
A Study of Long-Tail Latency in n-Tier
Systems: RPC vs. Asynchronous Invocations

Qingyang Wang†, Chien-An Lai∗, Yasuhiko Kanemasa‡, Shungeng Zhang†, Calton Pu∗

†Computer Science and Engineering, Louisiana State University
∗College of Computing, Georgia Institute of Technology
‡Software Laboratory, FUJITSU LABORATORIES LTD.

Abstract—Long-tail latency of web-facing applications
continues to be a serious problem. Most of the previously
published research addresses two classes of long latency
problems: uneven workloads such as web search, and
resource saturation in single nodes. We describe an exper-
imental study of a third class of long tail latency problems
that are specific to distributed systems: Cross-Tier Queue
Overflow (CTQO) due to a combination of millibottlenecks
(with sub-second duration) and tightly-coupled servers
in n-tier systems (e.g., Apache, Tomcat, and MySQL)
using RPC-style request-response communications. Our
experiments show that the appearance of millibottlenecks
(e.g., created by short workload bursts) in one server often
causes another server (which has no saturated resources)
in the synchronous invocation chain to fill up its queues
(CTQO) and drop packets, creating very long response
time queries. CTQO can be reduced or avoided by re-
placing the server dropping packets with an asynchronous
server. In synchronous n-tier system experiments, long tail
latency due to CTQO can be reproduced consistently at
utilization as low as 43%. In contrast, when all n-tier
servers are replaced by asynchronous versions, CTQO and
consequent dropped packets remain absent at utilization
levels as high as 83%, despite the same millibottlenecks.

I. INTRODUCTION

Long-tail latency problem in web-facing applications
appears when a majority of normal queries (responding
within milliseconds) co-exist with a non-trivial number
of queries with very long response time (VLRT), on
the order of seconds. Long-tail latency is an important
practical problem: an Amazon study [17] showed that
every 100ms increase in the page load time decreases
sales by 1%. Thus it is desirable to remove all VLRT
queries. However, despite several studies on various
aspects of long-tail latency, practitioners continue to
report real-world problems in recent years [9], [16],
[19], [20], [34]. Many believe that the persistent low
utilization levels in data centers [19], [22], [26] are also
due to management concerns with long-tail latency.

The technical challenges in long-tail latency research
arise from the varied causes of long-tail latency, which
can be divided into three classes: (1) uneven resource
requirements in apparently uniform workloads [13],
e.g., web search of popular terms can return many more
results than normal terms; (2) resource contention due

to bursty workloads in single nodes [25], [29], [33],
e.g., interference by “noisy neighbors”; (3) resource
contention with dependencies among distributed nodes,
a phenomenon we call Cross-Tier Queue Overflow
(CTQO), which is the focus of this paper. A more
detailed discussion of this classification is included in
Section II. Here, we point out that VLRT requests due
to CTQO are clearly unrelated to uneven job require-
ments, since the execution of these VLRT requests by
themselves would only take milliseconds. Distinct from
single node resource contention, VLRT requests due to
CTQO often start to appear under moderate average re-
source utilization (e.g., 50%) of all participating nodes.
Consequently, we believe that CTQO problems may
arise independently even in networked systems where
techniques proposed for the other two causes have been
deployed. Our study is consistent with Mogul’s argu-
ment [24] that the performance of distributed systems is
far more complex than a single server’s behavior due to
the dependencies and interactions among components.

In this paper, we study a representative category of
CTQO problem, the VLRT requests in n-tier systems
caused by dropped packets due to strong cross-tier
dependencies created by Remote Procedure Calls (RPC)
among servers. (To the best of our knowledge, all the
known CTQO problems fall into this category.) Detailed
experimental data will demonstrate that the following
sequence of causal events will lead to dropped packets
and VLRT requests at moderate average utilization lev-
els. (1) Resource millibottlenecks happen in some node,
e.g., CPU saturated for a fraction of a second due to
bursty workloads typical of web-facing applications. (2)
A millibottleneck stops the saturated server processing
for a short time (order of milliseconds), causing its
message queues and thread pools to fill up, initiating
a process called Cross-Tier Queue Overflow (CTQO)
in which upstream or downstream servers also fill up
their queues. (3) When one of the waiting servers (not
the server with the originating millibottleneck) have its
queues overflown (e.g., when all the threads are busy
and TCP buffer overflows), further incoming packets
are dropped. (4) The dropped packets are retransmitted

several seconds later, creating VLRT requests. Our
data will show that these events can reliably reproduce
the VLRT requests when appropriate (and reasonable)
conditions are met in a classic n-tier system with RPC-
style synchronous invocations.

The main contribution of this paper is a methodical
experimental evaluation of the effectiveness of event-
based asynchronous servers in reducing or preventing
CTQO, by removing the strong dependencies caused
by RPCs. We replace synchronous servers in n-tier
systems with their asynchronous counterparts one by
one. First, we replace Apache with Nginx, an event-
based web server. Second, we replace Tomcat with an
event-based version called XTomcat. Third, we turn
on a lightweight queue feature of the InnoDB storage
server in MySQL to reduce queuing overhead. Detailed
experimental data show that replacing an upstream syn-
chronous server, e.g., Apache with Nginx, can remove
the upstream CTQO problem. Symmetrically, replacing
a downstream synchronous server, e.g., Tomcat with
XTomcat, can remove the downstream CTQO problem.
Under moderate resource utilization levels, the CTQO
problem disappears completely if (and only if) all the
servers are asynchronous.

The second contribution of the paper is a concrete
characterization of the CTQO class of VLRT requests,
a significant set of distributed phenomena in long-tail
latency problems. The two components of CTQO both
contain non-trivial classes of problems. First, CTQO is
initiated by millibottlenecks that can arise from con-
tention of any hardware or software resources, including
CPU, memory, network, disk and other storage devices,
and kernel management of these resources. We do not
claim novelty of millibottleneck discovery, previously
reported [31], [32], but we add to the variety of millit-
bottlenecks studies. Second, the cross-tier dependencies
that cause VLRT requests bring back the fundamental
question on the trade-offs between the syntactic simplic-
ity of RPC-style synchronous invocations and scalability
advantages of asynchronous communications at the cost
of higher programming complexity. It would appear
that after more than 30 years of RPC dominance [8],
there may be good reasons for serious consideration of
asynchronous communications again.

Due to space constraints we assume reader familiarity
with n-tier systems and their main components, as
well as web-facing applications such as e-commerce.
We further assume readers are familiar with general
distributed systems tradeoffs, specifically the RPC and
asynchronous communications. We include appendices
that summarize details on our system for the readers
who may be less familiar with these concepts.

The rest of the paper is organized as follows. Sec-
tion II summarizes the related work. Section III explains

the long-tail latency problems due to dropped packets.
Section IV describes the experiments that illustrate the
sequence of causal events starting from millibottlenecks
and ending in dropped packets because of CTQO.
Section V shows the evaluation of n-tier configurations
with an increasing number of asynchronous servers and
Section VI concludes the paper.

II. RELATED WORK

The long-tail latency problem of internet services in
cloud has received considerable attention recently [6],
[9], [19], [20], [34]. The sources of the tail latency
can be divided into three classes: (1) Uneven resource
requirements in apparently uniform workloads, (2) Re-
source contention due to bursty workloads or collocated
workloads in single nodes, and (3) Resource contention
with dependencies among distributed nodes.

On the first class, uneven resource requirements of
workloads means most of requests take very short time
to complete while a non-negligible percentage take long
time to finish, causing the long-tail latency problem.
There are two types of long requests.

Known causes for long requests. This usually hap-
pens in web search, while most user search queries
are short, a significant percentage are long [13], [14].
Jeon et al. [14] report that the longest queries (e.g.,
99th-percentile execution times) can be 10X longer than
the average, and even 100X longer than the median.
Reducing tail latency in this case is to reduce the long
queries’ execution time (e.g., through parallel process-
ing). Our research on VLRT requests due to CTQO
are unrelated to uneven job requirements, since the
execution of these VLRT requests by themselves would
only take milliseconds.

Unknown causes for long requests. This is mainly
due to the performance variations of computing nodes,
which make the processing of a normal request to
be unexpectedly long. Several previous research ef-
forts propose solutions to the unexpected long requests
without identifying the specific sources. Representative
examples include: Dean et al. [9] (use service repli-
cation to bypass tail latency in Google’s interactive
applications) and C3 [27] (adaptive replica selection
scheme in storage servers). Their approach typically
uses redundant servers to compensate for requests that
are taking “too long” to respond, regardless of the cause
of the delay. Our study differs from this class because
of our focus on the specific class of long-tail latency
problems due to dropped packets.

On the second class, resource contention due to bursty
workloads or collocated workloads in single nodes
cause significant queuing/scheduling delay, which lead
to the long-tail latency problem. Typical solutions are

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy
 [#

]

Response time [ms]

(a) WL 4000, system throughput is 572
req/s. Highest average CPU util. is 43%.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy
 [#

]

Response time [ms]

(b) WL 7000, system throughput is 990
req/s. Highest average CPU util. is 75%.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000

F
re

qu
en

cy
 [#

]

Response time [ms]

(c) WL 8000, system throughput is 1103
req/s. Highest average CPU util. is 85%.

Fig. 1: Semi-log graph of request frequency by response time at three representative workloads. The latency
long-tail problem is due to dropped packets with multi-modal distribution, peaks near 0, 3, 6, and 9 seconds.

providing smart control mechanisms, resource alloca-
tion, and priority scheduling. Representative examples
include: Cake [30] (reactive feedback-control sched-
uler to minimize the interference between batch jobs
with latency sensitive applications), PriorityMeister [36]
(combination of per-workload priorities and rate limit
across multiple stages), and Detail [35] (prioritizing
latency-sensitive flows to reduce network latency). Our
focus on distributed phenomena (dropped packets and
CTQO) and solutions (chain of asynchronous servers)
differs from, and complements, these previous studies.

On the third class, previous research [31], [32]
shows that millibottlenecks with dependencies among
distributed nodes not only cause queuing delay in a local
server, but also cause significant queueing delay in other
servers in the invocation chain and lead to the long-tail
latency problem. In these papers, solutions considered
primarily the causes of millbottlenecks, for example,
Java garbage collectors (GCs) [32] and Dynamic Volt-
age and Frequency Scaling (DVFS) algorithms in CPU
power management [31]. Compared to these early stud-
ies, this paper focuses on asynchronous communications
among distributed nodes as a general solution, regard-
less of the specific cause of millibottlenecks.

III. LONG-TAIL LATENCY DUE TO DROPPED
PACKETS

Our focus is on the CTQO class of long-tail latency
problems caused by dropped packets under moderate
average utilization. Such dropped packets form an in-
teresting and challenging class of problems because of
a combination of two apparently contradictory factors.
First, unlike the skewed work requirement case [13], the
VLRT requests only take milliseconds when executed
by themselves. This suggests that queueing is a likely
cause. Second, the VLRT requests start to appear at
moderate resource utilization levels, for example, 50%
of CPU for CPU-intensive workloads, where queuing
would be unlikely according to classic queuing theory.

The CTQO class of long-tail latency problems is
characterized by a distinctive multi-modal distribution
of response times. Figure 1 shows that the vast majority
of requests return within a few milliseconds. However,
additional clusters starting at 3, 6, and 9 seconds
demonstrate the existence of long-tail latency. Signif-
icant experimental evidence has been presented [31],
[32] in support of the hypothesis that the 3, 6, and 9-
second clusters in Figure 1 are due to the execution of
retransmitted TCP packets.

Figure 1 also shows that packets start to drop at
moderate resources utilization levels (e.g., 43% of CPU
in Figure 1(a)). Thus we can rule out persistent resource
bottlenecks as potential explanations. Instead, very short
bottlenecks called millibottlenecks in this paper due to
their sub-second duration have been linked to dropped
packets. Based on an analysis of previous work and our
experimental results (see next section), we summarize a
set of static conditions for millibottlenecks to produce
dropped packets and VLRT requests:

1) The n-tier system is composed of synchronous
servers communicating through RPC-style invoca-
tions, e.g., Apache, Tomcat, and MySQL.

2) The workload is bursty [10], [21], [23], character-
istic of web-facing applications, e.g., RUBBoS [4].

3) The requests are short, taking only milliseconds to
execute. (This is a common situation in practice.)

4) All the servers operate at moderate average utiliza-
tion levels for all resources. (This assumption re-
moves the interferences from persistent bottlenecks
and skewed work [13].)

In Section IV, we will show that under these static
conditions (which are reasonable assumptions for web-
facing applications) millibottlenecks may happen due to
several possible reasons including a workload burst. A
millibottleneck will trigger a sequence of events called
Cross-Tier Queue Overflow (CTQO) that will lead to
dropped packets and produce VLRT requests under the
following appropriate dynamic conditions:

1) Reasonable workload (e.g., 1000 requests/sec).

Fronts
tiers

MySQL

Apache Tomcat MySQL

SysBursty

SysSteady

Co-locate the two
servers on the same

CPU core of a
physical machine

Fig. 2: VM Consolidation: SysSteady-Tomcat co-
located with SysBursty-MySQL.

2) Reasonable system configurations (e.g., thread pool
size of 150, TCP buffer (backlog) size of 128).

3) Millibottleneck of sufficient length (e.g., 0.4sec).
As an illustrative example, consider the sample val-

ues above: 1000*0.4=400 requests will arrive dur-
ing the millibottneck, when the server can only hold
150+128=278 requests. The excess requests will cause
the CTQO and dropped packets. Furthermore, these
conditions are sufficient for reliably reproducing VLRT
requests. We note that the static and dynamic conditions
are independent of the specific causes of millibottle-
necks. Concretely, Section IV describes the CTQO
process for two kinds of millibottlenecks: one is in CPU
and the other is in I/O.

IV. MILLIBOTTLENECKS+CTQO= DROPPED
PACKETS

CTQO is initiated by millibottlenecks in a down-
stream tier server, from which the queueing effect is
propagated and amplified to the upstream tiers of the
system because of the synchronous RPC-style commu-
nication in the long invocation chain. We use a micro-
level event analysis to show CTQO in our RUBBoS
experiments, where millibottlenecks are observed in
two typical scenarios (VM consolidation and server log
flushing) in cloud computing environment. The micro-
level event analysis exploits the fine-grained measure-
ment data collected in RUBBoS experiments. Specif-
ically, all the messages exchanged between servers
are timestamped at millisecond resolution and system
resource utilizations (e.g., CPU) are monitored at short
time intervals (e.g., 50ms).

A. CPU Millibottleneck: VM Consolidation

The first illustrative example of upstream CTQO is
a CPU millibottleneck due to interferences between
two consolidated VMs. VM consolidation is a common
practice for cloud services to share infrastructure costs
and increase profit [7], [12], [15]. The following VM
consolidation experiments consist of two RUBBoS 3-
tier applications, called SysSteady and SysBursty, re-
spectively. For clarity of analysis, the consolidation
consists of only one shared physical node (single core).

 0
 20
 40
 60
 80

 100

0 4 8 12 16 20

C
P

U
 u

til
. [

%
]

Timeline [s]

SysSteady_Tomcat CPU SysBursty_MySQL CPU

(a) SysSteady-Tomcat consumes about 70% of physical CPU core
(yellow line). SysBursty-MySQL requires 100% of CPU during
bursts (black line), saturating the physical node and pushing
SysSteady-Tomcat into millibottleneck (yellow line reaching 100%)
at time markers 2, 5, 9, and 15 seconds.

 0
 100
 200
 300
 400
 500
 600

0 4 8 12 16 20Q
ue
ue
d
re
qu
es
ts
 [#
]

Timeline [s]

SysSteady_Tomcat SysSteady_Apache

One thread pool
+ TCP buffer

Two thread pools
+ TCP buffer

(b) During the millibottleneck periods (2, 5, 9, 15 seconds), queues
are filled in SysSteady Tomcat and CTQO creates longer queues in
SysSteady Apache.

 0

 20

 40

 60

 80

0 4 8 12 16 20

V

LR
T

 r
eq

ue
st

s

Timeline [s]

Requests with response time > 3sec

(c) Number of VLRT requests (>3 sec) due to dropped packets at
2, 5, 9, and 15 seconds, counted at every 50ms time window.
Such VLRT requests contribute to multi-modal response time
distribution in Figure 1(b).

Fig. 3: Upstream CTQO due to millibottlenecks in
VM Consolidation.

All other servers run on their own dedicated physical
nodes. In most experiments SysSteady Tomcat is co-
located with SysBursty MySQL, producing millibot-
tlenecks in SysSteady Tomcat. This configuration is
shown in Figure 2. For this section, SysSteady has a
workload of 7000 clients with the RUBBoS default burst
index of 1 (see [23]). SysBursty has a much smaller
workload of 400 clients, but burst index of 100. Such
bursts are an important part of web application workload
characterization (e.g., the “Slashdot” effect [5]).

When both SysSteady and SysBursty are in a steady
state, Figure 3(a) shows that SysSteady Tomcat con-
sumes about 70% of the CPU and SysBursty MySQL
consumes a negligible amount. As SysBursty enters
a workload burst (at 2, 5, 9, and 16 seconds), com-
bined workload saturates the shared CPU, causing
millibottlenecks and the associated queueing effect in
SysSteady Tomcat. The queues that store the wait-
ing requests consist of a server’s thread pool (size

...

Dynamic request

(light)

Limited
queue

Static request

t1=0s t2=0.05s

...Clients

VSB
occurs

Apache

Tomcat

...

Dynamic request

(heavy)

t3=0.1s

Queue
full

Queue
full

time

requestresponse

Fig. 4: Conceptual illustration of upstream CTQO
in Apache-Tomcat. At t1 time marker, a millibottle-
neck starts in Tomcat, filling up its queues. At t2,
MaxSysQDepth(Tomcat) is reached, forcing all types of
requests to block in Apache. By t3, even static requests
which are only served in Apache are queued.

determined by its configuration parameter) and TCP
buffer (TCP backlog). The total number (sum) of
queue-able requests in all those queues is denoted by
MaxSysQDepth. The queuing of requests in SysSteady
Tomcat resulting from the millibottlenecks quickly ex-
ceeds MaxSysQDepth(Tomcat), blocking new comming
requests. The blocking of Tomcat queues leads to even
longer queues in SysSteady Apache because all types
of requests start to queue there (Figure 3(b)). This
“push-back” behavior is called upstream CTQO, as
illustrated conceptually in Figure 4. For typical milli-
bottlenecks, the growth of Apache queues in exceeds
MaxSysQDepth(Apache) (278=150+128, indicated by
the dashed line in Figure 3(b)), leading to dropped
packets. The dropped TCP packets are retransmitted
after 3 seconds in Redhat kernel 2.6.32, creating the
VLRT requests shown in Figure 3(c).

In addition to the first level Apache queue overflow,
at MaxSysQDepth(Apache)≈ 278 at 2, 5, 9, 15 seconds,
there is a second level queue overflow at about 17 sec-
onds in Figure 3(b), where MaxSysQDepth(Apache)≈
428. The increased MaxSysQDepth is from a new,
second Apache process with an additional thread pool
(150), which is in response to the full consumption of
all the threads in the first process. However, incoming
requests still get dropped when the thread pool in the
second process is exhausted.

B. I/O Millibottleneck: Log Flushing

The second illustrative example of upstream CTQO
consists of the flushing of logs by the collectl [1]
performance monitoring tool used in our experiments.
At fine granularity (every 50ms), collectl records
system resource utilization, including CPU, memory,
process runtime state, network and disk I/O. To remove
the interference from CPU millibottlenecks in Tomcat,

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80C
P

U
 I/

O
 w

ai
t [

%
]

Timeline [s]

Apache Tomcat MySQL

(a) Log is flushed by collect every 30 seconds, causing CPU I/O
wait millibottlenecks in MySQL.

 0
 100
 200
 300
 400

 0 10 20 30 40 50 60 70 80Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Apache queue Tomcat queue MySQL queue

(b) Millibottlenecks in MySQL create upstream CTQO to Tomcat,
and finally to Apache. When MaxSysQDepth(Apache) is exceeded,
new requests are dropped, becoming VLRT requests (see (c)).

 0

 20

 40

 60

 0 10 20 30 40 50 60 70 80#
V

LR
T

 r
eq

ue
st

s
Timeline [s]

Requests with response time > 3sec

(c) VLRT requests occur when MaxSysQDepth(Apache) is reached
(see figure (b) above).

Fig. 5: Upstream CTQO due to I/O millibottlenecks
in MySQL.

we scale up the Tomcat VM in these experiments from
one CPU core to four cores. This upgrade increases
the number of requests processed by Tomcat, shifting
the millibottlenecks to MySQL when its collectl
flushes measurement data log from memory to disk at
30 seconds intervals. The millibottleneck from log flush
reliably produces upstream CTQO.

Figure 5(a) shows millibottlenecks in MySQL in
pink high peaks at 10, 40, and 70 seconds (30-
second intervals) as collectl flushes its log, result-
ing in 100% I/O wait. These millibottlenecks cause
the other MySQL threads blocking for CPU. When
queued requests exceed MaxSysQDepth(MySQL), the
Tomcat starts to see growing queues due to upstream
CTQO (Figure 5(b)). When queued requests exceed
MaxSysQDepth(Tomcat), further upstream CTQO prop-
agates to Apache. When queued requests in Apache
exceed MaxSysQDepth(Apache), packets are dropped,
creating VLRT requests (Figure 5(c)).

V. EVALUATION OF ASYNCHRONOUS N-TIER
SYSTEMS

A. Evaluation Method

The experiments in Section IV showed two cases
of upstream CTQO, one due to CPU millibottlenecks
in Tomcat, and the other due to I/O millibottlenecks

HTTP
requests Asyn

Connector
Asyn

Connector

XMySQLNginx

DB
queries

Application

Asyn
Connector

HTTP
requests

Application

Asyn
Connector

XTomcat

Application

Asyn
Connector

Fig. 6: Architecture of the asynchronous 3-tier system. Nginx, XTomcat, and XMySQL use asynchronous
connectors to communicate with other servers.

in MySQL. Since the dependencies due to the RPC-
style communications are a necessary condition for
upstream CTQO, a general question is whether we
can reduce or prevent upstream CTQO by replacing
the synchronous RPC calls with asynchronous event-
based communications. We acknowledge that since its
introduction [8], RPC has been considered the right
way to build distributed systems, with n-tier applications
as a classic example. Nevertheless, our experimental
data will show that system designers should consider
asynchronous communications when long-tail latency
becomes a real problem due to dropped packets.

Starting from the same 3-tier application benchmark
of Section IV, we will replace the three RPC-based
servers (Apache, Tomcat, and MySQL) with their asyn-
chronous counterparts one-by-one. All the experiments
use the same workload to produce the same millibot-
tlenecks, so we can study and compare the impact
of asynchronous messages on the creation of CTQO.
Sections V-B, V-C, and V-D describe the experimental
results with an increasing number of asynchronous
servers (NX=1, 2, and 3). The final configuration with
three asynchronous servers is shown in Figure 6, with
Nginx, XTomcat, and XMySQL. The limitations of
some alternative design choices (e.g., increasing the
thread pool size) are discussed in Section V-E. Due
to space constraints, the implementation details of
asynchronous servers and benchmark applications are
included in Appendix A.

B. NX=1, Replacing Apache with Nginx

Since Apache is the source of VLRT requests in
both cases described in Sections IV-A and IV-B, the
first question to ask is whether replacing just the
synchronous Apache with an asynchronous web server
(Nginx [2], in wide production use for several years)
will solve the upstream CTQO problem and remove
VLRT requests. The answer turns out to be both yes and
no. The Nginx indeed will not drop packets. However,
the problem goes downstream to Tomcat and MySQL,
which become new sources of VLRT requests.

We make two technical observations in the fol-
lowing experiments. First, to better control our VM

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60

C
P

U
 u

til
. [

%
]

Timeline [s]

SysSteady_Tomcat CPU SysBursty_MySQL CPU

(a) SysBursty-MySQL requires 100% of CPU during bursts (pink
line), saturating the physical node and pushing SysSteady-Tomcat
into millibottleneck (black line reaching 100%) at time markers 7,
26, 42, and 57 seconds.

 0

 100

 200

 300

 0 10 20 30 40 50 60Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Nginx queue Tomcat queue MySQL queue

(b) Millibottlenecks in SysSteady Tomcat cause queued requests to
reach MaxSysQDepth(Tomcat)=165+128=293; then packets start to
drop, creating VLRT requests (see (c) below).

 0

 20

 40

 60

 0 10 20 30 40 50 60#
V

LR
T

 r
eq

ue
st

s

Timeline [s]

Nginx Tomcat MySQL

(c) VLRT requests observed in Tomcat during millibottlenecks in
Tomcat itself.

Fig. 7: NX=1, Nginx-Tomcat-MySQL with milli-
bottlenecks in Tomcat (a). No upstream CTQO in
Nginx (b), but downstream CTQO happens when more
packets than MaxSysQDepth(Tomcat) arrive during the
millibottlenecks (c).

consolidation experiments (Section IV-A), we modified
SysBursty to generate specific bursts of requests at
specified times. For example, a batch of 400 ViewStory
requests arriving every 15 seconds will create repro-
ducible CPU millibottlenecks that last for approximately
300ms. Second, from the Cross-Tier Dependency se-
quence point of view, replacing the synchronous Apache
with the asynchronous Nginx removes the limitations
of MaxSysQDepth(Apache). This happens because the
maximum number of requests processed by Nginx
is no longer bound by MaxSysQDepth(Nginx), but a

 0
 20
 40
 60
 80

 100

0 10 20 30 40 50 60

C
P

U
 u

til
. [

%
]

Timeline [s]

SysSteady_MySQL CPU SysBursty_MySQL CPU

(a) Millibottlenecks in SysSteady MySQL (pink line) caused by
interference of the collocated SysBursty MySQL (black line) at
time markers 6, 21, 39, and 57 seconds.

 0

 100

 200

 300

0 10 20 30 40 50 60Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Nginx queue XTomcat queue MySQL queue

(b) Millibottlenecks in SysSteady MySQL cause queued requests
to reach MaxSysQDepth(MySQL)=228=(100+128), then packets
start to drop, creating VLRT requests (see (c)).

 0
 10
 20
 30
 40

0 10 20 30 40 50 60#
V

LR
T

 r
eq

ue
st

s

Timeline [s]

Nginx XTomcat MySQL

(c) VLRT requests observed in MySQL due to downstream CTQO
and dropped packets.

Fig. 8: NX=2, Nginx-XTomcat-MySQL with mil-
libottlenecks in MySQL (a). No upstream CTQO
from MySQL to XTomcat and Nginx (b). Downstream
CTQO in MySQL (b) when packets arriving during
millibottleneck exceed MaxSysQDepth(MySQL) (c).

lightweight queue in Nginx of size LiteQDepth (e.g., all
available TCP port numbers 65535). Nginx can route all
the incoming requests to Tomcat, which shifts the prob-
lem downstream. Under the assumption of no resource
bottlenecks in the web server, there are two potential
sources of millibottlenecks downstream: Tomcat and
MySQL, which are still synchronous.

The experimental results in Figure 7 show that
millibottlenecks in SysSteady Tomcat can lead to
dropped packets. Figure 7(a) shows the CPU utilization
of SysSteady Tomcat and the co-located SysBursty
MySQL (same configuration as Figure 2). The millibot-
tlenecks in SysSteady Tomcat (at time mark 7, 26, 42,
and 57) cause requests to queue in Tomcat (Figure 7(b)).
Although the upstream CTQO between Tomcat and
Apache has been removed by Nginx, Nginx will send
a large number of requests (up to LiteQDepth(Nginx))
to Tomcat, which has MaxSysQDepth(Tomcat)=293
(thread pool size 165 plus the TCP buffer size
128). As the excess requests (LiteQDepth(Nginx) >
MaxSysQDepth(Tomcat)) overflow the queues in Tom-
cat (we call downstream CTQO), packets are dropped
by Tomcat becoming VLRT requests (Figure 7(c)).

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

C
P

U
 u

til
. [

%
]

Timeline [s]

SysSteady_XTomcat CPU SysBursty_MySQL CPU

(a) Millibottlenecks in SysSteady XTomcat (black line) caused by
interference of the collocated SysBursty MySQL (pink line) at time
markers 8, 24, and 39.

 0
 100
 200
 300
 400

 0 10 20 30 40 50Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Nginx queue XTomcat queue MySQL queue

(b) Millibottlenecks in SysSteady XTomcat cause many queued
requests in XTomcat (up to LiteQDepth) to be sent to MySQL
in a batch, exceeding MaxSysQDepth(MySQL)=228=(100+128);
excess packets are dropped.

 0
 10
 20
 30
 40

 0 10 20 30 40 50#
V

LR
T

 r
eq

ue
st

s

Timeline [s]

Nginx XTomcat MySQL

(c) VLRT requests in MySQL due to downstream CTQO.

Fig. 9: NX=2, Nginx-XTomcat-MySQL with milli-
bottlenecks in XTomcat. Millibottlenecks in XTomcat
(a) cause batched requests (b) to be sent to MySQL,
causing downstream CTQO and VRLT requests (c).

Millibottlenecks in SysSteady MySQL can be pro-
duced by bursts from a co-located SysBursty MySQL.
These MySQL millibottlenecks can cause SysSteady
Tomcat to drop packets due to upstream CTQO. Con-
cretely, MySQL millibottlenecks cause queued requests
in MySQL, which has MaxSysQDepth of about 50
(Tomcat DB connection pool size). When the requests
exceed 50, Tomcat starts to fill up its own queues due
to upstream CTQO. When the arriving requests exceed
MaxSysQDepth(Tomcat), Tomcat starts to drop packets,
causing VLRT requests. This upstream CTQO between
MySQL & Tomcat is similar to the upstream CTQO
between Apache & Tomcat (Figure 3). We omit the
graphs in this case due to space constrains.

In summary, the Nginx-Tomcat-MySQL configura-
tions show that the replacement of the synchronous
Apache with the asynchronous Nginx removed the web
server from the Cross-Tier Dependency sequence and
prevented the upstream CTQO between Nginx and
Tomcat. However, two problems may arise downstream.
First, when millibottlenecks happen in Tomcat, the
asynchronous Nginx can still send a large number of
requests to Tomcat, causing downstream CTQO and

dropped packets. Second, when millibottlenecks happen
in MySQL, it may cause upstream CTQO in Tomcat.

C. NX=2, Replacing Tomcat with XTomcat

After the replacement of Apache with Nginx, the
second step is to replace Tomcat with an event-based
counterpart. Without a production-use asynchronous
application server, we modified the Tomcat to handle
requests asynchronously, which we call XTomcat. Since
our focus is on the evaluation, the transformation of
Tomcat into XTomcat is postponed to Appendix A.

After the yes-and-no answer to the first question
(Section V-B), the second question to ask is whether
replacing both the Apache and Tomcat with their asyn-
chronous versions (Nginx and XTomcat) will solve the
CTQO problem and remove VLRT requests. The answer
again turns out to be both yes and no. The experiments
show that upstream and downstream CTQO indeed
cease to appear in both Nginx and XTomcat. However,
downstream CTQO can occur in MySQL in two ways.

The first case of downstream CTQO happens with
millibottlenecks in SysSteady MySQL, when co-located
with SysBursty MySQL. Figure 8(a) shows the CPU uti-
lization of SysSteady MySQL and SysBursty MySQL.
The millibottlenecks in SysSteady MySQL appear
at time marks 6, 21, 39, and 57, which create
the queued requests in MySQL (Figure 8(b)). Since
MaxSysQDepth(MySQL) 228 = thread pool size (100)
+ TCP buffer size (128), the continuous inflow of re-
quests from Nginx and XTomcat cause dropped packets
when more than 228 requests arrive during the MySQL
millibottleneck, causing VLRT requests (Figure 8(c)).

The second case of downstream CTQO happens
with millibottlenecks in SysSteady XTomcat, when co-
located with SysBursty MySQL (Figure 9). The CPU
usage of SysSteady XTomcat (Figure 9(a)) shows mil-
libottlenecks in XTomcat at time marks 8, 24, and 39,
causing queued requests (Figure 9(b)). When a XTomcat
millibottleneck ends, XTomcat quickly sends all the
queued requests to SysSteady MySQL (Figure 9(b)),
up to LiteQDepth(XTomcat). The requests beyond the
capability of MySQL plus MaxSysQDepth(MySQL) are
dropped, becoming VLRT requests.

Although surprising at first glance, the downstream
CTQO caused by XTomcat in MySQL can happen
in realistic settings. Consider our illustrative exam-
ple of millibottleneck with 0.4 sec duration and av-
erage request arrival rate of 1000 req/s. Since Lite-
QDepth(XTomcat) is large (e.g., 65535), XTomcat will
store all 400 requests during its millibottleneck, and
send all of them to MySQL after the millibottleneck
ends. This will cause downstream CTQO and dropped
packets when MaxSysQDepth(MySQL) of 228 is ex-
ceeded (Figure 9(c)).

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

C
P

U
 u

til
. [

%
]

Timeline [s]

SysSteady_XTomcat CPU SysBursty_MySQL CPU

(a) CPU millibottlenecks in SysSteady XTomcat caused by
interference of the collocated SysBursty MySQL.

 0
 150
 300
 450
 600
 750

 0 10 20 30 40 50Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Nginx queue XTomcat queue XMySQL queue

(b) Millibottlenecks in SysSteady XTomcat cause queued re-
quests in XTomcat; Nginx queues and XTomcat queues indicate
no CTQO in Nginx and XTomcat. Nginx and XTomcat also do
not drop any requests since LiteQDepth is large (e.g., 65535).

Fig. 10: NX=3, the Nginx-XTomcat-XMySQL case
with millibottlenecks in XTomcat. CTQO disappears
in the asynchronous 3-tier system.

D. NX=3, Replacing MySQL with XMySQL

The third step of our evaluation is to replace MySQL
with an asynchronous database server, XMySQL. The
third question is whether replacing the entire n-tier sys-
tem components with Nginx, XTomcat, and XMySQL
will solve the CTQO problem and remove VLRT re-
quests. The experiments will show that the entirely
asynchronous n-tier system can prevent CTQO and
avoid VLRT requests despite millibottlenecks in any of
the servers. For XMySQL, we chose the InnoDB storage
engine of MySQL that provides a feature to store
the waiting requests in a lightweight queue when the
threads are fully occupied. We configured the InnoDB in
XMySQL to run with 8 threads to handle active queries,
and an additional queue to store up to 2000 queries,
which is sufficiently large for LiteQDepth(XMySQL).

To evaluate the entirely asynchronous n-tier system
due to CPU millibottlenecks, we run the same VM con-
solidation experiments as described in Section IV-A and
Figure 2). The component servers are changed from the
synchronous version (Apache-Tomcat-MySQL) to their
asynchronous counterparts (Nginx-XTomcat-XMySQL)
in SysSteady, and the RUBBoS benchmark application
changed to use asynchronous messages.

First, let us consider the millibottlenecks in XTomcat.
Figure 10(a) shows CPU millibottlenecks in SysSteady
XTomcat at time marks 4, 13, and 35, causing queued
requests in XTomcat (Figure 10(b)). The graph also
shows that the queues in Nginx have very similar
depths of XTomcat queue during the millibottlenecks,
suggesting no upstream CTQO between XTomcat and
Nginx. Since Nginx, XTomcat, and XMySQL all have

 0
 20
 40
 60
 80

 100

0 10 20 30 40 50 60 70 80

C
P

U
 I/

O
 w

ai
t [

%
]

Timeline [s]

Nginx XTomcat XMySQL

(a) Millibottlenecks in MySQL caused by background process
(collectl) log flushing every 30 seconds.

 0
 100
 200
 300
 400
 500
 600

0 10 20 30 40 50 60 70 80Q
ue

ue
d

re
qu

es
ts

 [#
]

Timeline [s]

Nginx queue XTomcat queue XMySQL queue

(b) All three asynchronous servers storing all requests in
lightweight queues during millibottlenecks in MySQL.

Fig. 11: NX=3, the Nginx-XTomcat-XMySQL case
with millibottlenecks in XMySQL. No CTQO or
dropped packets in servers during I/O millibottlenecks.

very large LiteQDepth (e.g., 65535 and 2000), they can
avoid downstream CTQO. Without either the upstream
or downstream CTQO, there is no dropped packets.

For the case of millibottlenecks in XMySQL, we run
the same Log Flushing experiments as described in Sec-
tion IV-B, changing only the servers and the RUBBoS
benchmark application from the synchronous version
(Apache-Tomcat-MySQL) to their asynchronous coun-
terparts (Nginx-XTomcat-XMySQL).

Figure 11(a) shows the CPU I/O wait of all the
three tiers, with millibottlenecks in XMySQL at 30-
second time intervals (time marks 13, 43, 73). Fig-
ure 11(b) shows similar request queue depths for
XMySQL, XTomcat and Nginx, suggesting no upstream
CTQO between all tiers. Similar to the VM consol-
idation experiments, large LiteQDepth(Nginx), Lite-
QDepth(XTomcat), and LiteQDepth(XMySQL) prevent
downstream CTQO, resulting in no dropped packets.

E. Discussion of Alternative Designs

From a “RPC purist” point of view, an easy design
alternative for the synchronous servers is to simply
increase the MaxSysQDepth, e.g., by increasing the
number of threads. In principle, this increase might be
able to postpone or prevent the CTQO problems de-
scribed in Section IV. Unfortunately, increasing threads
number to thousands (comparable to LiteQDepth) intro-
duces many problems discussed extensively in previous
research [18], [25], [33]. Specifically, overhead due to
high concurrency can come from various system layers
including last level cache miss, high context switches,
and scheduling overhead; for Java based servers, high
workload concurrency also leads to non-linearly in-

 0

 300

 600

 900

 1200

 1500

 1800

100 200 400 800 1600

S
ys

te
m

 th
ro

ug
hp

ut
 [r

eq
/s

]

Workload concurrency

Synchronous
Asynchronous

Fig. 12: Throughput comparison of the 3-tier sys-
tem with the two different architectures. The asyn-
chronous 3-tier system (Nginx-XTomcat-XMySQL)
outperforms the synchronous one (Apache-Tomcat-
MySQL) in system throughput at high concurrency.

creased JVM garbage collection time due to more
memory used by high number of threads.

As an example, Figure 12 shows that the throughput
of the 2000-thread system (2000 thread pool size in
Apache, Tomcat, and MySQL) decreases significantly
as we increase the number of concurrent requests from
100 to 1600. Specifically, the throughput decreases from
1159 req/s at 100 concurrent requests to 374 req/s at
1600 concurrent requests. The decreased throughput is
primarily due to the Tomcat CPU saturation, where
the overhead of thread management increases with the
threads number.

The second component of MaxSysQDepth is the TCP
buffer (128 in Linux kernel). The TCP buffer size has
been considered fixed by the networking community,
since enlarging network buffer sizes has been shown to
cause problems such as bufferbloat [11], leading to long
delivery latency.

VI. CONCLUSION

In this paper, we described a methodical experimental
study of one class of long tail latency problems that arise
in distributed systems with tightly-coupled servers us-
ing RPC-style request-response communications: Cross-
Tier Queue Overflow (CTQO). We have found two
main cases of CTQO in our study: upstream CTQO,
when an upstream server is dropping packets because
of a downstream server suffering from millibottlenecks;
and downstream CTQO, when a downstream server is
dropping packets because of upstream (or interacting)
server millibottlenecks. In both cases, CTQO can be
avoided by replacing the server dropping packets with
an asynchronous server. Furthermore, by replacing all
servers with their asynchronous versions we can remove
both upstream & downstream CTQO despite workload
bursts in moderate average resource utilization. This
study suggests that long-tail latency (due to CTQO) may
be reduced by the adoption of asynchronous inter-tier
communications for the entire n-tier system.

PRC Web Server

Asyn Web Server

RPC App Server

Software Stack

Apache 2.2.22

+ tomcat-connectors-1.2.28

Nginx-1.6.2

Tomcat 7.0.57 + BIO connector

+ mysql-connector-java-5.1.19

Database server MySQL 5.5.19

Hypervisor VMware ESXi v5.0

Operating system RHEL 6.3 (kernel 2.6.32)

Asyn App Server
Tomcat 7.0.57 + NIO connector

+ async-mysql-connector-1.0

(a) Software setup

Type

Small (S)

vCPU

1

CPU limit

2.26GHz

CPU
shares

Normal

VM Configuration

CPU

Memory

2* Intel Xeon E5607, 2.26GHz Quad-Core

16GB

Model Dell Power Edge T410

ESXi Host Configuration

Storage 7200rpm SATA local disk

vRAM

2GB

vDisk

20GB

(b) ESXi host and VM setup
Fig. 13: Details of the experimental setup.

VII. ACKNOWLEDGEMENT

This research has been partially funded by Na-
tional Science Foundation by CISE’s CNS (1566443,
1421561), SAVI/RCN (1402266, 1550379), CRISP
(1541074), SaTC (1564097) programs, an REU sup-
plement (1545173), Louisiana Board of Regents under
grant LEQSF(2015-18)-RD-A-11, and gifts, grants, or
contracts from Fujitsu, HP, Intel, and Georgia Tech
Foundation through the John P. Imlay, Jr. Chair en-
dowment. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation or other funding
agencies and companies mentioned above.

APPENDIX A
EXPERIMENTAL SETUP AND BENCHMARK

APPLICATIONS

We run the RUBBoS benchmark [4] on our virtualized
testbed. Figure 13 outlines the software components,
ESXi host and virtual machine (VM) configuration. Our
RUBBoS adopts the typical 1/1/1 topology consisting of
one Apache server, one Tomcat application server, and
one MySQL database server. Each server runs on top
of one VM deployed on one dedicated ESXi host.

In our implementation of an asynchronous 3-tier
system as shown in Figure 6, we replace the previ-
ous thread-based servers with the corresponding asyn-
chronous servers except the database tier. Concretely,
we use Nginx to replace Apache as an asynchronous
web server. XTomcat is the latest version of Tomcat
(version 7 at the time) which embeds an asynchronous
connector (Tomcat NIO Connector) for upstream com-
munication. We also modified an open source asyn-

[01] function doGet(request1) {

[02] ... pre-processing request1 ...
[03] ... form query1 ...

[04] result1=SyncDBQuery1(query1);
[05] ... think about result1 ...
[06] ... form query2 ...

[07] result2=SyncDBQuery2(query2);
[08] ... post-processing result2 ...
[09] ... form response ...

[10] return response;
[11] }

[01] function doGet(request1) {
[02] ... pre-processing request1 ...
[03] ... form query1 ...
[03] AsynDBQuery1(query1, eventHandler1);
[04] }

[05] function eventHandler1(result1) {
[06] ...think about result1 ...
[07] ...form query2 ...
[08] AsynDBQuery2(query2, eventHandler2);
[09] }

[10] function eventHandler2(result2) {
[11] ...post-processing result2...
[12] ...form response ...
[13] return response;
[14] }

(a) A simple synchronous Java Servlet
in Tomcat

(b) An asynchronous event-driven Java servlet

in XTomcat Fig. 14: Simple RPC transformed into a set of
asynchronous calls.

chronous JDBC driver [3] for XTomcat to support asyn-
chronous communication with MySQL. For MySQL,
we use the InnoDB storage engine of MySQL that
supports a lightweight queue (with capacity over 2000)
when a few allocated threads are fully occupied, achiev-
ing the same effects of an asynchronous XMySQL.

Asynchronous benchmark applications: Most ex-
isting n-tier benchmark applications assume syn-
chronous calls for inter-tier communication (e.g., RPC-
style database queries). To utilize the asynchronous
connectors of each server for inter-tier communication,
we need to re-implement the original benchmark appli-
cation using the event-driven programming model.

Event-driven programming implements the process-
ing of each request as a set of event handlers in which
transitions between handlers are triggered by events.
For instance, calling an asynchronous database query
does not block a XTomcat processing thread from
continuing to execute the program; the “return” of the
asynchronous database query will be processed in a
different module or handler (i.e., a callback function).
Figure 14 illustrates how a simple synchronous Java
servlet can be transformed into a functionally equiva-
lent event-driven version. Each synchronous database
query splits into two halves. The first half is the
asynchronous version of SyncDBQueryN , which we
refer to as AsynDBQueryN , and the second half,
eventHandlern, is a callback function triggered only
by the returned result of AsynDBQueryN . Applying
this methodology to every synchronous function call, we
obtain the asynchronous version shown in Figure 14.

Synchronous inter-tier communications involved in
other common control flows such as if-statement or for-
loop can also be transformed into their corresponding
asynchronous version. Thibaud Schneider [28] presents
a set of transformation rules that allows us to take a pro-
gram that uses synchronous function calls in arbitrary
sequential control flow, and transform it into a program
that calls the functions asynchronously. Using Schnei-
der’s rules, we transformed the RUBBoS application
into the functionally equivalent asynchronous version.

REFERENCES

[1] Collectl. ”http://collectl.sourceforge.net/”.
[2] NGINX. ”http://nginx.org/”.
[3] Non-Blocking (asynchronous) MySQL Connector for Java.

”https://code.google.com/archive/p/async-mysql-connector/”.
[4] RUBBoS: Bulletin board benchmark. ”http://jmob.ow2.org/

rubbos.html”.
[5] S. Adler. The slashdot effect: an analysis of three internet

publications. Linux Gazette, 38:2, 1999.
[6] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,

and M. Yasuda. Less is more: Trading a little bandwidth for
ultra-low latency in the data center. In NSDI’12.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP’03.

[8] A. D. Birrell and B. J. Nelson. Implementing remote procedure
calls. ACM Trans. Comput. Syst., 2(1):39–59, Feb. 1984.

[9] J. Dean and L. A. Barroso. The tail at scale. Communications
of the ACM, 56(2):74–80, 2013.

[10] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. Autoscale: Dynamic, robust capacity management for
multi-tier data centers. ACM Trans. Comput. Syst., 30(4):14:1–
14:26, Nov. 2012.

[11] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the
internet. Communications of the ACM, 55(1):57–65, 2012.

[12] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam.
Cuanta: Quantifying effects of shared on-chip resource inter-
ference for consolidated virtual machines. In SoCC’11).

[13] M. Jeon, Y. He, H. Kim, S. Elnikety, S. Rixner, and A. L.
Cox. Tpc: Target-driven parallelism combining prediction and
correction to reduce tail latency in interactive services. In
ASPLOS’16.

[14] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox,
and S. Rixner. Predictive parallelization: Taming tail latencies
in web search. In SIGIR ’14.

[15] Y. Kanemasa, Q. Wang, J. Li, M. Matsubara, and C. Pu.
Revisiting performance interference among consolidated n-tier
applications: Sharing is better than isolation. In SCC’13.

[16] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat.
Chronos: Predictable low latency for data center applications.
In SoCC’12).

[17] R. Kohavi and R. Longbotham. Online experiments: Lessons
learned. Computer, 40(9):103–105, 2007.

[18] M. N. Krohn, E. Kohler, and M. F. Kaashoek. Events can make
sense. In USENIX ATC’07.

[19] J. Leverich and C. Kozyrakis. Reconciling high server utilization
and sub-millisecond quality-of-service. In EuroSys’14.

[20] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales
of the tail: Hardware, os, and application-level sources of tail
latency. In SOCC ’14.

[21] H. C. Lim, S. Babu, and J. S. Chase. Automated control for
elastic storage. In ICAC’10.

[22] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Improving resource efficiency at scale with
heracles. ACM Transactions on Computer Systems (TOCS),
34:6:1–6:33, 2016.

[23] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Injecting
realistic burstiness to a traditional client-server benchmark. In
ICAC’09.

[24] J. C. Mogul. Emergent (mis) behavior vs. complex software
systems. ACM SIGOPS Operating Systems Review, 40(4):293–
304, 2006.

[25] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R.
Cheriton. Comparing the performance of web server architec-
tures. In ACM SIGOPS Operating Systems Review, volume 41,
pages 231–243, 2007.

[26] B. Snyder. Server virtualization has stalled, despite the hype.
InfoWorld, December 2010.

[27] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting
tail latency in cloud data stores via adaptive replica selection.
In NSDI’15.

[28] Thibaud Lopez Schneider. Writing Effective Asynchronous
XmlHttpRequests. ”http://www.thibaudlopez.net/xhr/Writing%
20effective%20asynchronous%20XmlHttpRequests.pdf”.

[29] R. von Behren, J. Condit, and E. Brewer. Why events are a bad
idea (for high-concurrency servers). In HotOS IX, 2003.

[30] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica.
Cake: Enabling high-level slos on shared storage systems. In
SoCC’12.

[31] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu,
M. Matsubara, M. Kawaba, and C. Pu. Detecting transient
bottlenecks in n-tier applications through fine-grained analysis.
In ICDCS’13.

[32] Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho, Y. Nomura,
and C. Pu. Lightning in the cloud: A study of very short
bottlenecks on n-tier web application performance. In TRIOS’14.

[33] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. In SOSP’01.

[34] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoiding
long tails in the cloud. In NSDI’13.

[35] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail:
Reducing the flow completion time tail in datacenter networks.
SIGCOMM Comput. Commun. Rev., 42(4):139–150, Aug. 2012.

[36] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger. Prioritymeister: Tail latency qos for shared
networked storage. In SOCC’14.

"http://collectl.sourceforge.net/"
"http://nginx.org/"
"https://code.google.com/archive/p/async-mysql-connector/"
"http://jmob.ow2.org/rubbos.html"
"http://jmob.ow2.org/rubbos.html"
"http://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf"
"http://www.thibaudlopez.net/xhr/Writing%20effective%20asynchronous%20XmlHttpRequests.pdf"

	Introduction
	Related Work
	Long-Tail Latency Due to Dropped Packets
	Millibottlenecks+CTQO= Dropped Packets
	CPU Millibottleneck: VM Consolidation
	I/O Millibottleneck: Log Flushing

	Evaluation of Asynchronous N-Tier Systems
	Evaluation Method
	NX=1, Replacing Apache with Nginx
	NX=2, Replacing Tomcat with XTomcat
	NX=3, Replacing MySQL with XMySQL
	Discussion of Alternative Designs

	Conclusion
	Acknowledgement
	Appendix A: Experimental Setup and Benchmark Applications
	References

