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Abstract—Recently, Amazon EC2 offers a reserved instance
marketplace, where cloud users can sell their idle reserved
instances varying in contract lengths and pricing options for
avoiding the waste of their unused reservations. However, without
knowing the future demands, it is hard for users to determine
how to sell instances optimally, for it would incur more cost
if new demands arrive after selling their reserved instances.
For dealing with this problem, in this paper we first propose
three online selling algorithms to guide cloud users in making
decisions whether or not to sell their reservations in Amazon
EC2 marketplace while guaranteeing competitive ratios. We
prove theoretically that the three proposed online algorithms can
guarantee bounded competitive ratios, whose values are specific
to the type of reserved instances under consideration. Specifically,
for all standard instances (Linux, US East) for 1-year terms
in Amazon EC2, compared with a benchmark optimal offline
algorithm, our algorithm A3T/4 can achieve a ratio of 2−α−a/4
in managing instance purchasing cost, where α is the entitled
discount due to reservation and a is the selling discount specified
by the user who sells its reservations. Finally, through extensive
experiments based on workload data collected from real-world
applications, we validate the effectiveness of our online instance
selling algorithms by showing that it can bring significant cost
savings to cloud users compared with always keeping their
reservations in Amazon EC2 reserved instance marketplace.

Index Terms—cloud; IaaS; online algorithm; competitive anal-
ysis; cost management.

I. INTRODUCTION

Nowadays, there are more and more users turning to pub-
lic cloud platforms for acquiring Infrastructure-as-a-Service
(IaaS) offerings. In the first half of 2017, the worldwide public
cloud market revenue reached $63.2 billion with an increase
of 28.6%. At the same time, IaaS costs begins to dominate
a large population in an enterprise’s IT investments. Thus
cost management has become an increasingly urgent concern.
Currently, IaaS markets such as Amazon EC2 [1], ElasticHosts
[2] and Google Cloud Platform [3], mainly support two pricing
schemes, which are the subscription scheme for using reserved
instances and the pay-as-you-go scheme for using on-demand
ones. When a user launches on-demand instances, the user
is only charged for the incurred instance-hours. When a user
launches reserved instances, the user first needs to prepay a
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TABLE I
PRICING OF THE D2.XLARGE INSTANCE (US EAST (OHIO), LINUX) IN

AMAZON EC2, AS OF JAN. 1, 2018

Payment Option Upfront Monthly Effective Hourly
No Upfront $0 $293.46 $0.402

Partial Upfront $1506 $125.56 $0.344
All Upfront $2952 $0 $0.337
On-Demand $0.69 per Hour

certain upfront fee, and then the user can get a cheaper hourly
rate than corresponding on-demand instances [4]. Table I
gives an example of pricing rules for reserved and on-demand
instances provided by Amazon cloud platform.

From the perspective of cost management, when workloads
are stable, users would like to reserve instances. But for
sporadic workloads, choosing on-demand instances instead
generally costs less. Thus future demand curves are needed to
be predicted for making instance purchase decisions. However,
to a cloud user, it is difficult to predict future workloads
accurately. For dealing with these issues, there exist online al-
gorithms to guide users in purchasing instances. For example,
one online algorithm has been proposed to guide users when
they should reserve instances instead of purchasing on-demand
instances and how many instances they should reserve [5].
Although these online algorithms have a satisfactory perfor-
mance in guiding users in purchasing instances economically,
there may still exist the waste of reservations, which happens
when few demands arrive after reserving an instance, or the
reservations still have large remaining period when users’ jobs
are finished. In this situation, the best choice for users is to
sell these reserved instances to cover their upfront fee.

Recently, Amazon EC2 has launched a reserved instance
marketplace, where cloud users can sell their unused reserved
instances to limit losses. But without any prior knowledge
of future demands, it is hard for a cloud user to make the
decision whether to sell its reserved instances or not. It would
incur more loss if new demands arrive after selling reserved
instances, because for fulfilling these demands the user needs
to purchase new on-demand instances or reserve new instances
which will incur extra prepaid expenses. Thus, they need to
carefully answer two important questions for each reserved
instance: (1) whether should I sell this reserved instance,



and (2) when should I sell this reserved instance? Currently,
there is no corresponding algorithm to guide users in selling
reservations in Amazon EC2 reserved instance marketplace.

In this paper, for addressing the above issues, we propose to
use online selling algorithms to guide cloud users in making
a decision whether or not to sell their reservations in Amazon
EC2 reserved instance marketplace to guarantee competitive
ratios, while users do not need to predict future demands.
Specifically, we design three online algorithms A3T/4, AT/2 and
AT/4 for making decisions whether to sell a reserved instance
at the time spot 3T/4, T/2 and T/4 respectively, which denote
three fourths, one half and one fourth of the reservation period
T ∗. We prove theoretically that the proposed three online
algorithms can guarantee bounded competitive ratios, whose
values are specific to the type of reserved instances under
consideration. Specifically, for all standard instances (Linux,
US East) for 1-year terms in Amazon EC2, compared with
a benchmark optimal offline algorithm, our algorithm A3T/4

can achieve a ratio of 2 − α − a/4 in managing instance
purchasing cost, where α is the entitled discount due to
reservation and a∈ [0, 1] is the selling discount specified by the
cloud user who sells its reservations. Finally, through extensive
experiments based on workload data collected from real-
world applications, we validate the effectiveness of our online
instance selling algorithms and show that it can save costs
significantly compared with always keeping their reservations
in Amazon EC2 reserved instance marketplace.

The rest of the paper is organized as follows. In Section II
we discuss the related works briefly. Section III introduces the
cost management problem for IaaS users. Section IV presents
an online selling algorithm. In Section V, we propose two
additional online algorithms. Section VI gives extensive ex-
perimental evaluations. Finally, Section VII states conclusions
and future work directions.

II. RELATED WORK

Based on two main pricing models including the pay-as-
you-go model and the subscription model in public IaaS
markets such as Amazon EC2, recently there have been
studies [6] aiming to achieve cost savings by combining the
two instance purchase options efficiently. For example, online
algorithms [5] [7] have been proposed to guide users in deter-
mining to purchase on-demand instances or reserve instances.
Besides, there are also great efforts in investigating cost-saving
strategies relying on historic workloads [8] to make long-
term predictions of future workloads [9] [10]. However, such
predictions have practical limitations. For example, prediction
models generally assume that workloads are relatively stable,
which is not always the true situation in practice. Thus in some
situations the prediction model as well as the corresponding
cost-saving strategies may perform poorly.

For online algorithms [11] [12] [13], the approach of com-
petitive analysis is often used to evaluate their performance

∗T denotes the reservation period. For instance, when providing reserved
instances, Amazon has 1-year and 3-year options, meaning T is 1 or 3 years.

with the term of competitive ratio [14] [15] [16]. The recently
proposed online reservation algorithms can achieve satisfac-
tory competitive ratios. For example, Wang et al. proposed
an online reservation algorithm with a competitive ratio in
managing IaaS costs. There are also some previous studies on
analyzing competitive ratios by considering the worst case. For
example, for paging problem, Cohen et al. introduced an online
algorithm and analyzed its competitive ratio by considering
the worse case in [15] and a new instance pricing model
relying on a reselling model was proposed by Zhang et al.
[17] using worse case analysis. In our work, we also analyze
the competitive ratios of our proposed online algorithms by
considering the worse cases.

There are some efforts on investigating more flexible reser-
vation models for public IaaS markets [18]. Zhang et al.
proposed a new pricing model for flexible instance reservation,
in which a user can put forward its preferred reservation
length and its required number of instances, while in today’s
IaaS cloud markets, users can only choose from predefined
reservation packages.

There are also online algorithms [19] [17] assuming that
users can sell out instances hours of their idle reserved
instances to other users in a pay-per-use way and they achieve
satisfactory competitive ratios. But they rely on a specific
instance reselling model which is currently not supported by
public IaaS cloud providers.

Based on the above discussion, the main contribution of this
work lies in that we first propose online selling algorithms to
guide cloud users in making a decision whether or not to sell
their reservations in Amazon EC2 marketplace. Cloud users
can achieve significant cost savings by choosing our online
algorithms to sell their reservations in Amazon marketplace,
with the cost bounded by the competitive ratios guaranteed in
our online instance selling algorithms.

III. COST MANAGEMENT FOR CLOUD USERS

In this section, we start off by discussing the pricing
models in Amazon EC2 cloud platform, as well as the selling
models for reserved instances. Then we review the actual cost
calculation methods and online algorithms.

A. On-demand and Reservation IaaS Models

We first discuss the two main pricing schemes in current
public IaaS cloud markets, which are the on-demand purchas-
ing model and the reservation model.

For on-demand instances, users make payment for using
instances by hour without paying any expenses in advance.
For a given instance, using p to denote its hourly rate, if a
user uses this instance t hours, the cost is p∗ t. Taking t2.nano
in Amazon EC2 as an example, its hourly rate is $0.0059. If
using this instance for 1000 hours, the user needs to pay $5.9.

Another pricing option is the subscription model for re-
served instances. A user first needs to pay a certain upfront
fee, then the user can get a cheaper hourly rate than that of
corresponding on-demand instances. We use R to denote the
upfront fee, and use α∗p to denote its hourly rate, where α is



the discount due to reservation. When a user uses this instance
t hours, the cost is R+α ∗ p ∗ t. For example, the upfront fee
of a t2.nano instance is $18, and the discount hourly rate is
0.002 within 1 year of its reservation period. In this case, the
discount because of reservation is α= 0.002/0.0059 = 0.34.
Using a t2.nano instance under a contract of 1-year terms for
1000 hours will cost the user $20.

B. The Selling Rules in Amazon EC2

According to the selling rules in Amazon EC2 reserved
instance marketplace [20], a user can sell the remaining period
of its unused reserved instances to other cloud users. Thus
this user becomes a seller and from now on we call the user
who buys reservations from this seller as the buyer. The seller
charges an upfront fee for each of its reserved instance to sell.
Once a reserved instance is sold out, the seller cannot use this
instance anymore. The buyer pays the upfront fee to obtain
the ownership of this instance and then the buyer can enjoy
the cheaper hourly rate in the instance’s remaining reservation
period. The Amazon EC2 platform charges a service fee of 12
percent of the total upfront fee of each reserved instance sold
in its marketplace, and the seller keeps the left 88 percent of
the total upfront fee paid by the buyer.

When there are multiple users selling their reservations in
Amazon EC2, the selling sequence is related to the upfront
fee and the remaining period of the reservations for sale. For
example, the marketplace sells the reserved instance with the
lowest upfront fee at first to the buyer. If the buyer’s request
is not fulfilled, the marketplace will sell the reserved instance
with the next lowest upfront fee. So to attract users and sell
faster, the seller can set a discount of its required upfront fee
compared the original one set by Amazon EC2. For example,
the original upfront fee of the t2.nano instance in Amazon
EC2 is $18. If the user wants to sell the remaining second half
reservation cycle of this instance, its upfront fee should be at
most $9. Then the seller sets 20 percent off the upfront fee
to make its instance more attractive to buyers, so its upfront
fee becomes $7.2. The buyer needs to pay $7.2, and after
deducting 12 percent of the upfront fee, the seller eventually
receives $7.2 ∗ (1− 0.12) = $6.336.

Once a deal is completed between a seller and a buyer, the
seller will not have a cheaper hourly rate during this instance’s
remaining period. If the seller wants to use this type of instance
again, it must reserve another one or pay on-demand hourly fee
to use on-demand instances instead. In this situation, selling its
reservations incurs extra cost to the seller, compared with just
keeping their reservations. Thus the seller needs to carefully
decide whether and when it should sell its reserved instances.

C. The Online Instance Selling Problem

Now we formalize the above instance selling problems.
We define the time t = 0, 1, 2... in hours, in accordance
with Amazon EC2’s hourly billing policy. At each time t,
we assume that there are dt demands arrived, nt reserved
instances newly reserved, and rt reserved instances that can
provide services. The calculation methods of nt and rt are as

follows. At time t, when an instance is newly reserved, the
value of nt is increased by one. Then from time t to time
t + T , the value of rt is increased by one, representing that
this reserved instance can provide service in the cycle from
time t to time t+ T . Here T denotes the reservation period.

At each time t, demand dt means that the user needs
to prepare dt instances to provide services. The relationship
between dt and rt falls into either of the following two
situations. When dt is larger than rt, it means that the active
reserved instances are not adequate for fulfilling all demands
at time t. Thus the user needs to purchase another dt− rt on-
demand instances. Let ot be the number of new on-demand
instances purchased at time t. When the value of dt is smaller
than rt, it means there are rt−dt reserved instances remaining
idle. We can conclude that ot + rt ≥ dt at each time t. It
ensures that all dt instance requests are fulfilled at time t, by
ot on-demand instances and rt active reserved ones. When
selling out a reserved instance, the value of rt is reduced by
one starting from the moment that the instance is sold to the
time that the reservation period is out of range.

For a user at time t, the actual cost includes the cost ot ∗ p
for buying on-demand instances, the upfront fee nt ∗ R of
the instances newly reserved and the hourly fees rt ∗ α ∗ p of
the active reserved instances. Using st to denote the number
of instances sold at time t, the income gained from selling
reservations at time t is st ∗ a ∗ rp ∗R, where a ∈ [0, 1] is the
selling discount specified by the user, and rp means remaining
period of the reserved instance for sale. Thus, for this user the
actual cost at time t is as follows:

Ct = ot ∗ p+ nt ∗R+ rt ∗ α ∗ p− st ∗ a ∗ rp ∗R (1)

Although the reserved instance marketplace in Amazon EC2
allows users to sell their instances with varying remaining
reservation periods, it becomes highly difficult for users to
make decisions if each instance’s selling time is uncertain. As
an exploratory work, in this paper we investigate the situations
where the selling decisions are made at the time spot 3T/4, T/2
or T/4, where T denotes the reservation period. We leave the
discussion of online algorithms for making selling decisions
at an arbitrary time spot as our future work.

D. Measure of Competitiveness
Generally, the approach of competitive analysis [14] [15] is

adopted for measuring an online algorithm’s performance. The
competitive ratio of an online algorithm represents the bound
of the ratio between it and the optimal offline algorithm. For
the instance reservations selling problem, it represents the ratio
of the instance cost achieved by the online algorithm to the
instance cost achieved by the optimal offline algorithm. The
optimal offline algorithm is the one that achieves the lowest
cost when all future demand is known.

Definition 1 (c-Competitive): An online instance selling
algorithm A is c− competitive. It means that for all possible
sequences of demands set d = {d1, d2...dT } and reservations
set r = {r1, r2...rT }, we have

CA(d, r) ≤ c ∗ COPT (d, r) (2)



where CA(d, r) is the cost of online selling algorithm A given
input demands set d and reservations set r, COPT (d, r) is
the cost achieved by the optimal offline algorithm, and c
is a constant. Thus, the smaller the value of c, the better
performance our online instance selling algorithm achieves.
Our research is to make our online instance selling algorithm
approach the optimal solution more closely.

IV. AN ONLINE SELLING ALGORITHM

We now present an online algorithm A3T/4 and analyze its
competitive ratio through theoretical analysis. We show that
A3T/4 can achieve a competitive ratio of 2−α−a/4 compared
with an optimal offline algorithm for all standard instances for
1-year terms in Amazon EC2.

A. The Optimal Offline Selling Algorithm

We first discuss the optimal offline selling algorithm as a
benchmark for measuring the performance of the online selling
algorithm. We first define some states. For a reserved instance,
let t1 = 1 be the start time this instance is reserved and t2 = T
be the end time this reserved instance is out of work. We
assume that this reserved instance is sold at time t, t ∈ [1, T ].
Let ε = t/T , ε ∈ [0, 1]. The selling income is (1− ε) ∗ a ∗R
while a reserved instance is sold at the time t, where a ∈ [0, 1]
is the selling discount specified by the seller, and R is the
original upfront fee for this reserved instance.

For a reserved instance, using x to denote the number of
demands before it is sold, and y to denote the number of
demands after selling it, their values are calculated as:

x =
ε∗T∑
t=1

dt, y =
T∑

t=ε∗T+1

dt (3)

with T denoting the reservation period, and ε∗T denoting the
time spot when this reserved instance is sold.

Based on the definition of x and y, we can conclude that in
the optimal offline selling algorithm, the cost used for buying
on-demand instances for satisfying these x demands, reduced
by the income earned from selling the reserved instance, is still
larger than the cost used for this reserved instance to satisfy
these x demands. Conversely, the cost used for buying on-
demand instances for satisfying these y demands, reduced by
the income earned from selling the reserved instance, is less
than the cost of these y demands satisfied by this reserved
instance. These conclusions can be expressed as:

ε ∗R+ α ∗ p ∗ x < ε ∗R− a ∗ ε ∗R+ p ∗ x (4)

(1−ε)∗R+α∗p∗y > (1−ε)∗R−a∗(1−ε)∗R+p∗y (5)

The left part of Eqs. (4) and (5) is the cost incurred by using
this reserved instance to satisfy these demands. The right part
is the cost in purchasing on-demand instances for satisfying
those demands after selling this instance. From Eq. (4) and
Eq. (5), we can get

x >
ε ∗ a ∗R
p ∗ (1− α)

(6)

y <
(1− ε) ∗ a ∗R
p ∗ (1− α)

(7)

The value ranges of x and y will be used later in analyzing
our online algorithms’ competitive ratio.

B. An Online Selling Algorithm A3T/4

For a reserved instance i, our online selling algorithm A3T/4

decides whether to sell it or not based on the number of
demands x in the three fourths of its reservation period,
i.e., 3T/4. The reason is that the size of x determines its
utilization. When the cost of purchasing on-demand instances
for satisfying these x demands, reduced by the income earned
by selling i, is equal to the cost of these x demands satisfied
by i in the three fourths of its reservation period, we have the
following equation:

3

4
∗R+ α ∗ p ∗ x =

3

4
∗R− a ∗ 3

4
∗R+ p ∗ x (8)

From Eq. (8), we can calculate

x =
3 ∗ a ∗R

4 ∗ p ∗ (1− α)
(9)

Let β = 3∗a∗R
4∗p∗(1−α) . β is a break-even point in the online

selling algorithm, which is vital for deciding whether to sell
an instance i or not. We can conclude that when the number
of demands is less than β during the three fourths of its
reservation period, the best choice is selling instance i and
purchasing new on-demand instances to satisfy these demands.
However, in the three fourths of its reservation period, we
didn’t sell instance i. To compensate for this “mistake”, at
time 3T/4 we sell it to compensate its losses in the remaining
period T/4. Correspondingly, when the number of demands is
larger than β, we should use instance i to satisfy these demands
for achieving less cost.

The previous discussion was based on one unit of reserved
instance. Our online selling algorithm should work on the
situations where cloud users may hold multiple reserved
instances. An important problem for a cloud user with multiple
instances is how to calculate each instance’s working time
when these reserved instances are undifferentiated at each
time. Consider that we only reserve new instances when the
previous reserved instances cannot fulfill all demands. We
can see that the instances newly reserved are used to provide
services to the demands newly happened. Thus, the working
sequence we proposed is that the reserved instance with less
remaining period should be selected first when demands arrive
at each time. It means that we assign higher priorities to
those reserved instances with less remaining period when
considering to satisfy the demands newly arrived. This also
can increase the utilization of each reserved instance.

At time t, if there exists a reserved instance in its 3T/4,
we check its working time during the the three fourths of its
reservation period, and sell this reserved instance if its working
time is less than the break-even point. In Algorithm 1 we
present our online selling algorithm A3T/4 in details.

In order to illustrate the online selling algorithm more
intuitively, we consider an example as shown in Fig. 1. There



Algorithm 1 An Online Selling Algorithm A3T/4

Input: the set of demands d, the set of new reserved instances
n, and the set of active reservations r.

Output: the set of updated active reservations r, and the set
of selling instances s.

1: Let inst be the reserved instance which is being decided
to sell or not. Let l be the number of the reserved instances
whose remaining time is larger than inst.

2: At each time t, loop as follows:
3: if nt−3T/4 == 0 then
4: There is no need to make decisions at this moment.
5: else
6: for i = 1 to nt−3T/4 do
7: l = 0; f = 0;
8: for j = t− 3T/4 + 1 to t do
9: Update the value of l at each time: l = l + nj ;

10: if rj − dj − i+ 1 > l then
11: inst is free at this moment: f ← f + 1;
12: end if
13: end for
14: Get the working time w of inst according to its free

time f : w = 3∗T
4 − f ;

15: if w < β then
16: Sell this instance: st ← st + 1;
17: for k = t+ 1 to t+ T/4 do
18: Update the number of active reserved instances

in the future: rk ← rk − 1;
19: end for
20: for k = t− 3T/4 + 1 to t do
21: Update the historical information to indicate that

this instance has been processed: rk ← rk − 1;
22: end for
23: end if
24: end for
25: end if
26: t← t+ 1, repeat from 2.

are two new instances named inst1 and inst2 which are
reserved at time t−3T/4+1. After the time spot t−3T/4+1,
a total of two instances named inst3 and inst4 are reserved.
It means that there are two instances whose remaining period
is less than inst1 and inst2. At the beginning of time spot
t−2, the number of reservation minus the number of demands
is three at this moment. So three reserved instances is free,
including inst4, inst3, and one instance of inst1 and inst2
based on the instance working sequence. At time t, if we
decide to sell one instance of inst1 and inst2, the number
of the active reserved instances will be updated during the
time spot t−3T/4+1 to t+T/4, which is shown by the dotted
line.

C. Performance Analysis: (2− α− a/4)-Competitiveness

We now use OPT to represent the optimal offline selling
algorithm, and analyze the performance of our online selling
algorithm A3T/4 by using OPT as a benchmark.

t-3T/4 t-2 t-1 t t+T/4

time

0

2

4

6

8

v
a

lu
e

Original reservation curve r

Demand curve d

Newly updated r

Fig. 1. An example to illustrate Algorithm A3T/4. A reserved instance is
selling at the time spot t. The dotted line denotes the changes of the reservation
curve r after selling this instance.

Proposition 1: Algorithm A3T/4 is (2−α−a/4)-competitive.
Formally, for each reserved instance that is up to sell, we have

CA3T/4 ≤ (2− α− a/4) ∗ COPT (10)

where CA3T/4 is the actual cost achieved by the online selling
algorithm A3T/4 and COPT is the actual cost achieved by the
optimal offline selling algorithm OPT.

Proof: For a reserved instance, we decide whether to sell
it or not at the time spot 3T/4, so we have ε ∈ [3/4, 1],
which represents the selling moment of the optimal offline
selling algorithm. Let x0 be the number of demands during
the three fourths of the reservation period, x1 be the number
of demands during 3T/4 to ε ∗ T , and x2 be the number of
demands during ε∗T to T . Based on the analysis of the optimal
offline algorithm, we can arrive at the following conclusions.

x1 >
(ε− 3/4) ∗ a ∗R

p ∗ (1− α)
(11)

x2 <
(1− ε) ∗ a ∗R
p ∗ (1− α)

(12)

Because of Eq. (11), we can calculate the bound of the cost
achieved by OPT as follows:

COPT = R+ α ∗ p ∗ (x0 + x1)− (1− ε) ∗ a ∗R
+ p ∗ x2

> R+ α ∗ p ∗ x0 +
α ∗ (ε− 3/4) ∗ a ∗R

1− α
− (1− ε) ∗ a ∗R+ p ∗ x2

= (1− a) ∗R+
ε ∗ a ∗R
1− α

− 3 ∗ α ∗ a ∗R
4 ∗ (1− α)

+ α ∗ p ∗ x0 + p ∗ x2 (13)

According to our online selling algorithm A3T/4, if x0 < β,
we will sell this reserved instance at time 3T/4 to compensate
its losses in the remaining period T/4. Conversely, if x0 > β,
we will continue to use this reserved instance in the remaining
period T/4. Then we analyze the situation in two cases.

Case 1: In this case, we consider

x0 <
3 ∗ a ∗R

4 ∗ p ∗ (1− α)
(14)



The actual cost incurred by A3T/4 is calculated as follows:

CA3T/4 = R+ α ∗ p ∗ x0 −
a ∗R
4

+ p ∗ (x1 + x2) (15)

CA3T/4 − COPT represents the gap between A3T/4 and the
optimal offline selling algorithm OPT, as:

CA3T/4 − COPT

= R+ α ∗ p ∗ x0 −
a ∗R
4

+ p ∗ (x1 + x2)−R

− α ∗ p ∗ (x0 + x1) + (1− ε) ∗ a ∗R− p ∗ x2

=
3 ∗ a ∗R

4
− ε ∗ a ∗R+ (1− α) ∗ p ∗ x1 (16)

According to the Eq. (11), we know that x1 and ε are
positively related. Besides, we can define

x1 = γ1 ∗
(ε− 3/4) ∗ a ∗R

p ∗ (1− α)
(17)

where γ1 > 1. Then we can get

CA3T/4 − COPT

=
3 ∗ a ∗R

4
− ε ∗ a ∗R+ (1− α) ∗ p ∗ x1

=
3 ∗ a ∗R

4
− ε ∗ a ∗R+ γ1 ∗ (ε− 3/4) ∗ a ∗R

= (1− γ1) ∗
3 ∗ a ∗R

4
+ (γ1 − 1) ∗ ε ∗ a ∗R (18)

The coefficient of ε is γ1 − 1, which is a positive number
because γ1 > 1. We can conclude that CA3T/4 − COPT and ε
are positively related. The gap of the actual cost between A3T/4

and OPT reaches its maximum when ε = 1. In this case, the
cost performance of A3T/4 is lowest, and thus the competitive
ratio reaches a maximum.

CA3T/4

COPT
=

R+ α ∗ p ∗ x0 − a∗R
4 + p ∗ (x1 + x2)

R+ α ∗ p ∗ (x0 + x1)− (1− ε) ∗ a ∗R+ p ∗ x2

<
R+ α ∗ p ∗ x0 − a∗R

4 + p ∗ x1

R+ α ∗ p ∗ (x0 + x1)
(19)

<
R− a∗R

4 + (1− α) ∗ p ∗ x1

R
(20)

<
R− a∗R

4 + (1− α) ∗ θ∗R
4

R
(21)

= 1 +
θ ∗ (1− α)

4
− a

4
(22)

where θ = C/R. R represents the upfront fee of the reserved
instance. C is the largest cost incurred by on-demand instances
in the whole reservation period, in which the demands are
lasting during the whole reservation period. Here, Eq. (19)
holds because when ε = 1, x2 = 0. Eq. (20) holds true
because the value of competitive ratio is a fraction larger than
1, and for such a fraction, if a same value is subtracted from
its denominator and numerator at the same time, its value
increases. Eq. (21) holds because the maximum of p ∗ x1 is
θ ∗R/4 according the definition of θ.

Formally, for all standard instances (Linux, US East) for
1-year terms in Amazon EC2, we have made a statistic to see

the value of θ. We can conclude that θ ∈ (1, 4). Thus we can
get

CA3T/4

COPT
< 2− α− a

4
(23)

Case 2: In this case, we consider

x0 >
3 ∗ a ∗R

4 ∗ p ∗ (1− α)
(24)

The actual cost incurred by A3T/4 is calculated as follows

CA3T/4 = R+ α ∗ p ∗ (x0 + x1 + x2) (25)

Then the gap between A3T/4 and the optimal offline selling
algorithm OPT is:

CA3T/4 − COPT

= R+ α ∗ p ∗ (x0 + x1 + x2)−R− α ∗ p ∗ (x0 + x1)

+ (1− ε) ∗ a ∗R− p ∗ x2

= a ∗R− ε ∗ a ∗R− (1− α) ∗ p ∗ x2 (26)

According to Eq. (12), we know that x2 is inversely
proportional to ε. Besides, we can define

x2 = γ2 ∗
(1− ε) ∗ a ∗R
p ∗ (1− α)

(27)

where γ2 < 1. Then we can get

CA3T/4 − COPT

= a ∗R− ε ∗ a ∗R− (1− α) ∗ p ∗ x2

= a ∗R− ε ∗ a ∗R− γ2 ∗ (1− ε) ∗ a ∗R
= (1− γ2) ∗ a ∗R+ (γ2 − 1) ∗ ε ∗ a ∗R (28)

The coefficient of ε is γ2 − 1, which is a negative number
because γ2 < 1. We can conclude that CA3T/4 − COPT and
ε are negatively related. The gap of the actual cost between
A3T/4 and OPT reaches its maximum when ε = 3/4. In this
case, the actual cost incurred by A3T/4 is lowest, and thus the
competitive ratio reaches a maximum.

CA3T/4

COPT
=

R+ α ∗ p ∗ (x0 + x1 + x2)

R+ α ∗ p ∗ (x0 + x1)− (1− ε) ∗ a ∗R+ p ∗ x2

<
R+ α ∗ p ∗ (x0 + x2)

R+ α ∗ p ∗ x0 − a∗R
4 + p ∗ x2

(29)

<
R

R− a∗R
4 + (1− α) ∗ p ∗ x2

(30)

<
4

4− a
(31)

Here, Eq. (31) holds because the denominator reduced by
(1−α)∗p∗x2. We can see that when α+a/4+4/(4−a) ≤ 2,
algorithm AT/2 is 2− α− a/4-competitive. When α+ a/4 +
4/(4− a) > 2, algorithm AT/2 is 4/(4− a)-competitive.

We have counted the discount ratio α for all standard
instances (Linux, US East) for 1-year terms. Based on our
statistical calculation, α < 0.36. Thus in any cases we can
conclude that α+ a/4 + 4/(4− a) < 2, where a ∈ [0, 1]. We
have

CA3T/4

COPT
<

4

4− a
< 2− α− a

4
(32)



So we have the competitive ratio of online algorithm AT/2

as 2−α−a/4 for all standard instances (Linux, US East) for
1-year terms in Amazon EC2.

V. TWO ADDITIONAL ONLINE SELLING ALGORITHMS

In this section, we propose two additional extended online
selling algorithms whose selling time spots are different from
algorithm AT/2. In the first extended online selling algorithm,
we assume that the remaining period of the reserved instance
for sale is half of the reservation period. It means that we
make the decision of whether to sell a reserved instance or
not at the time spot T/2. Similarly, the time spot of the second
extended online selling algorithm is T/4.

Let AT/2 (AT/4) denote the first (second) extended online
selling algorithm and let OT/2 (OT/4) denote the optimal
offline selling algorithm corresponding to AT/2 (AT/4). With the
change of the time spot for making a decision, the definition
of some parameters also need to make changes. We take AT/2

as an example for illustration.
In AT/2, the break-even spot becomes β = a∗R

2∗p∗(1−α) , and
the remaining period of each reserved instance up to sell is
T/2. Algorithm 2 presents our online algorithm AT/2 in detail.

Algorithm 2 A Deterministic Online Selling Algorithm AT/2

1: At each time t, loop as follows:
2: if nt−T/2 == 0 then
3: There is no need to make decisions at this moment.
4: else
5: for i = 1 to nt−T/2 do
6: l = 0; f = 0;
7: for j = t− T/2 + 1 to t do
8: Update the value of l at each time: l = l + nj ;
9: if rj − dj − i+ 1 > l then

10: inst is free at this moment: f ← f + 1;
11: end if
12: end for
13: Get the working time of the inst:

w = T/2− f ;
14: if w < β then
15: Sell this instance: st ← st + 1;
16: for k = t+ 1 to t+ T/2 do
17: Update the number of r: rk ← rk − 1;
18: end for
19: for k = t− T/2 + 1 to t do
20: Update the historical information: rk ← rk − 1;
21: end for
22: end if
23: end for
24: end if
25: t← t+ 1, repeat from 1.

The implementation process of AT/4, is closely similar to
that of AT/2, except the definition of some parameters as:
in AT/4, the break-even spot is β = a∗R

4∗p∗(1−α) , and the
remaining period of each reserved instance up to sell is 3T/4.

For all standard instances (Linux, US East) for 1-year terms
in Amazon EC2, we discuss the cost performance of online
algorithms AT/2 and AT/4 in the following cases.

Proposition 2a: Algorithm AT/2 is (3 − 2 ∗ α − a/2)-
competitive, when α + a/4 + 1/(2 − a) ≤ 3/2. Formally,
for each reserved instance that is up to sell, we have

CAT/2 ≤ (3− 2 ∗ α− a/2) ∗ COPT (33)

Proof: In this case, the gap of the actual cost between
AT/2 and OPT reaches its maximum when ε = 1. In other
words, the cost performance of AT/2 is lowest, and thus the
competitive ratio reaches a maximum.

CAT/2

COPT
=

R+ α ∗ p ∗ x0 − a∗R
2 + p ∗ (x1 + x2)

R+ α ∗ p ∗ (x0 + x1)− (1− ε) ∗ a ∗R+ p ∗ x2

<
R+ α ∗ p ∗ x0 − a∗R

2 + p ∗ x1

R+ α ∗ p ∗ (x0 + x1)
(34)

<
R− a∗R

2 + (1− α) ∗ p ∗ x1

R
(35)

<
R− a∗R

2 + (1− α) ∗ θ∗R
2

R
(36)

= 1 +
θ ∗ (1− α)

2
− a

2
(37)

where θ = C/R. Here, Eq. (34) holds because x2 = 0 when
ε = 1. Eq. (36) holds because the maximum of p∗x1 is θ∗R/2
according the definition of θ.

Formally, for all standard instances (Linux, US East) for 1-
year terms in Amazon EC2, we can conclude that θ ∈ (1, 4).
Thus we can get

CAT/2

COPT
< 3− 2 ∗ α− a

2
(38)

Proposition 2b: Algorithm AT/2 is (2/(2−a))-competitive,
when α+a/4+1/(2−a) > 3/2. Formally, for each reserved
instance that is up to sell, we have

CAT/2 ≤ (2/(2− a)) ∗ COPT (39)

Proof: In this case, we can conclude that the gap of the
actual cost between AT/2 and OPT reaches its maximum when
ε = 1/2. Thus, the cost performance of AT/2 is lowest, and
the competitive ratio reaches a maximum.

CAT/2

COPT
=

R+ α ∗ p ∗ (x0 + x2)

R+ α ∗ p ∗ x0 − a∗R
2 + p ∗ x2

<
R

R− a∗R
2 + (1− α) ∗ p ∗ x2

(40)

<
2

2− a
(41)

Here, we can conclude that x1 = 0 when ε = 1/2. Eq.
(40) holds with the same situation seen in Eq. (20) discussed
earlier in Section IV. Eq. (41) holds because the denominator
reduced by (1− α) ∗ p ∗ x2.



Proposition 3a: Algorithm AT/4 is (4 − 3 ∗ α − 3 ∗ a/4)-
competitive, when α+ a/4+ 4/(12− 9 ∗ a) ≤ 4/3. Formally,
for each reserved instance that is up to sell, we have

CAT/4 ≤ (4− 3 ∗ α− 3 ∗ a/4) ∗ COPT (42)

Proof: In this case, the gap of the actual cost between
AT/4 and OPT reaches its maximum when ε = 1. In other
words, the cost performance of AT/4 is lowest, and thus the
competitive ratio reaches a maximum.

CAT/2

COPT
=

R+ α ∗ p ∗ x0 − 3∗a∗R
4 + p ∗ (x1 + x2)

R+ α ∗ p ∗ (x0 + x1)− (1− ε) ∗ a ∗R+ p ∗ x2

<
R+ α ∗ p ∗ x0 − 3∗a∗R

4 + p ∗ x1

R+ α ∗ p ∗ (x0 + x1)
(43)

<
R− 3∗a∗R

4 + (1− α) ∗ p ∗ x1

R
(44)

<
R− 3∗a∗R

4 + (1− α) ∗ 3∗θ∗R
4

R
(45)

= 1 +
3 ∗ θ ∗ (1− α)

4
− 3 ∗ a

4
(46)

where θ = C/R. Here, Eq. (43) holds because x2 = 0 when
ε = 1. Eq. (45) holds because the maximum of p ∗ x1 is
3 ∗ θ ∗R/4 in this case.

Formally, for all standard instances (Linux, US East) for 1-
year terms in Amazon EC2, we can conclude that θ ∈ (1, 4).
Thus we can get

CAT/4

COPT
< 4− 3 ∗ α− 3 ∗ a

4
(47)

Proposition 3b: Algorithm AT/4 is (4/(4 − 3 ∗ a))-
competitive, when α+ a/4+ 4/(12− 9 ∗ a) > 4/3. Formally,
for each reserved instance that is up to sell, we have

CAT/4 ≤ (4/(4− 3 ∗ a)) ∗ COPT (48)

Proof: In this case, we can conclude that the gap of the
actual cost between AT/4 and OPT reaches its maximum when
ε = 1/4. Thus, the cost performance of AT/4 is lowest, and
the competitive ratio reaches a maximum.

CAT/2

COPT
=

R+ α ∗ p ∗ (x0 + x2)

R+ α ∗ p ∗ x0 − 3∗a∗R
4 + p ∗ x2

<
R

R− 3∗a∗R
4 + (1− α) ∗ p ∗ x2

(49)

<
4

4− 3 ∗ a
(50)

From the above discussion, we can see that the competitive
ratios of AT/2 and AT/4 are not very good compared with A3T/4.
But we know that when the demands are stable, the earlier we
make the decisions whether to sell a reserved instance or not,
the better performance our online instance selling algorithm
can achieve. In the following experimental section, we show
that AT/2 and AT/4 generally perform better if the demands
fluctuate little.
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Fig. 2. The fluctuation statistics of demands (the ratio between the standard
deviation σ and the mean µ) in each user group.

VI. EXPERIMENTAL EVALUATION

Through theoretical competitive analysis, we prove our
proposed online instance selling algorithms can achieve guar-
anteed competitive ratios. In this section, we validate their
effectiveness through extensive experiments using real-world
workload data.

A. Experimental Settings

The long-term user demand data we used in this work
mainly includes two datasets. One contains 36 EC2 usage log
files [21], and the other consists of Google cluster-usage traces
[22], which contain 40 GB of workload resource requirements
of more than 900 users.

The example of instance we adopted is d2.xlarge (Linux,
US East) in Amazon EC2. Its upfront fee is $1506, and on-
demand fee is $0.69. The discount α of this instance is 0.25.
The reservation period is one year in our experiment.

For preprocessing the Google cluster-usage traces, we saw
that the number of instances a user needs is proportional to
the resources required including CPU, memory, disk and so
on. Thus we used the requested number of resources recorded
in Google cluster-usage traces to represent the number of
instances required. As mentioned before, the actual cost per-
formance of each online selling algorithm is greatly influenced
by the fluctuation of demands. As shown in Fig. 3, we
classified the 300 users selected from the original dataset into
three groups according to the level of fluctuations in demands,
which is measured by the standard deviation σ and the mean
µ. In the first group, there are 100 users whose demands are
relatively stable, with the value of σ/µ < 1. The second group
includes 100 users whose demands fluctuate slightly, with the
value of 1 < σ/µ < 3. The third group includes 100 users
and their demands are highly fluctuating, with the value of
σ/µ > 3. We conduct experiments with each user group to
validate the effectiveness of our proposed algorithms.

After completing the preliminary preprocessing of the
dataset, we need to do another important step: imitating users’
behaviors to reserve instances. Our experimentation needs the
dataset with the value of demands and new reserved instances



TABLE II
THE ACTUAL COST OF ONLINE ALGORITHMS FOR A USER WHOSE

DEMANDS ARE HIGHLY FLUCTUATING.

A3T/4 AT/2 AT/4 Keep-Reserved
Cost 9.36e+04 9.40e+04 9.45e+04 9.58e+04

at each time, which is hard to gain in public IaaS clouds.
To imitate users’ reservation behaviors more comprehensively,
we chose four online purchasing algorithms. The first is All-
reserved, in which a user chooses reserved instances to serve
all workloads, to imitate the user’s reservation behavior when
the demands are relatively stable. The second is random
reservation, which takes a random number that is not greater
than the demands’ quantity as the targeted number of active
reserved instances at each time. The third is an online pur-
chasing algorithm proposed by Wang et al. [5], which help
users to determine whether to purchase reserved instances or
choose on-demand ones. The final algorithm is a variant of
the online purchasing algorithm. To make reservations more
active in this algorithm, the break-even point β is smaller than
that in the third algorithm.

B. Evaluations of Online Selling Algorithms

We separately compared the three proposed online selling
algorithms with two benchmark online algorithms. The first
is All-selling, which sells all the remaining period of each
reserved instance at the time point for making decisions.
The second algorithm is Keep-reserved, in which all reserved
instances are not sold. All the three proposed online selling al-
gorithms, as well as the corresponding benchmark algorithms,
were conducted for each group in the preprocessed dataset.
The costs achieved by all these algorithms were normalized
to Keep-reserved.

Cost Performance: We separately summarized the per-
formance of three online selling algorithms including A3T/4,
AT/2, and AT/4 based on the dataset for all demand fluctuation
levels in Fig. 3. We can see in Fig. 3a that the online selling
algorithm’s cost performance is better than both All-selling
and Keep-reserved algorithms, but not by much. The reason
is that the remaining period of each instance sold is T/4, which
is too short to compensate the cost greatly. When switching
from Keep-reserved to the proposed A3T/4, more than 60%
users reduce their costs. Only 1% users incur slightly more
costs than before, and the growth rate of the highest cost is
no more than 1%. Compared with the benchmarks, the gap of
AT/2 is bigger than that of A3T/4. As shown in Fig. 3b, when
switching from Keep-reserved to the proposed AT/4, more than
70% users reduce their costs. About 40% users save more than
20% cost, which is better than that of A3T/4. But there are about
3% users incurring slightly more costs than before. In Fig. 3c,
cost savings of AT/4 are guaranteed, with more than 75% users
reduce their costs, and more than 40% users save more than
30%. However, there are about 5% users incurring more costs
than before, which is worse than A3T/4 and AT/4.

TABLE III
AVERAGE COST PERFORMANCE OF EACH ALGORITHM (NORMALIZED TO

KEEP-RESERVED).

Group 1 Group 2 Group 3 All users
A3T/4 0.9387 0.9154 0.9300 0.9279
AT/2 0.8797 0.8329 0.8966 0.8643
AT/4 0.8199 0.7583 0.8620 0.8032

Next we compared the performance of all the three proposed
online selling algorithms at different demand fluctuation levels,
and the results are shown in Fig. 4. Just as we have discussed
in previous section, when users’ demands are relatively stable
in Fig. 4a and less fluctuating in Fig. 4b, the cost performance
of AT/4 is better than that of A3T/4 and AT/2, with the reason
that there are larger remaining period of each reserved instance
to compensate the cost. Besides, as we can see from Fig. 4c,
when the demands are highly fluctuating, the cost performance
of AT/4 is also better than A3T/4 and AT/2 on average. However,
when it comes to the extreme cases, as shown in Table II, A3T/4

performs best for users whose demands are highly fluctuating.
Thus, when users know their demand patterns in advance,
they could achieve the least actual cost by choosing proper
online selling algorithms. Of course, from the experimental
results, we can see that even without any prior knowledge
of future demand patterns, cloud users still can achieve a
satisfactory actual cost by choosing any one of our online
selling algorithms.

Then we summarized the average cost performance of all
algorithms for each group of users in Table III. We can see
that cost savings of our online selling algorithms are almost
guaranteed. Thus, we can conclude that our three online selling
algorithms can save cost significantly in all cases discussed in
this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we first propose online selling algorithms to
guide cloud users in making a decision whether or not to sell
its reservations in Amazon EC2 reserved instance marketplace
without knowing future demands while guaranteeing compet-
itive ratios. Our three online algorithms A3T/4, AT/2 and AT/4

make decisions whether or not to sell a reserved instance at
the time spot 3T/4, T/2 and T/4 respectively, where T denotes
the reservation period. We prove theoretically that the three
proposed online algorithms can achieve guaranteed competi-
tive ratios and their values are specific to the type of reserved
instances under consideration. Specifically, for all standard
instances (Linux, US East) for 1-year terms in Amazon EC2,
our algorithm A3T/4 can achieve a ratio of 2 − α − a/4 in
managing instance purchasing cost, compared with an optimal
offline algorithm. Through extensive experiments based on
workload data collected from real-world applications, we show
that our online algorithms can achieve significant cost savings
to cloud users compared with always keeping their reservations
in Amazon EC2 reserved instance marketplace.

In the future work we would like to design a randomized
online selling algorithm, which guides users in selling their
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Fig. 3. The cost performance of online algorithms. All costs are normalized to Keep-Reserved.
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Fig. 4. The cost performance of online algorithms in different groups.

reservations at an arbitrary time spot during their reservation
periods. Although it is a more challenging work, we speculate
that the randomized online selling algorithm will achieve a
better possible competitive ratio.
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