’ addresses: Q. Wang and S. Zhang, Louisiana State University–Baton Rouge, USA; emails: {qwang26, szhan45}@

lsu.edu; Y. Kanemasa, Fujitsu Laboratories Ltd., Japan; email: kanemasa@jp.fujitsu.com; C. Pu, Georgia Institute of Tech-

nology, USA; email: calton@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/07-ART36 $15.00

https://doi.org/10.1145/3340462

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://doi.org/10.1145/3340462
mailto:permissions@acm.org
https://doi.org/10.1145/3340462
Shungeng Zhang

Shungeng Zhang
Authors’ addresses: Q. Wang and S. Zhang, School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, 3325 Patrick F. Taylor Hall, LA 70803, USA; emails: {qwang26, szhan45}@ lsu.edu; Y. Kanemasa, FUJITSU LABORATORIES LTD., 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan; email: kanemasa@jp.fujitsu.com; C. Pu, College of Computing, Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA 30332-0765, USA; email: calton@cc.gatech.edu.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:2 Q. Wang et al.

1 INTRODUCTION27

Long-tail response time problem occurs when a large portion of normal requests finishing within28
milliseconds co-exists with a small percentage of requests with very long response time (VLRT).29
Long-tail response time is a big concern for e-commerce: an Amazon study [25] reported that30
every increase of 100ms in page loading time is positively correlated with 1% decrease in sales.31
Nevertheless, long-tail response time is a persistent challenge: practitioners in recent years con-32
tinuously report their real-world problems [12, 13, 24, 27, 29, 61], despite its long history. Long-tail33
response time is a non-trivial puzzle: VLRT requests usually start to appear at moderate average34
system utilization (e.g., 50%). Long-tail response time can also be an elusive target: Executing the35
VLRT requests by themselves would only take milliseconds.36

In this article, we study an important class of long-tail response time problems in n-tier systems,37
specifically, VLRT requests caused by dropped packets because of complex cross-tier interactions38
among classic servers that communicate through Remote Procedure Calls (RPC). Our focus on39
distributed system phenomena complements previous research on single servers [14, 41, 51, 52, 59].40
We further restrict our focus to VLRT requests at moderate utilization levels, which distinguishes41
our study from long-tail response time due to skewed workloads [22]. Our study supports Mogul’s42
argument [36] that the performance of a distributed system can be much more complicated than43
the behavior of a single server because of the complex dependencies among components.44

A fine-grained timeline analysis shows that the following sequence of events occur when VLRT45
requests appear due to dropped packets at moderate average system utilization. (1) The episode46
of resource millibottlenecks, which lasts for a very short lifespan, for example, CPU saturated for47
tens to hundreds of milliseconds due to transient events such as interference of co-located VMs.48
(2) Millibottleneck slows down or stops the server processing temporarily, triggering a process49
called Cross-tier Queue Overflow (CTQO) up and/or down the n-tier pipeline. (3) When a server’s50
waiting requests grow beyond its maximum system queue capacity (e.g., worker thread pool is ex-51
hausted and the TCP buffer overflows), further incoming packets are dropped. (4) VLRT requests52
appear, because the dropped packets take several seconds to retransmit. This relatively long se-53
quence of dependencies and events reveal the non-trivial nature of this class of VLRT requests.54
Furthermore, the VLRT requests are no longer so elusive, since now they can be reliably repro-55
duced and analyzed by our fine-grained timeline analysis.56

The first contribution of this article is the characterization of the VLRT requests caused by57
CTQO, which is a significant distributed system phenomenon with a large performance impact.58
Specifically, CTQO consists of two non-trivial components. The first component is the millibottle-59
necks that initiate CTQO. Our previous research [42, 56, 57] has reported millibottlenecks caused60
by Java garbage collection (Java GC), CPU dynamic voltage and frequency scaling (DVFS), and61
memory thrashing. These varied root causes of millibottlenecks make the solution to the problem62
more difficult and unlikely to be done systematically. In this article, we show two more case studies63
of millibottlenecks caused by interference of VM co-location and server log flushing. The second64
component is the cross-tier dependencies resulting from the synchronous RPC-style call/response65
communication between nodes. Such dependencies make a transient queuing effect to be propa-66
gated and amplified between different servers, leading to potential queue overflow and long re-67
sponse time requests. This makes us rethink the adoption of RPC-style synchronous invocations,68
despite its syntactic simplicity, in complex distributed systems such as e-commerce when the tail69
latency becomes a significant concern.70

The second contribution is a systematic experimental evaluation of event-driven asynchronous71
servers in mitigating or preventing CTQO, originally created by the strong dependencies from the72
RPC-style servers in n-tier systems. Concretely, we replace the RPC-style synchronous servers73
in a three-tier web system with their asynchronous counterparts one by one. For example, the74

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:3

original thread-based Apache web server and Tomcat application server are replaced with the 75
event-based Nginx and XTomcat, respectively. The thread-based MySQL is also replaced with a 76
simulated event-based asynchronous MySQL by turning on a lightweight queue feature supported 77
by the MySQL InnoDB storage engine. Our experimental results show that replacing either an 78
upstream or a downstream synchronous server can only partially remove the CTQO problem. On 79
the other hand, at the moderate to high utilization levels, the CTQO problem and the associated 80
VLRT requests are effectively resolved only if all the thread-based servers are replaced with their 81
asynchronous version. 82

The rest of the article is organized as follows. Section 2 shows the class of long-tail response 83
time problems resulting from dropped packets. Section 3 experimentally illustrates the sequence of 84
causal events that start from millibottlenecks and end in dropped packets due to CTQO. Section 4 85
describes the methodical evaluation of a three-tier system by replacing each component server 86
with its asynchronous version. Section 5 summarizes the related work and Section 6 concludes the 87
article. 88

2 LONG-TAIL RESPONSE TIME DUE TO DROPPED PACKETS 89

The long-tail response time problem in n-tier web-facing applications has received increasing at- 90
tention from practitioners and researchers in recent years [12, 24, 29, 61]. It is an interesting and 91
challenging problem, because it consists of the co-existence of a majority of very fast responses 92
(order of milliseconds) with a small number (but non-negligible) of very long response time (VLRT) 93
requests that typically lasts several seconds. There are several known causes of VLRT requests, in- 94
cluding skewed work requirements and dropped packets. In the class of long-tail response time 95
problems due to skewed work requirements [22], some requests are significantly heavier (e.g., re- 96
quests with more complicated business logic) than others and the long-tail response time is caused 97
by such heavy requests. Such a class of long-tail response time problems is outside the scope of this 98
article, since it saturates a server (higher than moderate utilization) and requires the (re)allocation 99
of additional resources. As a concrete example, web search queries have simple syntax and seman- 100
tics, but the queries with popular terms have several orders of magnitude more matches; without 101
significant additional resources, such queries may become VLRT requests. 102

Instead of skewed work requirements, we focus on the class of VLRT requests resulting from 103
dropped packets at moderate system utilization. Such class of VLRT requests are challenging and 104
interesting because of two apparently contradictory factors. First, the VLRT requests in this class 105
are not intrinsic long requests; they only take milliseconds to execute when run by themselves. 106
So this class of VLRT requests are caused by either waiting or queuing somewhere in the system. 107
Second, this class of VLRT requests appear when the system is at moderate average system utiliza- 108
tion levels (e.g., 50%), so queuing is usually considered mild and would not cause VLRT requests 109
based on the classic queuing models. 110

Our experimental results show that VLRT requests caused by dropped packets help form a long- 111
tail multi-modal response time distribution. For example, Figure 1 shows the response time distri- 112
bution of a three-tier benchmark web application at three different workload levels. The detailed 113
experimental setup is in Appendix A. This figure shows that most requests finish within a few 114
hundreds of milliseconds, however, a few clusters of long requests start at 3, 6, and 9s, illustrating 115
the tail latency of the target benchmark application. Our previous results [56, 57] have shown that 116
these long requests clusters at certain response times are due to the TCP retransmission mecha- 117
nism for the dropped TCP packets (the minimum TCP retransmission time-out is 1s [43]). 118

Figure 1 also shows that VLRT requests appear at the system resource utilization as low as 43%. 119
So it is clear that those VLRT requests are not caused by persistent resource bottlenecks. As the av- 120
erage system utilization continues to increase, the VLRT requests occur more frequently as shown 121

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:4 Q. Wang et al.

Fig. 1. System response time distribution (semi-log graph) as system workload increases. The long-tail re-

sponse time problem appears far before the system saturation.

Fig. 2. Illustration of cross-tier dependency model under millibottlenecks. A millibottleneck occurs (step

ctd0) in Server1 and makes Server1 queue full (step ctd1), results in queue overflow towards upstream until

Servern (step ctdn), eventually leading to drops of requests in Servern and VLRT requests.

in Figures 1(b) and 1(c). In fact, the percentage of VLRT requests over the total number of finished122
requests already exceeds 5%, which is considered as a severe violation of the Service Level Agree-123
ments (SLAs) by most e-commerce websites [19, 25, 31]. In the next section, we will study two cases124
illustrating that millibottlenecks are linked to the dropped packets and the resulting VLRT requests.125
Concretely, a millibottleneck will initiate Cross-tier Queue Overflow (CTQO), a sequence of causal126
events that will lead to VLRT requests because of dropped packets and TCP retransmissions.127

3 CROSS-TIER QUEUE OVERFLOW BY MILLIBOTTLENECKS128

3.1 Cross-tier Dependency Model129

We start our discussion by defining a cross-tier dependency model that starts from millibottle-130
necks, but independent of specific causes of millibottlenecks. This is important, because several131
very distinct causes of millibottlenecks have been found, including system software (e.g., JVM132
garbage collector [47], at architecture level (e.g., Dynamic Voltage and Frequency Scaling in anti-133
synchrony with a bursty workload [56]), and two other classes of millibottlenecks described in the134
following sections: CPU millibottlenecks due to VM consolidation, and I/O millibottlenecks due to135
log flushing. Despite the variety of the causes, the sequence of events that follow millibottlenecks136
is the same. We call such a sequence a Cross-tier Dependency Sequence, because its components137
are tied together by strong dependencies between the synchronous servers due to their RPC-style138
request-response communications.139

A Cross-tier Dependency Sequence (denoted by steps ctd0, . . . , ctdn in an n-tier system) starts140
from a millibottleneck over some concrete resource (e.g., CPU or I/O) in Server1, as shown in141
Figure 2. (The millibottleneck is called step ctd0 in recognition of its originating role, but it142
continues through the entire sequence, overlapping with the remaining steps ctd1 through ctdn .)143
The resource saturation in ctd0 causes Server1’s threads to queue up (step ctd1), waiting for the144

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:5

Fig. 3. A simple upstream CTQO illustration between Apache and Tomcat. A millibottleneck occurs in Tom-

cat at t1. Tomcat queue fills up at t2. Then all types of requests are pushed back to queue in the upstream

Apache at t3, causing queue amplification and overflow in Apache.

bottlenecked resource. In typical web-facing applications, the queues that store the waiting 145
requests consist of Server1’s thread pool (size determined by its configuration parameter, e.g., 150) 146
and TCP buffer (default size of 128). We denoted MaxSysQDepth as the total number of requests that 147
can be queued in all those queues. During a millibottleneck, quick arrival of jobs (typically on the 148
order of several thousand per second in web-facing applications with a response time of a few mil- 149
liseconds) can exceed MaxSysQDepth(Server1). This “filling up” of all the local request-handling 150
queues up to MaxSysQDepth(Server1) forms the step ctd1 of Cross-tier Dependency Sequence. 151

Step ctd1 ends when the number of queued requests exceeds MaxSysQDepth(Server1) and 152
Server1 becomes unable to accept new requests from the upstream Server2. In a classic RPC-style 153
implementation, Server2 blocks and occupies a thread for each pending request. The “filling up” 154
of the queues in Server2 forms the step ctd2. As the millibottleneck progresses, Server2 fills up 155
its queues (ctd2) and the next-in-line upstream Server3 starts to see its threads becoming blocked 156
(step ctd3). The process continues upstream (to step ctdn) until one of the Serveri (where 1 ≤ i ≤ n, 157
but often i = n) starts to drop packets, resulting in VLRT requests. We note tens of thousands or 158
even more requests may be processed per second in a large size of system. Our model still applies 159
to such large systems as long as each server adopts synchronous/blocking RPC for inter-server 160
communication. Concretely, once a server experiences a millibottleneck, requests are pushed back 161
to queue in the upstream servers along the chain of dependencies, causing queue amplification 162
and overflow. 163

This process of a growing Cross-tier Dependency Sequence toward upstream, eventually leading 164
to VLRT requests is called upstream CTQO (Cross-tier Queue Overflow). Figure 5(b) shows that the 165
Apache queues (Server2 in ctd2) grow much longer than those in Tomcat (Server1 in ctd1). This 166
is due to upstream CTQO shown in Figure 3. At time t1, Tomcat millibottleneck starts (ctd0). At 167
t2, hundreds of requests arrive at Tomcat (ctd1) and reach MaxSysQDepth(Tomcat), starting the 168
ctd2 in Apache. At t3, both the dynamic and static requests (e.g., images) start to queue up in 169
Apache (ctd2), which can grow significantly longer than Tomcat. This is shown in Figure 6(a), by 170
the categorization of queued requests in SysSteady-Apache during the same 20s timeframe as in 171
Figure 5(b). 172

To illustrate the Cross-tier Dependence Sequence in upstream CTQO, our experiments use a nor- 173
mal three-tier configuration of RUBBoS [40], a representative n-tier application benchmark mod- 174
eled after Slashdot. The RUBBoS workload is a set of emulated clients sending various HTTP re- 175
quests (both static and dynamic) generated by a Markov-chain user behavior model for web-facing 176

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:6 Q. Wang et al.

Fig. 4. Illustration of VM Consolidation setup: SysSteady Tomcat shares the same CPU core with SysBursty

MySQL.

e-commerce applications. The smallest system configuration consists of one Apache HTTP server,177
one Tomcat Application Server, and one MySQL database server, with more details in Appendix A.178

The first illustrative example of milli-dependency sequences is created by a CPU millibottleneck179
created by interferences among consolidated VMs. Sharing infrastructure resources through VM180
consolidation is a common practice for cloud computing platforms to reduce operational cost and181
gain high return on investment (RoI) [5, 17, 23, 33]. A typical profitable scenario of consolidation is182
to co-locate multiple under-utilized VMs on the same physical machine by following certain rules183
such as the classic bin-packing algorithm [21]. However, there is potential interference among VMs184
when high CPU demand from multiple VMs coincide [37], e.g., in naturally bursty [34] web-facing185
applications.186

We co-locate two RUBBoS three-tier applications, named SysSteady and SysBursty (Figure 4),187
in our VM consolidation experiments. For clarity of analysis, there is only one shared node, with188
the SysSteady Tomcat co-located with SysBursty MySQL and they share the same CPU core. Other189
servers of each system run on dedicated physical machines. SysSteady serves 7,000 normal RUBBoS190
client users while SysBursty serves only 400 client users but with a burst index 100 times higher191
(see Reference [35]) than SysSteady. Such a bursty workload is common in web-facing applications192
(sometimes referred to as the “Slashdot” effect [1]).193

3.2 CPU Millibottleneck Caused by VM Co-location194

Figure 5(a) shows episodes of CPU millibottlenecks (ctd0) due to the interference between the two195
co-located VMs at 2, 5, 7–9, and 12s. These millibottlenecks cause queuing in SysSteady Tomcat196
(ctd1), which leads to even longer queue in Apache (ctd2) due to Cross-tier Queue Amplification, as197
shown in Figure 5(b). The Cross-tier Queue Amplification happens, because every queued request198
in Tomcat consumes one thread in Tomcat and one connection between Apache and Tomcat. We199
note that queuing in Apache happens purely due to the waiting for Tomcat, since none of Apache200
resources is saturated.201

For millibottlenecks of moderate length, the growth of Apache queues (ctd2) leads to queue202
overflow (the dashed line in Figure 5(b) indicates Apache runtime queue limit) and dropped pack-203
ets. These dropped TCP packets, being retransmitted after a certain amount of time (3s for the first204
retransmission in Redhat kernel 2.6.32), lead to the VLRT requests as shown in Figure 5(c). Fig-205
ure 5(b) shows two levels of queue overflow. The first level queue overflow occurs at 2, 5, 10, 15s,206
because the queued requests reach to the limit 278 (sum of thread pool size 150 and TCP buffer207
size 128). Once queued requests in Apache exceed such a limit, new incoming requests will be208
dropped and retransmitted, resulting in long requests. The second-level queue overflow occurs at209
about 17s. This happened when all the worker threads in the first process are occupied, and during210
the creation of a second Apache process with an additional thread pool of size 150. However, new211
incoming requests still get dropped when the second Apache process is in the initiation period.212

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:7

Fig. 5. Illustration of millibottlenecks in Tomcat causing upstream CTQO in the VM consolidation

experiments.

This is because initiating a new process with a large size thread pool consumes non-trivial CPU 213
resources and blocks Apache for a short period of time (tens of milliseconds). 214

Figure 5(b) shows that the Apache queues (ctd2) grow much longer than those in Tomcat (ctd1). 215
This occurs because of the Cross-tier Queue Amplification as illustrated in Figure 3. At t1 time 216
marker, Tomcat millibottleneck starts (ctd0). At t2, hundreds or even thousands of requests rush to 217
Tomcat and fill up the Tomcat queue (ctd1), blocking incoming requests. At t3, Cross-tier Queue 218
Amplification then causes all types of requests to queue in the upstream Apache (ctd2), including 219
both the dynamic and static requests. Dynamic requests, regardless of being light and heavy,1 are 220
indistinguishably queued in FIFO order in Apache, causing longer queues. Since it is common that 221
a web server serves more static/local requests (e.g., images, HTML, CSS) than dynamic requests, 222
the queueing effect in Apache can be significantly amplified. This is shown in Figure 6(a), by 223
the breakdowns of queued requests in SysSteady-Apache during the same 20s timeframe as in 224
Figure 5(b). All types of requests, including the static “Browse” requests, are indeed queued in 225
Apache during ctd2. 226

1A dynamic request being heavier than a light one can be attributed to a heavy request consuming significantly more

system resources than the light one.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:8 Q. Wang et al.

Fig. 6. Categorization of queued requests in SysSteady-Apache during the same timeframe of Figure 5(b).

Three (out of eight) representative request types show that both static and dynamic requests are queued in

Apache during a millibottleneck in Tomcat.

3.3 I/O Millibottleneck Caused by Log Flushing227

The second example illustrating the milli-dependency sequences is background monitoring ac-228
tivities common in large scale distributed systems. Our experiments use one Apache server, one229
Tomcat, and one MySQL (see Figure 15(c)). We add three more CPU cores to the original Tom-230
cat VM (now totally four cores) to avoid the CPU bottleneck in Tomcat. This upgrade of Tomcat231
allows millibottlenecks to appear in MySQL. Specifically, the monitoring tool collectl [45] mon-232
itors (at fine granularity—every 50ms) the utilization of system sources such as CPU, memory,233
network, disk I/O, and process runtime state in each server. collectl has a control knob for users234
to specify how frequent to flush the accumulated measured data from memory to disk (no dedi-235
cated core for disk I/O activities). We set the time interval to 30s, a common choice that reduces236
the monitoring interference with the running application.237

Figure 7(a) shows millibottlenecks in MySQL (ctd0) in red high peaks at 10, 40, and 70s (30s238
intervals). These are due to collectl flushing monitoring data from memory to disk, with I/O wait239
for MySQL reaching 100%. These transient CPU I/O waits create millibottlenecks that lead to other240
threads blocking for CPU (ctd1). When all of the MySQL threads become blocked, the upstream241
server (Tomcat) starts to block threads and see growing queues (ctd2) due to Cross-tier Queue-242
amplification, shown in Figure 7(b). The queues in Tomcat, when long enough, cause further Cross-243
tier-queue Amplification to Apache (ctd3). Once the queued requests in Apache consume all the244
queue slots (threads and TCP buffer), packets are dropped and VLRT requests are created by TCP245
retransmission as shown in Figure 7(c).246

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:9

Fig. 7. I/O millibottlenecks in MySQL causing upstream CTQO in the log flushing scenario.

4 EVALUATION OF ASYNCHRONOUS INVOCATION IN N-TIER SYSTEMS 247

4.1 Evaluation Method 248

The experiments in Section 3 show both the variety and the importance of Cross-tier Queue Over- 249
flow in the presence of inter-dependent nodes. Since the dependencies created by synchronous 250
RPC-style request-response are a necessity for upstream CTQO, we proceed to remove these de- 251
pendencies by replacing the RPC request-response with asynchronous invocation and evaluate the 252
interactions between CTQO and VLRT requests. 253

We acknowledge that since Birrell and Nelson’s classic 1984 paper [7], RPC has been widely 254
used to build distributed systems such as n-tier applications. However, our experimental evidence 255
shows that system designers and implementers should consider a return to asynchronous com- 256
munications that preceded RPC when upstream CTQO and long-tail response time become a real 257
problem. The experiments also reveal some of the underlying complexities of the problem. For 258
instance, replacing one server in the chain (e.g., Nginx instead of Apache) reduces but does not 259
eliminate all the long-tail response time problems. 260

We will use the same three-tier application benchmark of Section 3 as a baseline, but replace 261
each of the three thread-based RPC-style servers (Apache, Tomcat, and MySQL) one-by-one and 262
evaluate the performance impact of asynchronous invocation instead of RPC. Figure 8 shows the 263
three asynchronous servers (Nginx [38], XTomcat [4, 16], and XMySQL) in the final configuration. 264
More details regarding the asynchronous servers and benchmark application implementation can 265

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:10 Q. Wang et al.

Fig. 8. Illustration of the asynchronous three-tier system architecture. We use Nginx, XTomcat, and XMySQL

to replace the original thread-based RPC-style Apache, Tomcat, and MySQL, respectively.

be found in the Appendices B and C. For clarity of presentation, we use the term NX to denote the266
number of asynchronous servers in a set of experiments.267

4.2 NX=1, Replacing Apache with Nginx268

Our study in Sections 3.2 and 3.3 shows that Apache causes VLRT requests by dropping packets269
because of upstream CTQO, thus, a natural hypothesis is that we may solve the upstream CTQO270
problem by replacing just the thread-based RPC-style Apache with an asynchronous web server.271
The answer turns out to be partially true. The asynchronous event-based web server such as272
Nginx [38] won’t drop packets indeed, however, the problem moves to the downstream tiers; for273
example, the synchronous Tomcat and MySQL start to drop packets and the long-tail response274
time problems arise again.275

We make two changes of the experimental setup compared to that in the previous Section 3.276
First, to better control the occurrence of millibottlenecks in our VM consolidation experiments277
(Section 3.2), we modified SysBursty workload generator to launch specific request bursts at fixed278
intervals. For example, the workload generator launches a burst of 400 ViewStory requests at 15s279
intervals, which will trigger CPU millibottlenecks with an approximately 300ms length. Second,280
we replace the thread-based RPC-style Apache with the asynchronous Nginx to effectively re-281
move the queue limit of MaxSysQDepth(Apache). The concurrent request processing in Nginx is282
no longer limited by its thread pool size, but a lightweight queue with size LiteQDepth in Nginx,283
where LiteQDepth�MaxSysQDepth(Apache). This change indeed enables Nginx to route all the284
requests to the downstream Tomcat, thus shifting the problem downstream. Under the assumption285
that the web server is not the bottleneck (which is the case of the RUBBoS benchmark), the down-286
stream Tomcat and MySQL potentially encounter millibottlenecks at a moderate utilization level.287

The first problem that can arise is due to millibottlenecks in Tomcat. Figure 9 shows the exper-288
imental results of millibottlenecks in SysSteady Tomcat (co-located with the MySQL VM of Sys-289
Bursty as in Figure 4). Figure 9(a) shows the SysSteady Tomcat and MySQL CPU utilization (we290
omit the CPU utilization of Nginx, since it is always less than 40%). We can see several millibottle-291
necks in SysSteady Tomcat (at time mark 7, 26, 42, 57, and 72s), due to the co-located MySQL VM292
of SysBursty processing a burst of requests.2 The millibottlenecks in Tomcat cause Tomcat queue293
to grow as shown in Figure 9(b). Since Nginx is asynchronous, Nginx will route all the requests294
it receives (up to LiteQDepth(Nginx)) to the downstream Tomcat, which can hold concurrent re-295
quests up to 293 (sum of Tomcat thread pool size 165 and TCP buffer size 128 by default). As the296
new coming requests from Nginx overwhelm the queues in downstream Tomcat (in a process we297
call downstream CTQO) packets are dropped, and become VLRT requests as shown in Figure 9(c).298

The second problem that can arise is originated from millibottlenecks in MySQL. Figure 10299
shows the millibottlenecks in MySQL VM of SysSteady, caused by bursts from the co-located300

2The sudden drop of MySQL CPU in SysBursty is due to Tomcat not sending requests downstream because of the

millibottleneck.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:11

Fig. 9. NX=1, Nginx-Tomcat-MySQL configuration when millibottlenecks occur in Tomcat. No upstream

CTQO observed in Nginx, but queue overflow happens in Tomcat during the millibottlenecks.

MySQL VM of SysBursty. Figure 10(a) shows the SysSteady MySQL CPU utilization, with mil- 301
libottlenecks (ctd0) at time marks 8, 26, and 45s. These millibottlenecks cause MySQL to queue 302
(Figure 10(b)); the queue size of which is up to 50 (equal to DB connection pool size in Tomcat). 303
When the queued requests exceed MaxSysQDepth(MySQL) in step ctd1, the synchronous Tom- 304
cat starts to queue the incoming requests (ctd2) due to the upstream CTQO between Tomcat and 305
MySQL. When the arriving requests (up to LiteQDepth(Nginx)) exceed queue limit of Tomcat, 306
excess requests will be dropped, leading to VLRT requests because of TCP retransmission (Fig- 307
ure 10(c)). This process between MySQL and Tomcat forms upstream CTQO, a similar process to 308
the one we introduced between Apache and Tomcat (see Figure 5(c)). 309

These experiments show that replacing the thread-based RPC-style Apache with the event- 310
driven asynchronous Nginx removed the front-most web server tier from the chain of Cross-tier 311
dependencies. However, new problems arise downstream. First, when Tomcat encounters milli- 312
bottlenecks, the asynchronous Nginx is able to route excess requests (up to LiteQDepth(Nginx)) 313
to the downstream Tomcat, causing downstream CTQO, since LiteQDepth(Nginx) � MaxSysQ- 314
Depth(Tomcat). The excess requests (LiteQDepth(Nginx) −MaxSysQDepth(Tomcat)) are dropped, 315
becoming VLRT requests due to TCP retransmission. Second, when MySQL encounters millibot- 316
tlenecks, they may cause upstream CTQO between MySQL and Tomcat, in a way analogous to 317
the millibottlenecks in Tomcat causing upstream CTQO in Apache (Sections 3.2 and 3.3). 318

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:12 Q. Wang et al.

Fig. 10. NX=1, Nginx-Tomcat-MySQL configuration when millibottlenecks occur in MySQL. Upstream

CTQO observed between MySQL and Tomcat during the millibottleneck periods.

4.3 NX=2, Replacing Tomcat with XTomcat319

After we replace Apache with Nginx in the previous section, the following step is to replace the320
thread-based RPC-style Tomcat with an event-based asynchronous application server. Without a321
popular asynchronous application server, we transform the original thread-based Tomcat to its322
asynchronous version called XTomcat. Our focus here is to evaluate the impact of XTomcat on323
CTQO, so we put the transformation of Tomcat into XTomcat in Appendix B.324

We want to know whether using both asynchronous Nginx and XTomcat in a simple three-325
tier system will address the CTQO problem and avoid VLRT requests. The answer turns out to be326
partially true again. Our experimental results show the upstream and downstream CTQO between327
Nginx and XTomcat are indeed fixed. However, downstream CTQO continues to appear in MySQL.328

The first case of downstream CTQO appears when MySQL encounters millibottlenecks, created329
by co-locating MySQL VM of SysSteady with the MySQL VM of SysBursty. Figure 11(a) shows the330
SysSteady MySQL and SysBurst MySQL CPU utilization during a 60s time period. The millibot-331
tlenecks in SysSteady MySQL appear at time mark 5, 22, 38, and 56s, and make MySQL to queue332
(Figure 11(b)). Since MySQL queue limit is 228 (sum of thread pool size 100 and TCP buffer size333
128), the excess requests from Nginx and XTomcat to the downstream MySQL could cause requests334
to drop, generating VLRT requests as shown in Figure 11(c).335

The second case of downstream CTQO appears when XTomcat encounters millibottlenecks,336
created by co-locating XTomcat VM of SysSteady with MySQL VM of SysBursty (Figure 12). The337

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:13

Fig. 11. NX=2, Nginx-XTomcat-MySQL configuration when millibottlenecks occur in MySQL. No upstream

CTQO observed in XTomcat and Nginx. However, downstream CTQO observed when queued requests in

MySQL exceeds MaxSysQDepth (MySQL).

CPU utilization of XTomcat and MySQL (Nginx omitted due to low utilization) are shown in Fig- 338
ure 12(a). We can see millibottlenecks in XTomcat make XTomcat to queue at time marks 8, 24, 339
and 39s, shown in Figure 12(b). When a millibottleneck in XTomcat ends, all the queued requests 340
in XTomcat are quickly routed to the downstream MySQL (Figure 12(b)). Since XTomcat is able to 341
store up to LiteQDepth(XTomcat) requests, if LiteQDepth(XTomcat) > MaxSysQDepth(MySQL), 342
then we have downstream CTQO with the excess packets dropped, creating VLRT requests. 343

The downstream CTQO between XTomcat and MySQL can happen in realistic workloads. Sup- 344
pose XTomcat has a millibottleneck that lasts 0.4s, and the average request arrival rate for the 345
application is 1,000 req/s. XTomcat will store 400 requests during the millibottleneck, since Lite- 346
QDepth(XTomcat) is large (e.g., 65,535 occupied TCP port numbers). In this case, 400 requests will 347
be quickly pushed to MySQL, causing downstream CTQO and dropped requests when the number 348
of inflowing requests is larger than MaxSysQDepth(MySQL), which is 228 (Figure 12(c)). 349

4.4 NX=3, Replacing MySQL with XMySQL 350

We further evaluate CTQO after we replace the last synchronous server in the system—MySQL 351
with XMySQL, an asynchronous event-based database server. We want to know whether replacing 352
all the component servers in the system with their asynchronous versions (e.g., Nginx, XTomcat, 353
and XMySQL) will address CTQO and avoid VLRT requests. Our experimental results show that 354

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:14 Q. Wang et al.

Fig. 12. NX=2, Nginx-XTomcat-MySQL configuration when millibottlenecks occur in XTomcat. Downstream

CTQO observed when batched requests are flushed from XTomcat to MySQL, causing queue overflow in

MySQL and dropped packets.

the CTQO (both upstream and downstream) can be prevented once all the servers in the three-tier355
system become asynchronous, thus avoid VLRT requests regardless of millibottlenecks occurring356
in any server. XMySQL simulates an asynchronous MySQL by adopting the InnoDB storage engine357
of MySQL, which supports a lightweight queue to store the waiting queries when the thread pool358
is fully utilized. Concretely, we configured 8 threads in the InnoDB storage engine to process359
active queries, and an additional lightweight queue with a size of 2,000 for waiting queries. Such360
a configuration is large enough for LiteQDepth(XMySQL).361

We evaluate the asynchronous three-tier system using the same CPU millibottlenecks scenar-362
ios as we described in the VM co-location experiments in Section 3.2 and Figure 4. The thread-363
based RPC-style component servers (Apache-Tomcat-MySQL) in the original system SysSteady364
are replaced with their asynchronous versions (Nginx-XTomcat-XMySQL). We also changed the365
RUBBoS benchmark application to adopt asynchronous invocation for inter-tier communication.366

First, we evaluate the case when millibottlenecks occur in XTomcat. Figure 13(a) shows367
SysSteady XTomcat encountered CPU millibottlenecks at time marks 4, 13, and 35s, causing368
XTomcat to queue (Figure 13(b)). This figure also shows that the XTomcat queue and Nginx queue369
almost overlap with each other, suggestion no upstream CTQO between the two tiers. In addition,370
Nginx, XTomcat, and XMySQL have very large LiteQDepth (e.g., 65,535 and 2,000, respectively),371

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:15

Fig. 13. NX=3, Nginx-XTomcat-XMySQL configuration when millibottlenecks occur in XTomcat. No up-

stream or downstream CTQO observed in the system.

thus avoiding downstream CTQO. Since there is no CTQO either upstream or downstream, we 372
see no dropped requests, thus no VLRT requests. 373

Second, we evaluate the case when millibottlenecks occur in XMySQL. We run the same Log 374
Flushing experiments (I/O millibottlenecks) as described in Section 3.3. We only change the pre- 375
vious synchronous version of the three-tier system to its asynchronous counterpart. Figure 14(a) 376
shows the CPU I/O wait of each tier. This figure shows XMySQL encounters I/O millibottlenecks 377
at every 30s (time marks 13, 43, and 73s). Figure 14(b) shows the runtime queue of XMySQL, 378
XTomcat and Nginx almost overlap, indicating no upstream CTQO between them. Also, large 379
LiteQDepth(Nginx), LiteQDepth(XTomcat), and LiteQDepth(XMySQL) prevent the downstream 380
CTQO, thus there are no dropped packets. 381

4.5 Discussion of Alternative Designs 382

A straightforward fix for the thread-based RPC-style servers is to increase the MaxSysQDepth, 383
for example, by increasing the worker thread pool size. This simple fix might mitigate or prevent 384
the CTQO problems described in Section 3. However, increasing the thread pool size to thou- 385
sands causes many other performance issues as discussed before [9, 26, 41, 58, 59]. Specifically, 386
over-allocated threads cause overhead coming from various system layers such as LLC miss, high 387
context switches, and scheduling overhead. Previous work [54, 59] has shown that significant mul- 388
tithreading overhead can be introduced even with tens to a few hundred threads, depending on the 389

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:16 Q. Wang et al.

Fig. 14. NX=3, Nginx-XTomcat-XMySQL configuration when millibottlenecks occur in XMySQL. No up-

stream or downstream CTQO is observed in the system during the I/O millibottlenecks.

type of servers. In addition, over-allocated threads in Java-based servers also lead to non-linearly390
increased JVM garbage collection time resulting from high Memory footprint used for request391
processing [58].392

Another straightforward fix is to increase the default TCP buffer size (128 in Linux kernel 2.6.32),393
the second component of MaxSysQDepth. However, it is also a non-trivial task to choose a reason-394
able size for TCP buffer size, since the workload for web application is very bursty by nature [8].395
On the other hand, increasing network buffer sizes has been shown by the networking community396
to cause side effects such as bufferbloat [15], which causes long delivery latency.397

For completeness, we also ran experiments on a configuration where a synchronous server is398
upstream from an asynchronous server (Apache-XTomcat-MySQL). The experiments confirm the399
intuitive reasoning that by itself the XTomcat is unable to prevent completely either the upstream400
CTQO or the downstream CTQO. First, when millibottlenecks occur in XTomcat, upstream CTQO401
causes Apache to drop packets in a situation similar to Apache-Tomcat outlined in Section 3.2.402
Second, after the millibottleneck in XTomcat ends, a burst of requests released by XTomcat causes403
downstream CTQO in MySQL, which is the same case described in Section 4.3. For carefully cho-404
sen configurations, we can observe the simultaneous occurrence of both upstream CTQO and405
downstream CTQO (graphs omitted, since they are similar to cases already discussed).406

In practice, there is a management option of keeping the server utilization very low, e.g., the407
18% reported by Gartner [44]. This is an expensive way to avoid long-tail response time problems.408

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:17

Table 1. Summary of CTQO Observed

General case Upstream CTQO Downstream CTQO

Sync⇒ Sync

Apache from Tomcat (Section 3.2)
Misaligned configuration settings

(Section 4.5)
Apache and Tomcat from MySQL (Section 3.3)

Tomcat from MySQL (Section 4.2)

Async⇒ Sync No (Sections 4.3 and 4.4)
NginX⇒ Tomcat (Section 4.2)

XTomcat⇒MySQL (Section 4.3)

Async⇒ Async No (Sections 4.3 and 4.4) No (Section 4.4)

Sync⇒ Async Apache from XTomcat (Section 4.5) No (Section 4.5)

Our study shows that downstream CTQO may occur at low utilization levels if the configuration 409
settings are misaligned for two servers connected by RPC-style communications and sufficiently 410
high workload bursts happen. Consider a scale-out facility (either automated or manual) to keep 411
the utilization low when the load increases in a data center. Consider the 1/1/1 configuration in 412
our experiments and suppose a workload change (to heavy application server load) causes the 413
scale-out facility to add two Tomcat servers, increasing the MaxSysQDepth(Tomcat) from 200 to 414
600. Since the database tier is not the bottleneck, MaxSysQDepth(MySQL) remains unchanged, for 415
example, at 200. The resulting configuration could cause downstream CTQO when a sudden burst 416
of requests is successfully handled by the 3 Tomcat servers, sending many requests to MySQL that 417
may exceed MaxSysQDepth(MySQL) and lead to dropped packets. 418

Our experimental study of the 1-1-1 configuration is successful in exposing both upstream 419
and downstream CTQO in all four combinations of synchronous with asynchronous servers 420
(Section 4.6 shows a summary). The previous management option suggests that our study only 421
opened the door to many interesting possibilities in the design, implementation, and operations 422
of distributed applications in data centers, since the successful scale-out of one tier (Tomcat) may 423
lead to millibottlenecks and CTQO in other tiers that have low utilization. 424

4.6 Summary of Evaluation 425

We summarize the results from the detailed evaluation from Section 4.2 to Section 4.5 in Table 1. In 426
the left column, we classify the n-tier system components into four categories according to their 427
communications style and handling of messages: sync→sync, async→sync, async→async, and 428
sync→async. By sync, we mean a server with synchronous (blocking) message API, where each 429
message is handled by a thread from request to response. In contrast, async servers have an event- 430
based asynchronous message API, where messages are accepted and inserted into a lightweight 431
message queue for further processing by other threads. 432

For each category, the middle column contains the examples of upstream CTQO if applicable, 433
and the right column contains the examples of downstream CTQO if applicable. The table shows 434
that async upstream servers can remove upstream CTQO, and async downstream servers can re- 435
move downstream CTQO. Consequently, an n-tier pipeline consisting entirely of async servers 436
can avoid both upstream and downstream CTQO problems. 437

In Table 2, we summarize the causes for upstream and downstream CTQO found in our ex- 438
periments. The upstream CTQO is started by a millibottleneck in the downstream server (ctd0), 439
which causes the queues in an upstream synchronous server (ctd1) to exceed its MaxSysQDepth. 440
The downstream CTQO is started by an upstream server releasing bursts of requests and causing 441
a downstream synchronous server to exceed its MaxSysQDepth. Perhaps somewhat ironically, an 442
asynchronous upstream server is more capable of processing a larger number of requests within 443

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:18 Q. Wang et al.

Table 2. Summary on Causes of CTQO

Upstream CTQO Downstream CTQO

Causes
Millibottlenecks in downstream server cause
upstream sync server to drop packets when

MaxSysQDepth overflows

Bursts of requests from upstream server cause
downstream sync server to exceed its

processing capacity + MaxSysQDepth overflow

Examples

Apache from Tomcat (Section 3.2)
Apache and Tomcat from MySQL (Section 3.3)

Tomcat from MySQL (Section 4.2)
Apache from XTomcat (Section 4.5)

NginX⇒ Tomcat (Section 4.2, during
millibottleneck in Tomcat)

XTomcat⇒MySQL (Section 4.3, after
millibottleneck in XTomcat)

a short window, and thus more likely to cause downstream CTQO in a synchronous server (cases444
studied in Sections 4.2 and 4.3).445

5 RELATED WORK446

In latency sensitive web applications (e.g., 99th or even 99.9th percentile latency) [2, 3, 12, 22,447
27, 29, 46, 60, 61], the long-tail response time problem has received considerable attention re-448
cently. The previous work can be divided into three major categories: (1) identification of sources of449
long-tail response time problem and their solution by improving resource allocation (scheduling),450
(2) solutions to long-tail response time without identifying explicitly the source, and (3) evaluation451
of asynchronous event-based systems, compared to synchronous versions.452

In the first category (identify specific sources of long-tail response time, often with solutions tar-453
geted for those sources), representative examples of research include: Cake [53] (reactive feedback-454
control scheduler for different workloads), Chase et al. [30] (adaption lag of feedback controller455
for dynamic scaling of storage), Domino [28] (prioritize using the longest-wait-time-first (LWTF)456
policy), DeepDive [39] (short-term interference of co-located VMs, identifiable by hardware per-457
formance counters), Li et al. [29] (several sources in hardware, OS, and application level in web458
servers), Berger et al. [6] (dynamical reallocation of cache resource based on different latency-459
aware requests), PriorityMeister [63] (tail latency reduction through combining priority schedul-460
ing and multi-stage per-workload rate limit), Terei et al. [47] and Wang et al. [57] (Java garbage461
collection), Wang et al. [55] (control system lag in dynamic voltage and frequency scaling), and462
Bobtail [61] (co-scheduling VMs with CPU bound tasks as one root cause). Our study follows the463
same philosophy of identifying a class of problems and then evaluate solutions. At the same time,464
we differ from, and complement, the previous work in this category by focusing on distributed465
system phenomena (CTQO) and solutions (asynchronous n-tier system architecture).466

In the second category (proposed solutions to long-tail response time problem without iden-467
tifying explicitly the source), representative examples of research include Dean et al. [12] (use468
hedged requests and tied requests over replicated services to bypass the long-tail response time469
problem in Google’s interactive applications), C3 [46] (apply adaptive replica selection scheme470
to address performance fluctuations across Cassandra distributed database servers), and Jalaparti471
et al. [20] (present a holistic framework, Kwiken, which considers the latency distribution in472
each stage, the cost of applying individual techniques and the workflow structure to minimize473
end-to-end latency). These approaches typically exploit server replicas to bypass the requests474
that take unexpected long time to respond, without identifying explicitly the source of the delay.475
Our work focuses on a class of long-tail response time problems that result from queue overflow476
and dropped requests. Although replicated servers can solve more problems than asynchronous477
servers, the latter has the potential to lower the costs in data centers without sacrificing the478
quality of service for latency-sensitive applications.479

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:19

In the third category (evaluation of asynchronous systems), we found many studies of single 480
web servers adopting event-based asynchronous architectures [10, 18, 26, 41, 51, 52, 62]. These 481
research efforts focus mainly on reducing the multithreading overhead of thread-based design, 482
instead of solving a distributed system problem. Second, streaming processing systems [48, 49] 483
mainly adopt asynchronous messaging for inter-node communication, however, these systems 484
are not interactive, e.g., call/response by nature as in web-facing systems, so their application 485
domain is orthogonal to our research problem. In contrast, our study focuses on the advantages and 486
disadvantages of synchronous versus asynchronous communications in distributed n-tier systems. 487

6 CONCLUSION 488

Despite the progress made in recent years on the various methods to mitigate long-tail response 489
time problems in web-facing applications [2, 3, 12, 22, 27, 29, 46, 61], they remain a serious threat 490
that may be contributing to the continuing low utilization of servers in data centers [27, 32, 44]. 491
These previous research efforts address mainly two classes of long-tail response time problems 492
caused by either uneven workloads (some requests are intrinsic heavy) such as web search, or 493
resource contention in single nodes. In this article, we focus on a third class that arises from 494
Cross-tier Queue Overflow (CTQO), a distributed system phenomenon resulting from the RPC- 495
style synchronous inter-node communication. 496

Our study shows that CTQO happens in a classic n-tier configuration (Apache, Tomcat, and 497
MySQL) with the following causal chain of events: (1) occurrence of millibottlenecks with tens to 498
hundreds of duration at moderate average utilization, (2) CTQO causing a synchronous server to 499
exceed its MaxSysQDepth (worker thread pool size plus the TCP buffer size), (3) excess packets are 500
dropped, (4) retransmission of dropped packets, (5) long-tail response time due to response times 501
of multiple seconds for the retransmitted packets. CTQO is a broad problem, since the initiating 502
millibottleneck can arise from resources in any system layer (e.g., CPU, memory, network and 503
disk I/O), as shown by previous work [56, 57]. To address the CTQO challenge, we replace the 504
synchronous servers (Apache, Tomcat, MySQL) one-by-one with their asynchronous counterparts: 505
Nginx, and asynchronous versions of Tomcat and MySQL. The experiments evaluated in detail all 506
viable combinations between synchronous and asynchronous servers. 507

We found two main CTQO scenarios. The first one is upstream CTQO when dropping requests 508
occurs in an upstream server due to the millibottlenecks in a downstream server pushing more 509
requests to queue upstream. The second one is downstream CTQO when dropping requests occurs 510
in a downstream server, because the millibottlenecks in its upstream server make accumulated 511
queued requests suddenly flood to downstream. Once we replace all thread-based synchronous 512
servers with their asynchronous counterparts, both upstream & downstream CTQO can be avoided 513
even if the system runs at moderate utilization levels. Our research suggests that by applying 514
asynchronous inter-tier communications for the entire n-tier system, we may effectively reduce 515
the non-trivial long-tail response time problems resulting from CTQO. 516

APPENDICES 517

A EXPERIMENTAL SETUP 518

We use a standard n-tier benchmark RUBBoS as a representative interactive online applications in 519
our experiments. RUBBoS benchmark application is modeled after the popular tech news website 520
Slashdot [1]. A typical configuration for the RUBBoS benchmark application is a three-tier archi- 521
tecture (a Web server tier, an application server tier, and a database tier). More tiers (e.g., Cache, 522
load balancer) can be added based on the application need. Each tier communicates with each other 523
using the classic RPC-style synchronous request-response. The benchmark application supports 524

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:20 Q. Wang et al.

Fig. 15. Experimental setup.

24 different web interactions such as ViewStory and StoriesOfTheday. The workload generator of525
this benchmark supports two workload modes: browse-only CPU intensive and read/write mixes.526
We use the former mode in this article. The workload generator launches a certain number of527
threads, each of which simulates the behavior of a normal user when interacting with the bench-528
mark application. Thus, the workload intensity can be controlled by specifying the number of529
threads in the workload generator. Such as workload generator design is similar to that of many530
other n-tier benchmarks such as RUBiS and Cloudstone.531

We conduct our experiments on our virtualized cluster environment. Figure 15 illustrates the532
hardware and software configurations, and a simple three-tier configuration adopted in our exper-533
iments. Every server is hosted by one virtual machine (VM). Each VM is deployed on a dedicated534
physical machine unless explicitly specified to conduct VM co-location experiments.535

B CONNECTORS FOR ASYNCHRONOUS INTER-TIER COMMUNICATION536

A key unit for inter-tier communication in an n-tier system is the connector. Each server uses a537
connector to communicate with other servers in the system (see Figure 8). The main activities538
of a connector are to manage incoming and outgoing network connections, parse and route the539
incoming requests to the application layer (business logic), and write response back to clients540
through established connections. Both the synchronous and the asynchronous connectors share541
similar functionality in high level, but they have very different mechanisms to interact with the542
OS and the application layers.543

Thread-based servers mainly use synchronous connectors with RPC-style request-response for544
inter-node communication. When a synchronous connector accepts a request, it will dispatch the545
request to a dedicated worker thread for handling until the finish of the request. Thus, each concur-546
rent request consumes one worker thread of the server. The concurrent request processing is real-547
ized by the operating system transparently switching among worker threads (thus context switch548
occurs). Although widely used in production internet servers, synchronous connectors bring two549

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:21

Fig. 16. Interaction between an asynchronous connector with the application and the OS layers.

problems when handling high concurrent requests. The first one is the multithreading overhead, 550
which has been extensively studied before [9, 26, 41, 54, 58, 59]. The second but more interesting 551
one is the Cross-tier Queue Overflow as discussed in this article. 552

An asynchronous connector follows the event-driven design. Previous research efforts have 553
shown that the asynchronous event-driven architecture could be a superior alternative to the tra- 554
ditional thread-based design by mitigating the multithreading overhead [11, 26, 41, 59, 62]. How- 555
ever, it is challenging to build high-performance asynchronous event-driven servers due to the 556
obscured non-sequential control flow rooted in the event-driven programming model. An asyn- 557
chronous connector manages a bunch of connections and interacts with both the application and 558
the OS layer through one or a few threads handling various events (see Figure 16). Concretely, an 559
asynchronous connector handles events received from both the application and the OS layers by 560
looping over two phases. The first phase is responsible for events monitoring, determining which 561
connections have pending events (read or write) that need to be processed. The asynchronous 562
connector is able to achieve this by exploiting the event notification mechanisms supported by the 563
underlying operating system (e.g., epoll for Linux). 564

The second phase is responsible for event processing. In this phase, a scheduling thread pulls 565
out those connections with pending events and iterates over each connection. During the iterating 566
process, the scheduling thread calls the appropriate event handler (based on the context informa- 567
tion) to handle each event. We note that theoretically only one thread is needed to loop over the 568
two phases. In reality, multiple threads can be allocated to each phase in case of transient disk I/O 569
blocking or efficiently utilizing a multi-core CPU [41]. 570

The asynchronous connector design suggests the decoupling of component servers in the re- 571
quest processing chain of an n-tier system. One or a few processing threads of each server loops 572
continuously over the two phases in each asynchronous connector, processing various types of 573
local events, and are independent of the queuing status of servers in other tiers. In this case, the 574
queue of a downstream server will not be pushed back to the upstream tiers, thus break the channel 575
of Cross-tier Queue Overflow. 576

In our experiments, we directly use or implement a few asynchronous servers, shown in Fig- 577
ure 8. For example, we use a popular asynchronous web server Nginx [38]. The asynchronous 578
XTomcat [4] is based on the Tomcat version 7 (the latest version at the time), which supports an 579
asynchronous connector to handle upstream communication. We modified an open source asyn- 580
chronous JDBC driver [16] for XTomcat to support asynchronous invocation with the downstream 581
database. 582

For the database tier, XMySQL simulates an asynchronous MySQL by adopting the InnoDB stor- 583
age engine of MySQL, which supports a lightweight queue to store the waiting queries. Specifically, 584
the InnoDB allows MySQL to limit the number of active threads for query processing; additional 585
queries that exceed the thread limit will be stored into a FIFO queue to avoid high concurrency 586

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:22 Q. Wang et al.

overhead. In our experiments, we set the active thread limit in MySQL to be 8 while setting the587
limit of accepted queries to a large number (2,000) to avoid dropped queries.588

C ASYNCHRONOUS BENCHMARK APPLICATION CONVERSION589

Most existing n-tier benchmark applications (e.g., RUBiS, Cloudstone, TCP-W) are implemented590
using the traditional synchronous programming model. With this programming model, each ac-591
cepted request is processed in a straightforward sequential fashion by a dedicated server thread.592
Specifically, the application level business logic use synchronous RPC request-response to com-593
municate with other servers; the processing thread will block until each synchronous call returns594
(e.g., returned ResultSet from a database query). Thus even if a server adopts asynchronous con-595
nectors, the original benchmark application with sequential control flow is not compatible with596
the asynchronous I/O abstractions (i.e., read, write, and listen) provided by the asynchronous con-597
nectors. To make an asynchronous benchmark application, the original synchronous benchmark598
application needs to be re-implemented using the event-driven programming model and make it599
use the asynchronous connectors to conduct inter-tier communication.600

In the event-driven programming model, the processing of each request is divided into multi-601
ple disjoint stages, the execution of each stage is triggered by an event. Figure 17 illustrates the602
process of converting a simple RPC-style synchronous Java servlet to its event-driven version.603
The logic of the synchronous Java servlet is an abstraction of the sequential execution of a set of604
ordinary synchronous database queries, SyncDBQuery1, m, SyncDBQueryN , inside a Tomcat ap-605
plication server. The servlet will process the returned result of each synchronous database query606
before moving the next synchronous database query. Such a simple servlet can be systematically607
transformed into the functionally equivalent asynchronous version as shown in the right part of608
Figure 17. This figure shows that once we see a synchronous database query (e.g., SyncDBQuery1,609
SyncDBQuery2), the original sequential logic needs to split into two functions. The first function610
will execute the original database query in a non-blocking mode; the second function is referred611
as the call-back function, which will be triggered only when the previous database query returns612
results (thus network I/O events).613

We note that Figure 17 is just a simple example of converting the basic sequential flow to its asyn-614
chronous version. Schneider [50] introduced some transformation rules that help convert more615
complicated control flows such as for-loop and switch statement from the synchronous version616
into their asynchronous version. In addition, these conversion rules are not only applicable to617
stateless programs, but they can also be applied to stateful programs given that a global context618
object associated with each client request can be passed to an asynchronous call. Using Schneider’s619

Fig. 17. Simple RPC transformed into a set of asynchronous calls.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:23

transformation rules, we have successfully transformed the RUBBoS benchmark application into 620
its asynchronous version, which enables the large-scale performance evaluation of the asynchro- 621
nous architecture of n-tier applications. 622

REFERENCES

[1] Stephen Adler. 1999. The Slashdot effect: An analysis of three Internet publications. Linux Gazette 38 (1999), 2. 623
[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta 624

Sengupta, and Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer- 625
ence. 63–74. 626

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and Masato Yasuda. 2012. Less is 627
more: Trading a little bandwidth for ultra-low latency in the data center. In Proceedings of the 9th USENIX Symposium 628
on Networked Systems Design and Implementation (NSDI’12). 253–266. 629

[4] Apache Software Foundation. 2019. Java Non Blocking Connector (NIO). Retrieved from https://tomcat.apache.org/ 630
tomcat-7.0-doc/config/http.html. 631

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew 632
Warfield. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems 633
Principles (SOSP’03). 164–177. 634

[6] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-Balter. 2018. RobinHood: Tail 635
latency aware caching–dynamic reallocation from cache-rich to cache-poor. In Proceedings of the 13th USENIX Sym- 636
posium on Operating Systems Design and Implementation (OSDI’18). 195–212. 637

[7] Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing remote procedure calls. ACM Trans. Comput. Syst. 2, 1 638
(Feb. 1984), 39–59. DOI:https://doi.org/10.1145/2080.357392 639

[8] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson. 2010. Characterizing, 640
modeling, and generating workload spikes for stateful services. In Proceedings of the 1st ACM Symposium on Cloud 641
Computing. ACM, 241–252. 642

[9] Hui Chen, Qingyang Wang, Balaji Palanisamy, and Pengcheng Xiong. 2017. DCM: Dynamic concurrency manage- 643
ment for scaling n-tier applications in cloud. In Proceedings of the IEEE 37th International Conference on Distributed 644
Computing Systems (ICDCS’17). IEEE, 2097–2104. 645

[10] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazires, and Robert Morris. 2002. Event-driven program- 646
ming for robust software. In Proceedings of the 10th ACM SIGOPS European Workshop. 186–189. 647

[11] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node. fz: Fuzzing the server-side event-driven archi- 648
tecture. In Proceedings of the T12th European Conference on Computer Systems. ACM, 145–160. 649

[12] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80. 650
[13] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s law for tail latency. Commun. ACM 61, 8 (2018), 65–72. 651
[14] Qi Fan and Qingyang Wang. 2015. Performance comparison of web servers with different architectures: A case study 652

using high concurrency workload. In Proceedings of the 3rd IEEE Workshop on Hot Topics in Web Systems and Tech- 653
nologies (HotWeb’15). IEEE. 654

[15] Jim Gettys and Kathleen Nichols. 2012. Bufferbloat: Dark buffers in the internet. Commun. ACM 55, 1 (2012), 57–65. 655
[16] Google Code Archive. 2009. Non-Blocking (asynchronous) MySQL Connector for Java. Retrieved from https://code. 656

google.com/archive/p/async-mysql-connector/. 657
[17] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011. Cuanta: Quantifying effects of shared 658

on-chip resource interference for consolidated virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud 659
Computing (SoCC’11). 22. 660

[18] Ashif S. Harji, Peter A. Buhr, and Tim Brecht. 2012. Comparing high-performance multi-core web-server architec- 661
tures. In Proceedings of the 5th Annual International Systems and Storage Conference. 1. 662

[19] Instagram Engineering. 2018. Open-sourcing a 10x reduction in Apache Cassandra tail latency. Retrieved from https: 663
//instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589. 664

[20] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin, and Chenyu Yan. 2013. Speeding 665
up distributed request-response workflows. In ACM SIGCOMM Computer Communication Review, vol. 43. ACM, 219– 666
230. 667

[21] Deepal Jayasinghe, Calton Pu, Tamar Eilam, Malgorzata Steinder, Ian Whally, and Ed Snible. 2011. Improving perfor- 668
mance and availability of services hosted on iaas clouds with structural constraint-aware virtual machine placement. 669
In Proceedings of the IEEE International Conference on Services Computing (SCC’11). IEEE, 72–79. 670

[22] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott Rixner, and Alan L. Cox. 2016. TPC: Target-driven 671
parallelism combining prediction and correction to reduce tail latency in interactive services. In Proceedings of the 21st 672
International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 129–141. 673

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://doi.org/10.1145/2080.357392
https://code.google.com/archive/p/async-mysql-connector/
https://code.google.com/archive/p/async-mysql-connector/
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589
https://instagram-engineering.com/open-sourcing-a-10x-reduction-in-apache-cassandra-tail-latency-d64f86b43589

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

36:24 Q. Wang et al.

[23] Yasuhiko Kanemasa, Qingyang Wang, Jack Li, Masazumi Matsubara, and Calton Pu. 2013. Revisiting performance674
interference among consolidated n-tier applications: Sharing is better than isolation. In Proceedings of the 10th IEEE675
International Conference on Services Computing (SCC’13). 136–143.676

[24] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat. 2012. Chronos: Predictable677
low latency for data center applications. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12).678
9:1–9:14.679

[25] Ron Kohavi and Roger Longbotham. 2007. Online experiments: Lessons learned. Computer 40, 9 (2007), 103–105.680
[26] Maxwell N. Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events can make sense. In Proceedings of the USENIX681

Annual Technical Conference. 87–100.682
[27] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling high server utilization and sub-millisecond quality-of-683

service. In Proceedings of the 9th European Conference on Computer Systems (EuroSys’14). 4:1–4:14.684
[28] Ding Li, James Mickens, Suman Nath, and Lenin Ravindranath. 2015. Domino: Understanding wide-area, asynchro-685

nous event causality in web applications. In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC’15).686
ACM, New York, NY, 182–188. DOI:https://doi.org/10.1145/2806777.2806940687

[29] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales of the tail: Hardware, OS, and688
application-level sources of tail latency. In Proceedings of the ACM Symposium on Cloud Computing (SOCC’14). New689
York, NY.690

[30] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. 2010. Automated control for elastic storage. In Proceedings of the691
IEEE International Conference on Autonomic Computing (ICAC’10).692

[31] LinkedIn Engineering. 2015. Who moved my 99th percentile latency. Retrieved from https://engineering.linkedin.693
com/performance/who-moved-my-99th-percentile-latency.694

[32] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2016. Improving695
resource efficiency at scale with heracles. ACM Trans. Comput. Syst. 34 (2016), 6:1–6:33. Retrieved from http://dl.acm.696
org/citation.cfm?id=2882783.697

[33] Simon Malkowski, Yasuhiko Kanemasa, Hanwei Chen, Masao Yamamoto, Qingyang Wang, Deepal Jayasinghe, Calton698
Pu, and Motoyuki Kawaba. 2012. Challenges and opportunities in consolidation at high resource utilization: Non-699
monotonic response time variations in n-tier applications. In Proceedings of the IEEE 5th International Conference on700
Cloud Computing (CLOUD’12). IEEE, 162–169.701

[34] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2008. Burstiness in multi-tier applications:702
Symptoms, causes, and new models. In Proceedings of the ACM/IFIP/USENIX 9th International Middleware Conference703
(Middleware’08). 265–286.704

[35] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2009. Injecting realistic burstiness to a tradi-705
tional client-server benchmark. In Proceedings of the 6th International Conference on Autonomic computing (ICAC’09).706
149–158.707

[36] Jeffrey C. Mogul. 2006. Emergent (mis) behavior vs. complex software systems. ACM SIGOPS Operat. Syst. Rev. 40, 4708
(2006), 293–304.709

[37] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: Managing performance interference effects710
for qos-aware clouds. In Proceedings of the 5th European Conference on Computer Systems. ACM, 237–250.711

[38] NGINX. 2017. nginx. Retrieved from http://nginx.org/.712
[39] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo Bianchini. 2013. DeepDive: Trans-713

parently identifying and managing performance interference in virtualized environments. In Proceedings of the 2013714
USENIX Annual Technical Conference. 219–230.715

[40] ObjectWeb Consortium. 2005. RUBBoS: Bulletin board benchmark. Retrieved from http://jmob.ow2.org/rubbos.html.716
[41] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and David R. Cheriton. 2007. Comparing the per-717

formance of web server architectures. In ACM SIGOPS Operating Systems Review, vol. 41. 231–243.718
[42] Junhee Park, Qingyang Wang, Jack Li, Chien-An Lai, Tao Zhu, and Calton Pu. 2016. Performance interference of719

memory thrashing in virtualized cloud environments: A study of consolidated n-tier applications. In Proceedings of720
the IEEE 9th International Conference on Cloud Computing (CLOUD’16). IEEE, 276–283.721

[43] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. 2011. Computing TCP’s Retransmission Timer. Technical722
Report.723

[44] Bill Snyder. 2010. Server virtualization has stalled, despite the hype. InfoWorld (Dec. 2010).Q2 724
[45] SOURCEFORGE. 2018. Collectl. Retrieved from http://collectl.sourceforge.net/.725
[46] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: Cutting tail latency in cloud data stores726

via adaptive replica selection. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Imple-727
mentation (NSDI’15). 513–527. Retrieved from http://dl.acm.org/citation.cfm?id=2789770.2789806.728

[47] David Terei and Amit Levy. 2015. Blade: A data center garbage collector. arXiv preprint arXiv:1504.02578.729
[48] The Apache Software Foundation. 2018. Apache Flink. Retrieved from https://flink.apache.org/.730

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

https://doi.org/10.1145/2806777.2806940
https://engineering.linkedin.com/performance/who-moved-my-99th-percentile-latency
https://engineering.linkedin.com/performance/who-moved-my-99th-percentile-latency
http://dl.acm.org/citation.cfm?id=2882783.
http://dl.acm.org/citation.cfm?id=2882783.
http://nginx.org/
http://jmob.ow2.org/rubbos.html
http://collectl.sourceforge.net/
http://dl.acm.org/citation.cfm?id=2789770.2789806.
https://flink.apache.org/
Shungeng Zhang
[44] Bill Snyder. 2010. Server virtualization has stalled, despite the hype. Retrieved from https://www.infoworld.com/article/2624771/ server-virtualization-has-stalled--despite-the-hype.html.

Shungeng Zhang

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Mitigating Tail Response Time of n-Tier Applications 36:25

[49] The Apache Software Foundation. 2018. Apache Storm. Retrieved from http://storm.apache.org. 731
[50] Thibaud Lopez Schneider. 2008. Writing Effective Asynchronous XmlHttpRequests. Retrieved from https://www. 732

thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf. 733
[51] Robert von Behren, Jeremy Condit, and Eric Brewer. 2003. Why events are a bad idea (for high-concurrency servers). 734

In Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HotOS’03). 19–24. 735
[52] Rob Von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. 2003. Capriccio: Scalable threads 736

for internet services. In ACM SIGOPS Operating Systems Review, vol. 37. 268–281. 737
[53] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Stoica. 2012. Cake: Enabling high-level 738

SLOs on shared storage systems. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12). ACM, 739
New York, NY. DOI:https://doi.org/10.1145/2391229.2391243 740

[54] Qingyang Wang, Hui Chen, Shungeng Zhang, Liting Hu, and Balaji Palanisamy. 2019. Integrating concurrency control 741
in n-tier application scaling management in the cloud. IEEE Trans. Parallel Distrib. Syst. 30, 4 (2019), 855–869. 742

[55] Qingyang Wang, Yasuhiko Kanemasa, Chien-An Li, Jack Lai, Masazumi Matsubara, and Calton Pu. 2013. Impact of 743
DVFS on n-tier application performance. In Proceedings of ACM Conference on Timely Results in Operating Systems 744
(TRIOS’13). 33–42. 745

[56] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsubara, Motoyuki 746
Kawaba, and Calton Pu. 2013. Detecting transient bottlenecks in n-tier applications through fine-grained analysis. In 747
Proceedings of the 33rd IEEE International Conference on Distributed Computing Systems (ICDCS’13). 31–40. 748

[57] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-An Cho, Yuji Nomura, and Calton Pu. 2014. 749
Lightning in the cloud: A study of very short bottlenecks on n-tier web application performance. In Proceedings of 750
USENIX Conference on Timely Results in Operating Systems (TRIOS’14). 751

[58] Qingyang Wang, Simon Malkowski, Yasuhiko Kanemasa, Deepal Jayasinghe, Pengcheng Xiong, Calton Pu, Motoyuki 752
Kawaba, and Lilian Harada. 2011. The impact of soft resource allocation on n-tier application scalability. In Proceedings 753
of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS’11). 1034–1045. 754

[59] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An architecture for well-conditioned, scalable internet ser- 755
vices. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01). 230–243. DOI:https:// 756
doi.org/10.1145/502034.502057 757

[60] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. 2013. Small is better: Avoiding latency traps in vir- 758
tualized data centers. In Proceedings of the 4th Annual Symposium on Cloud Computing (SOCC’13). 759

[61] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013. Bobtail: Avoiding long tails in the cloud. In 760
Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13). 329–342. 761

[62] Shungeng Zhang, Qingyang Wang, and Yasuhiko Kanemas. 2018. Improving asynchronous invocation performance 762
in client-server systems. In Proceedings of the IEEE 38th International Conference on Distributed Computing Systems 763
(ICDCS’18). IEEE, 907–917. 764

[63] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, and Gregory R. Ganger. 2014. PriorityMeis- 765
ter: Tail latency QoS for shared networked storage. In Proceedings of the ACM Symposium on Cloud Computing 766
(SOCC’14). ACM, New York, NY. DOI:https://doi.org/10.1145/2670979.2671008 767

Received February 2019; revised April 2019; accepted June 2019 768

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 36. Publication date: July 2019.

http://storm.apache.org
https://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf
https://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf
https://doi.org/10.1145/2391229.2391243
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/502034.502057
https://doi.org/10.1145/2670979.2671008

TOIT1903-36 ACMJATS Trim: 6.75 X 10 in July 13, 2019 11:56

Author Queries

Q1: AU: Please provide authors’ complete mailing addresses.

Q2: AU: Please provide journal volume, issue, and page for Ref. 44.

