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Abstract—Researches affirm that coflow scheduling/routing
substantially shortens the average application inner commu-
nication time in data center networks(DCNs). The commonly
desirable critical features of existing coflow scheduling/routing
framework includes (1) coflow scheduling, (2) coflow routing,
and (3) per-flow rate-limiting. However, to provide the 3 features,
existing frameworks require customized computing frameworks,
customized operating systems, or specific external commercial
monitoring frameworks on software-defined networking(SDN)
switches. These requirements defer or even prohibit the deploy-
ment of coflow scheduling/routing in production DCNs. In this
paper, we design a coflow scheduling and routing framework,
MinCOF which has minimal requirements on hosts and switches
for cloud storage area networks(SANs) based on OpenFlow SDN.
MinCOF accommodates all critical features of coflow schedul-
ing/routing from previous works. The deployability in production
environment is especially taken into consideration. The Open-
Flow architecture is capable of processing the traffic load in a
cloud SAN. Not necessary requirements for hosts from existing
frameworks are migrated to the mature commodity OpenFlow
1.3 Switch and our coflow scheduler. Transfer applications on
hosts only need slight enhancements on their existing connection
establishment and progress reporting functions. Evaluations re-
veal that MinCOF decreases the average coflow completion time
(CCT) by 12.94% compared to the latest OpenFlow-based coflow
scheduling and routing framework.

Index Terms—Application-aware Networks; Data Center
Networks; Software-defined Networking; OpenFlow; Coflow
Scheduling; Storage Area Networks; Cloud Computing

I. INTRODUCTION

Nowadays, researchers widely utilize the enormous com-
putational power of computer clusters to analyze big data.
Many cluster computing frameworks [9], [15] emerge to
unify and simplify the development of the analytic cluster
applications. These frameworks transform application logics
into an iteration of alternating and mutual blocking computing
and communication stages (e.g., MapReduce jobs). In the
communication stage, typically, multiple hosts exchange the
result from the previous computing stage with multiple other
hosts using multiple communication flows. The computing
framework suspends the next computing stage until the all
communication flows finish.

Coflow scheduling [3], [5] is introduced to optimize the
network usage and help shorten the completion time of the
communication stage. It bundles communication flows into
coflows according to their logical semantics in the application
programs and sophisticatedly allocates network resources to

coflows for shortening the overall completion time of all asso-
ciated communication flows. Shortening the coflow completion
time(CCT), from the beginning of the first associated flow to
the ending of the last associated flow, shortens the communica-
tion stage. If a cluster application spends a substantial portion
of time in communication stages [4] (e.g., intermediate data
sizes of a MapReduce job is large), coflow scheduling short-
ens the application completion time. Successive researches
incorporate network routing to coflow scheduling [19]. The
outcome coflow scheduling and routing framework has even
better performance.

By investigating existing coflow scheduling/routing frame-
works, we summarize 3 common critical correlated features
as follows.

1) Coflow Scheduling: Determining the order of coflows
and the rate of each flow in coflows to transmit according
to the coflow information synchronized from all hosts.

2) Coflow Routing: Determining the path for each flow in
coflows to transmit.

3) Per-flow Rate-limiting: Enforcing the rate allocation to
each flow by the coflow scheduler to prevent individual
flows from aggressively seizing network bandwidth.

Some existing frameworks provide the 3 features by cus-
tomizing operating systems(OSs) on hosts to synchronize
coflow information to the coflow scheduler and limit flows′

rates such as Varys [5] and Rapier [19]. This strategy may
prevent the adoption of coflow scheduling/routing in a DCN
if the hosts require another customized OS which results
in incompatibility issues. Other existing frameworks rely on
external commercial monitoring tools on switches to synchro-
nize coflow information such as Tailor [13] which requires
the proprietary sFlow-RT [8]. However, deploying commercial
tools in a production environment is likely to cost additional
budget. Tab. I summarizes the features of existing frameworks.
Details are included in Sec. V.

To avoid all the obstacles to deploying coflow schedul-
ing/routing in production, we design, MinCOF, a coflow
scheduling and routing framework which imposes minimal
requirements on hosts and thoroughly takes advantage of
the standardized mature commodity OpenFlow Switches.
MinCOF migrates all unnecessary requirements away from
the switch/host and efficiently provide them using the Open-
Flow 1.3 Switch and our coflow scheduler (III). MinCOF



TABLE I: Comparison of features of coflow schedul-
ing/routing frameworks.

Framework Coflow Coflow Per-flow Unmod. Coflow
Scheduling Routing Rate- Host Info.

limiting OS Sync.
Varys[5] V V 2-way
Rapier[19] V V V 2-way
Tailor[13] Limited 1 flow V Proprietary
MinCOF V 1 coflow V V 1-way

is especially suitable for cloud SANs storing big data. For
example, the scientific cloud object storage [12], [11] involves
massive coflow communication scenarios (II), and its big data
transmissions which utilize few concurrent long flows can be
processed by current OpenFlow SDN implementations. Widely
used transfer applications in cloud SANs only have to augment
small segments of code to their original connection establish-
ment and progress reporting functions to be integrated.

We measure the performance of MinCOF on our DCN
testbed with physical software OpenFlow Switches and hosts.
The results illustrate that MinCOF largely outperforms the
existing framework without the routing feature (Varys) and
further shortens the average CCT by up to 12.94% compared to
the existing framework without rate limiting (Tailor). MinCOF
also maintains the lead under various workload compositions
and network topologies.

The rest of the paper is organized as follows. Section II
provides the reasons which motivate us to create an OpenFlow-
based coflow scheduling and routing framework for cloud
SANs. Section III explains the architecture of MinCOF in
details. Section IV compares the performance of MinCOF to
that of existing similar frameworks by conducting experiments
on real hardware. Section V distinguishes our work from
previous works. Section VI concludes and gives an insight
of future development.

II. MOTIVATION

Two observations motivate us to create a new coflow
scheduling and routing framework for OpenFlow-based cloud
SANs, (1) the cloud SAN has high similarity to the DCN for
cluster computing in which existing coflow scheduling/routing
frameworks operate, (2) the OpenFlow SDN is suitable for
processing the traffic load intensity of the cloud SAN.

For the similarity of cloud SAN and DCN for cluster com-
puting, both networks have similar underlying DCN topolo-
gies and similar communication patterns. The improvement
brought by coflow scheduling/routing on cluster computing is
likely to be reproducible in cloud SAN. Both networks are
built on topologies with multiple alternative paths between a
pair of hosts such as the fat-tree [1]. Both networks carry com-
munication patterns involving a group of hosts concurrently
communicating with another group [3]. The communication
stage in cluster computing and data exchange/replication in
cloud SAN all prefer multiple communication flows in the
same logical operation finishing at close time instants. An
example in cloud SAN is that a file transmission completes

fast only if all parallel transferring flows complete fast because
the slowest flow determines the overall file completion time.

For processing the traffic load with the OpenFlow SDN,
the cloud SAN typically serves limited number of concurrent
flows and experiences less frequent flow arrival/completion
compared to DCN for cluster computing. The transfer appli-
cations in cloud SANs usually establish few parallel flows
for data exchange. The flow table capacity of a commodity
OpenFlow Switch is able to contain the number of concurrent
flows [17]. When the cloud SAN stores big data, total files
is relatively few and individual files are typically large so
that parallel flows carrying files are long-lived. There are few
flow arrivals and completions. The undesirable overheads of
processing those events in the OpenFlow SDN are infrequently
encountered.

The 2 observations suggest the feasibility of porting coflow
scheduling and routing to OpenFlow-based cloud SANs, thus
we design MinCOF.

III. FRAMEWORK DESIGN

We design a coflow scheduling and routing framework,
MinCOF, which is expected to achieve the following objec-
tives in cloud SANs.

1) Short Average CCT: Our framework should minimize
the average CCT of transfer applications to increase the
throughput of the object storage. Shortening the CCT
of the transfer application implies shortening the turn-
around time of the storage I/O operation.

2) Starvation Free Scheduling: Our framework should
prevent a coflow from being delayed for an uncertain
amount of time.

3) Work Conserving Scheduling: Our framework should
allocate any available network resource if the resource
trigers a coflow to progress.

4) Backward Compatibility: Our framework should effi-
ciently operate with flows without coflow affiliation.

5) Proprietary System Avoidance: Our framework should
use mostly open source components to avoid licensing
costs when deployed on production environments.

6) Immediate Deployablity: Our framework should impose
least change on existing software and be built on com-
modity hardware.

The designs which ensure these objectives are highlighted in
the following sub-sections.

We first give a high-level description of the procedure for
the framework components to cooperate and dive into details
in each subsequent sub-sections.

A. Framework Workflow

Fig. 1 illustrates the targeted spine-leaf cloud SAN topology
and all framework componets of MinCOF.

The framework initialization steps are
1) Each link from a leaf switch to a spine is sliced into

queues for prioritizing coflows (Fig. 1(d)). (III-B)
2) Coflow-aware transfer application is deployed on each

host (Fig. 1(c.c1) and (c.c2)). (III-C)
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Fig. 1: (a) The overall architecture of MinCOF. Dashed links carry control messages. To save space, hosts connecting to leaf
switches other than Ln are omitted. (b) The functions on the leaf OpenFlow Switches. (c) The functions on the hosts. (d) The
slices in links from leaf OpenFlow Switches to spines for prioritizing coflows.

The initialization steps for each coflow are
3) Unique coflow IDs are given to start transfer applications

on hosts. Transfer applications report per flow informa-
tion in coflows to the coflow scheduler (Fig. 1(c.c1) and
(a.c1)). (III-C)

4) The scheduler schedules the new coflows. (III-D)
The repetative steps during the live time of each coflow are

5) Transfer applications update remaining data size of each
flow to the scheduler (Fig. 1(c.c2) and (a.c1)). (III-C)

6) The scheduler calculates a new coflow schedule at coflow
arrival and finishing. The scheduler releases per flow
route, per flow queue schedule, and per flow rate to the
OpenFlow Controller (Fig. 1 (a.c2)) to achieve short aver-
age CCT, starvation free, and work conserving objectives.
(III-D)

7) The controller enforces the new per flow properties on
leaf OpenFlow Switches (Fig. 1 (a.c3) and (b)).

B. OpenFlow 1.3 Switch

MinCOF requires all leaf switches to be OpenFlow 1.3
Switches. Coflow schedules, coflow routing, and per-flow rate-
limiting are enforced on OpenFlow Switches.

For enforcing coflow schedules, MinCOF takes advantage
of slicing links from each leaf switch to spines for different
classes of traffic. The slicing is achieved by dividing each
physical egress port into 3 queues, Scheduled queue(50% port
capacity), Starved queue(20%), and Best Effort queue(30%)

shown in Fig. 1(d). When coflow scheduler pass a new coflow
schedule, coflows with exclusive bandwidth allocations are
placed in Scheduled queue with rate limiting configured, and
the others are moved into the Starved queue. To ensure star-
vation free scheduling, Starved queue has identical priority
to transfer data as the Scheduled queue. To ensure work
conserving scheduling, any traffic exceeding the capacity
of the Scheduled queue or Starved queue are moved into
the Best Effort queue. Flows in the Starved queue and Best
Effort queue freely compete for bandwidth. If fair share among
flows is preferred, active queuing disciplines such as FaLL[18]
should be deployed. The best effort queue length is set to 5%
Bandwidth-delay Product(BDP) to keep queuing delay low. To
provide backward compatibility, flows which do not have
coflow affiliations are placed in the best effort queue.

For coflow routing, MinCOF adopts MPLS segment rout-
ing(SR). Each scheduled flow is attached with an MPLS label
assigned by the scheduler when first reaching a leaf switch.
Routing between leaf switches is based on MPLS labels.
The benefit of using MPLS SR is that any conventional flow
matching using the 5-tuple, <Protocol, Src. IP Addr., Dst. IP
Addr., Src. Port, Dst. Port>, is reduced to a matching using
only the MPLS label. Spine switches can be regular switches
which are able to forward packets accroding to MPLS labels.

For per-flow rate-limiting, MinCOF utilizes the OpenFlow
Meter. The coflow scheduler passes the corresponding rate
limit of each flow in scheduled coflows in every new coflow



schedule. The rate limit is configured on the OpenFlow Meter
table to control the transmission speed of flows.

C. Coflow-aware Transfer Application

To avoid using proprietary systems, we create the coflow-
aware transfer application by making a regular transfer appli-
cation synchronize its own coflow information to our coflow
scheduler. No proprietary flow monitoring tool is needed.
We develop a compact 1-way egress synchronization protocol
from the transfer application to the coflow scheduler. The
benefit of our 1-way protocol is the simplicity. The 2-way
coflow synchronization in existing frameworks requires a
server which accepts incoming traffic on each host. Much
more security and system management policy configurations
have to be changed. To provide immediate deployability, our
protocol only requires a regular UDP socket.

Our protocol can easily be integrated into the typical work-
flow of popular transfer applications as follows.
The typical workflow of a transfer application is

1) Receiving command line arguments.
2) Creating parallel TCP flows and evenly distributing data

to TCP flows.
3) Periodically collecting statistics from all flows and re-

porting aggregated transmission progress.
The workflow after integrating our protocol is
1.1) Receiving command line arguments.
1.2) Receiving coflow ID and coflow scheduler location.
2.1) Creating parallel TCP flows and evenly distributing data

to TCP flows.
2.2) Initially synchronizing the flows in the coflow informa-

tion to coflow scheduler using 1 egress UDP segment.
3.1) Periodically collecting statistics from all flows and re-

porting aggregated transmission progress.
3.2) Synchronizing flows in the coflow information to the

coflow scheduler using 1 egress UDP segment.
An example integrated transfer application is the customized
BBCP of the BIC-LSU big data storage area network[2].

D. Coflow Scheduler and OpenFlow Controller

The core control components of MinCOF are a logically
centralized coflow scheduler and an OpenFlow Controller. The
coflow scheduler sophisticatedly allocates network resources
to ensure that design objectives are achieved. OpenFlow
Controller enforces the allocations by coflow scheduler on
corresponding OpenFlow switches.

Our coflow scheduler is equipped with the 3 critical de-
sirable features, coflow scheduling, coflow routing, and per-
flow rate-limiting, of coflow scheduling/routing frameworks so
that it can produce efficient or even optimal network resource
allocations. We use 3 comprehensive examples to illustrate
the importance of the critical features in shortening average
CCT or flow completion time (FCT) by applying the shortest
job first heuristic. All paths in examples have the bandwidth

1
unit time and all flows/coflows arrive at Time 0. First, we
introduce the per-flow rate-limiting. In Fig. 2(a), 2 flows,

F1(Size 1) and F2(Size 2) share 1 path. The optimal schedule
is achieved in Fig 2(d). Per-flow rate-limiting can arbitrarily
change the order of flow transmissions and enables the other
2 features. Second, we explain the coflow scheduling. In Fig.
2(b), 2 coflows, C1 with Flow C1,1(Size 1) and Flow C1,2(Size
1) and C2 with Flow C2,1(Size 2) and Flow C2,2(Size 1) share
2 independent paths. Coflow scheduling schedules all flows in
one coflow as a logical unit. The optimal schedule is achieved
in Fig 2(e). Third, we elaborate the coflow routing. In Fig.
2(c), 2 coflows, C1 with Flow C1,1(Size 3) and Flow C1,2(Size
1) and C2 with Flow C2,1(Size 2) and Flow C2,2(Size 3) share
2 alternative paths. Coflow routing finds the best route all flows
in one coflow as a logical unit. The optimal routing decision
is achieved in Fig 2(f).

Our scheduler maintains a Data Structure Path to avoid
using proprietary systems for collecting coflow information.
Path tracks the bandwidth usage in the Scheduled queue
in each leaf-to-leaf path. The per-flow rate-limiting ensures
that the usage information in Path is precise. The total path
tracked is the product of total leaves by total spines. In Fig. 1,
the total path tracked is s · `. As the blocking ratio (“number
of links to hosts” to “number of links to spines” ratio on the
leaf switch.) in the cloud SAN is typically high (10:1), the
size of Path is limited and can be efficiently managed using
hash table. Function PathRem(i,j,p,h) returns the remaining
available bandwidth from Host i to Host j via Path p.

Our coflow scheduler is able to estimate the capacity gain
of re-routing a TCP flow. We assume that every host uses
the default Ethernet Maximum Transmission Unit (MTU) size
1500 bytes. Due to the stably short queue at each switch port
(III-B), BDP can be estimated, so can the TCP’s congestion
window size (Cwnd) using the theoretical model in [16], Cwnd
≈ BDP/MTU. The duration of a re-routed flow is reasonably
assumed to be the inter-coflow arrival time. Fig. 3 illustrates
the worst impact of re-routing. The area below the curve is the
effective capacity (BDP) of the flow. CO(CN ) is the effective
capacity on the old(new) after re-routing and is calculated in
Eq. 2(Eq. 4) respectively. The overall capacity gain of re-
routing a TCP flow to a faster path is calculated by CN −CO.

Our coflow scheduler executes Alg. 1 to serve coflows at
each coflow arrival/completion by invoking SERVECOFLOW.
The new coflows first are routed through DCN for maintaining
load balancing (Line 17-23). A new coflow schedule is gener-
ated for all coflows (Line 24). We define the bottleneck of a
coflow to be the completion time of its slowest flow, which is
calculated using Eq. 1. The coflow with the smallest bottleneck
is re-routed if there are paths through which the coflow
can earlier complete (Line 2-5) measured by the estimation
mechanism explained in the previous paragraph. To shorten
average CCT, coflows receive bandwidth allocation in the
shortest bottleneck first (SBF) order (Line 6-12). Coflows
with all flows which receive sufficient exclusive bandwidth
allocation to continue are categorized as Scheduled Coflows
(Csch). The others are categorized to as Starved Coflows
(Cstr). The Scheduled Coflows in the latest coflow schedule
are placed in the Scheduled queue on their paths (Line 25-
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Fig. 2: (a)(d) Impact of per-flow rate-limiting. (b)(e) Impact of coflow scheduling. (c)(f) Impact of coflow routing. Each path
has bandwidth 1

unit time . The 3 features enable coflow scheduler to apply the shortest job first heuristic and its variations.

30) to receive a large portion of link bandwidth. To ensure
starvation free scheduling, the Starved Coflows are moved
to the Starved queue on their paths (Line 31-35) to share a
small portion of link bandwidth (III-B).

The OpenFlow Controller configures OpenFlow Switches to
enforce coflow scheduling, coflow routing, and per-flow rate-
limiting using the OpenFlow protocol. To provide immedi-
ate deployability, MinCOF only includes hardware features
which are provided by commodity OpenFlow Switches and
scheduler functions which can be implemented on any up-to-
date OpenFlow Controller frameworks.
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where div calculates the quotient of integer division and mod
calculates the remainder of integer division.

IV. EVALUATION

To evaluate the improvement of MinCOF, we compare the
results of running MinCOF and previous works, Varys with
ECMP routing and Tailor, on a DCN testbed with synthesized
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Fig. 3: The worst impact of switching paths on the congestion
window size of a TCP flow. The flow re-routes to a faster
path at Time WO. Transmission capacity loss because of TCP
re-ordering (shaded area) and gain (slashed area) are marked.

SAN workloads. Due to the complexity, we do not include the
Rapier in our evaluation. Each result is the average of 5 runs
and normalized to the result of Varys with ECMP routing.

A. Testbed Environment

All scheduling frameworks run on a physical DCN testbed
with the spine-leaf fat-tree topology. There are 4 spine
switches, 4 leaf switches, and 16 hosts on the testbed shown in
Fig. 4. Commodity servers are used to emulate both switches
and hosts. Each switch and host has 8 Intel Xeon 2.33GHz
CPU cores, 8GB main memory. Each switch has 2 Intel
I350-T4 network interface cards. All servers run the Ubuntu
Linux 16.04. For the simplicity of configuration, we deploy
Open vSwitch (OVS) OpenFlow Switch [10] on every switch



Algorithm 1 Coflow Scheduling & Routing in OpenFlow-
based spine-leaf DCN.

1: function SCHEDULE(Coflows γ, PathRem(.))
2: Csch = Sort all Coflows in γ in SBF order
3: if Rebalancing shortens 1st coflow’s CCT ∈ Csch then
. Measured using Eq. 1, Eq. 2, and Eq. 4.

4: Rebalance flows ∈ 1st coflow.
5: end if
6: for all coflow C in Csch do . allocate BW.
7: Calculate Γ using Eq. 1
8: for all flow in C do
9: rate ← (flow’s remaining size) / Γ

10: Update PathRem(src host,dst,p,h) with rate
11: end for
12: end for
13: Cstr = starved coflows in Csch

14: return Csch, Cstr

15: end function

16: procedure SERVECOFLOW(Coflows γ, PathRem(.))
17: if new coflow arrival then
18: for all flow ∈ new coflow do
19: if flow traverses across leaf SWs then
20: Place flow on least used inter-leaf path.
21: end if
22: end for
23: end if
24: Csch, Cstr = SCHEDULE(γ, PathRem(.))
25: for all flow in Csch do
26: . place scheduled flows on src leaf SWs.
27: Configure new segment routing path
28: Migrate flow to Scheduled queue at egress port
29: Configure flow’s OpenFlow Meter entry
30: end for
31: for all flow in Cstr do
32: . place starved flows on src leaf SWs.
33: Migrate flow to Starved queue at egress port
34: Remove flow’s OpenFlow Meter entry
35: end for
36: end procedure

even though MinCOF does not require the spine switches to
be OpenFlow Switches. The coflow scheduler is written in
Python, and the OpenFlow Controller is built on the Ryu
framework [6]. However, the OpenFlow Meter is not imple-
mented on OVS. We create a primitive control framework for
the OpenFlow Controller to manipulate the tc command on
each switch to mimic the behavior of the OpenFlow Meter
using the Linux kernel packet scheduler. All network interfaces
are throttled to 100Mb/s to ensure that the processing power of
the CPUs on the switch is competent for forwarding network
traffic. The RTT at a host is around 350µs.
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B. Workload

To the best of our knowledge, there are very few publicly
available statistics of data size distribution in cloud storage.
Since the design of MinCOF targets the big data cloud
storage, we adopt the scientific big data size distribution in
the Data Oasis storage cluster [14]. We scale down the file
size by multiplying the testbed bandwidth to Data Oasis’
SAN bandwidth ratio, Exp. Net BW

Data Oasis Net BW = 100Mb/s
10Gb/s = 0.01.

The scaled file size distribution is summarized in Fig. 5.
To increase scalability, MinCOF schedules only at coflow
arrival/finishing and only considers the coflows carrying the
large files (>2.5MB) which already account for around 70%
of total data size. We generate 64 coflows with the arrival
times distribution from the Facebook trace in [5]. Each coflow
involves 3 through 12 normally distributed host-to-host file
transmissions. Each file transmission uses 4 through 16 flows.

TABLE II: Statistics of coflow inter-arrival time in the Face-
book traffic trace.

Mean Median Mode Std. Dev.
6.91s 3.06s 1.58s 9.76s
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C. Impact of Coflow Width

In this scenario, we test coflow scheduling/routing frame-
works under various coflow width, number of flows in coflows.
We intentionally generate coflows all with only 4, 8, 12, or
16 flows. The result is provided in Fig. 6. MinCOF and Tailor
both more effectively shorten the average CCT compared to
Varys. MinCOF further improves by at most 9.81% compared
to Tailor in the case of 8 flows. The trend for saturation
with larger number of flows is because of the overhead of
our workaround implementation of the OpenFlow Meter. Each
flow becomes shorter and faster finishes when the coflow width
increases. The coflow scheduler is not able to instantaneously
adjust the OpenFlow Meter entries to the most adequate
values. We conjecture that the saturation can be alleviated
if MinCOF runs on dedicated hardware OpenFlow Switches
because the OpenFlow protocol message format and message
passing mechanism is standardized and highly optimized.

D. Impact of Coflow Size

We vary coflow size, the aggregated size of all associ-
ated flows, in the experiment. We divide the file size range
into 3 categories, <40MB(4x10MB), <160MB(4x40MB), and
<200MB(4x50MB). The last range ends at 50MB because we
simulate the scaled down file size upper limit in the OpenStack
Swift cloud object storage, 5GB. Fig. 7 presents the result.
MinCOF demonstrates more advantage with larger coflow size,
up to 12.94% compared to Tailor, if the coflow can be as large
as 200MB. The overhead problem mentioned in Sec. IV-C,
again, results in the indistinction between MinCOF and Tailor
in the case of small coflow.

E. Impact of Network Blocking Ratio

In this experiment, we observe the performance of coflow
scheduling/routing frameworks in the spine-leaf fat-tree DCN
with various blocking ratios. A higher blocking ratio reflects
that communications between hosts connecting to different leaf
switches are more difficult. The result is summarized in Fig. 8.
With high blocking ratio, the severe congestion in the network
lessens the improvement of routing so that 3 frameworks
have similar performance. With low blocking ratio, MinCOF
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Fig. 7: Impact of Coflow Size. Shorter CCT is better.
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Fig. 8: Impact of Network Blocking Ratio. Shorter CCT is
better.

effectively routes flows among multiple available paths so
that achieves the largest improvement of 11.33% compared
to Tailor.

F. Impact of Background Traffic

We randomly select coflows to not synchronize with the
scheduler as background traffic to examine the resilience
and backward compatibility of the coflow scheduling/routing
frameworks. Background traffic in practice is from applica-
tions which are not yet integrated with the coflow schedul-
ing/routing framework. The percentage of background traffic
gradually increases from 10% through 50%. The result is
shown in Fig. 9. Tailor and MinCOF outperform Varys because
of their routing feature. However, Tailor saturates with 40%
background traffic. MinCOF profits from the sliced leaf-to-
spine links (III-B) which confine the bandwidth consumed by
background traffic and still improves under heavy background
traffic. The maximum improvement is 15.21% with 50%
background traffic.

V. RELATED WORK

Varys is the coflow scheduling framework which totally
operates on hosts and is not aware of the network condition.
Varys requires a customized OS on each host for a 2-way
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Fig. 9: Performance under Background Traffic. Shorter CCT
is better.

interact to a logically centralized coflow scheduler to monitor
network interface usage, synchronize coflows’ information,
and enforce coflow scheduling decisions. The critical coflow
scheduling features of Varys include coflow scheduling and
per-flow rate-limiting.

Rapier inherits all features from Varys and incoporates
coflow routing while generating coflow schedules. Rapier also
needs a customized OS to enfource per-flow rate-limiting.

Tailor is a simple coflow scheduling and routing framework
built upon OpenFlow-based DCN. Limited coflow scheduling
and coflow routing are included. Tailor adopts proprietary
sFlow-RT to collect coflows’ information and network con-
dition for trimming the completion time of the slowest flow.
Per-flow rate-limiting is not considered. Tailor does not require
any features provided by a customized OS. Applications can
profit from Tailor coflow scheduling and routing with simple
modification.
MinCOF synthesizes all desirable critical features of all

previous works including coflow scheduling, simplified coflow
routing, and per-flow rate-limiting. MinCOF also gets rid of
undesirable requirements such as customized OS and propri-
etary system component. An OpenFlow-based DCN and ex-
tended transfer applications for the 1-way coflow information
synchronization are the only requirements.

VI. CONCLUSION AND FUTURE WORKS

Existing coflow scheduling/routing frameworks require cus-
tomized OSs on hosts or proprietary network monitoring tools
to fully function. Those requirements hinder the adoption of
coflow scheduling which does effectively reduce the commu-
nication and completion time of applications in DCNs. We
design MinCOF, a coflow scheduling and routing framework
which imposes only minimal modifications to applications
and accommodates all critical features of coflow schedul-
ing/routing targeting the OpenFlow-based cloud SANs. Being
built upon open source software and standardized commodity
OpenFlow Switches, MinCOF is easily deployable in produc-
tion cloud SANs. Experiment results using software OpenFlow
Switches confirm that MinCOF shortens the CCT by up

to 12.94% compared to latest OpenFlow-based framework.
MinCOF in the cloud SANs with dedicated hardware Open-
Flow Switches is expected to perform even better. As this pro-
totype implementation illustrates consistent improvements, we
plan to port MinCOF to the BIC-LSU 10/40 Gb/s OpenFlow-
based spine-leaf big data SAN.
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