
Limitations of Load Balancing Mechanisms for

N-Tier Systems in the Presence of Millibottlenecks

Tao Zhu1, Jack Li1, Josh Kimball1, Junhee Park1, Chien-An Lai1, Calton Pu1 and Qingyang Wang2
1Computer Science, Georgia Institute of Technology 2Computer Science and Engineering, Louisiana State University

Abstract—The scalability of n-tier systems relies on effective
load balancing to distribute load among the servers of the
same tier. We found that load balancing mechanisms (and some
policies) in servers used in typical n-tier systems (e.g., Apache
and Tomcat) have issues of instability when very long response
time (VLRT) requests appear due to millibottlenecks, very short
bottlenecks that last only tens to hundreds of milliseconds.
Experiments with standard n-tier benchmarks show that during
millibottlenecks, some load balancing policy/mechanism combi-
nations make the mistake of sending new requests to the node(s)
suffering from millibottlenecks, instead of the idle nodes as load
balancers are supposed to do. Several of these mistakes are due
to the implicit assumptions made by load balancing policies and
mechanisms on the stability of system state. Our study shows that
appropriate remedies at policy and mechanism levels can avoid
these mistakes during millibottlenecks and remove the VLRT
requests, thus improving the average response time by a factor
of 12.

I. INTRODUCTION

N-tier systems are one the best examples of scalable dis-

tributed systems that provide QoS (quality of service, e.g.,

guaranteed response time) for production web-facing applica-

tions such as e-commerce. The scalability of n-tier systems is

largely due to: (1) their ability to allocate servers dynamically

according to load, and (2) effective load balancers to spread

requests among the available servers in each tier to mini-

mize response time and maximize throughput. For web-facing

applications, n-tier systems have been able to provide good

response times, as fast as milliseconds. However, they are also

known for the lingering problem of long-tail distribution of

response times, where some very long response time (VLRT)

requests take several seconds to return results.

The VLRT requests are a serious and perplexing problem for

web-facing applications. They are serious because deviation

from strict QoS is bad for business: A study by Amazon [16]

reported that every increase in response time of 100 mil-

liseconds is correlated to roughly 1% loss in sales. Similarly,

Google found that a 500ms additional delay in returning search

results could reduce revenues by up to 20% [17]. Given the

number of customers they serve, companies such as Amazon

and Google want to reduce the response time long tails to

the 99th and 99.9th percentiles [12], [13]. The VLRT requests

are also a perplexing problem since they appear with modest

utilization levels, e.g., 50% of CPU utilization.

One of the causes of VLRT requests consists of millibottle-

necks [27], [26], [28] that appear and disappear within tens to

hundreds of milliseconds. Millibottlenecks appear quite com-

monly for a variety of reasons, including bursty workloads and

system tasks such as garbage collection [12], [27], [26], [28],

[19]. The resources that suffer from millibottlenecks include

CPU [27], [26], [28] and I/O [19]. Millibottlenecks can cause

VLRT requests for several reasons, typically dropped packets

due to Cross-Tier Queue Overflow. (Section III includes a

more detailed discussion of millibottlenecks and their effects.)

Experimental measurements on standard n-tier benchmarks

have found load balancing policies and mechanisms that

appeared to work well in stable environments have exhibited

several limitations when facing millibottlenecks. For example,

load balancing policies that use cumulative requests served

may send requests to a server that did less work historically,

but that is suffering from (sudden) millibottlenecks at this

moment. The first contribution of the paper consists of exper-

imental evidence showing several such limitations of current

load balancing policies and mechanisms in the presence of

millibottlenecks.

The second contribution of the paper consists of proposed

changes to load balancing policies and mechanisms that take

into account the millibottlenecks, e.g., adding the consider-

ation of recent utilization changes. Measurements show that

the impact of millibottlenecks on n-tier system response time

can be reduced by a factor of up to 12, when revised load

balancing policies and mechanisms are applied.

The rest of the paper is structured as follows. Section II

describes current Apache load balancing policies and demon-

strates their effectiveness in an environment without milli-

bottlenecks. Section III shows millibottlenecks interfere load

balancer. Section IV analyzes the load balancer instability

caused by implementation limitations and provides remedies

to remove the limitations. Section V analyzes the instability

caused by limitations at policy level and demonstrate how

our remedies can avoid the issue. Section VI summarizes the

remedies at both implementation and policy levels. Section VII

summarizes the related work and Section VIII concludes the

paper.

II. CURRENT APACHE LOAD BALANCERS

A. Background on Current Apache Load Balancing

N-tier is a classic architecture of modern web application,

which is usually implemented as three or more tiers. A

typical 3-tier configuration uses Apache HTTP server as web

server, Tomcat as application server and MySQL as database



0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180
Timeline[s]

R
es

po
ns

e 
T

im
e[

m
s]

Fig. 1: Point-in-time response time under the total request

policy

server. Our experiments run the standard 3-tier. RUBBoS

benchmark [2], whose workload consists of 24 different web

interactions modeled after the typical bulletin board interac-

tions with Slashdot. In this paper, we study primarily the

load balancers that Apache web server uses when choosing

an appropriate Tomcat application server. Apache tomcat con-

nector (mod jk) [3] is the module that implements (two) load

balancing policies:
1) Total request (default policy): ranks the Tomcat server-

s according to their accumulated number of requests

served (fewest as the best candidate).

2) Total traffic: ranks the Tomcat servers according to the

accumulated messages exchanged between Apache and

Tomcat (fewest as the best candidate).

These policies are implemented by a two-level scheduler. The

higher level (one for each policy) calculates the ranking of

each server, according to each load balancing policy. For

example, the number of requests (policy 1) and number of

messages (policy 2) are translated into a normalized value,

called lb value. The lower level (same for all policies) uses

the lb value to schedule the next request.

B. Validation of Apache Load Balancers

The RUBBoS benchmark includes two kinds of workload-

s: browsing-only and read/write interaction mixes. We ran

RUBBoS workload at 70000 clients using 4 Apache servers,

4 Tomcat servers, and 1 MySQL server. To see how load

balancers work in the absence of millibottlenecks, we adopted

remedies to eliminate all known millibottlenecks. For instance,

to eliminate the millibottlenecks caused by flushing dirty

page, we enlarged the memory that holds the dirty pages and

lengthened flushing interval.

We ran baseline experiments to confirm that the Apache

load balancers work well in the absence of millibottlenecks.

The total request policy achieved good performance: average

response time is 3.2ms. The total number of VLRT (>1

second) request during the experiment duration is 13, which

is negligible considering the total volume of requests is more

than 1.8 million. The stable and low point-in time response

time in Figure 1 confirms that millibottlenecks are eliminated

and suggests the load balancer works as it is supposed to.

To verify the effectiveness of the total request policy, we

analyzed both the Apache and Tomcat logs to see how each A-

pache server distributed workloads among the Tomcat servers

during the experiment. We found Apache server distributed

the workload evenly among the Tomcat servers.

III. MILLIBOTTLENECKS INTERFERE WITH LOAD

BALANCERS

A. Millibottlenecks and VLRT Requests

For completeness, we include a short introduction to mil-

libottlenecks here. Readers who are familiar with millibot-

tlenecks, previously called very short bottlenecks [28] and

transient bottlenecks [26], can skip to the next section III-B.

Past studies have examined and delivered valuable insights

of causes on the VLRT requests. VLRT requests can have very

different causes, traversing the system stack. These include

CPU dynamic voltage and frequency scaling (DVFS) control

at the architecture layer, Java garbage collection (GC) at the

system software layer, virtual machine (VM) consolidation

at the VM layer and bursty workloads [27], [26], [28]. The

millibottlenecks in our experiments are caused by flushing

dirty pages.

B. Millibottlenecks Cause VLRT Request in a Cluster without

Load Balancer

In this section, we ran experiments with the simplest con-

figuration (1 Apache server, 1 Tomcat server and 1 MySQL

server) in an environment where millibottlenecks occur.

First, we find the VLRT requests in an experiment. Fig-

ure 2(a) shows an 8-second time interval in which two clusters

of VLRT requests can be seen (at approximately 52.5 and

53.5 seconds from the beginning of the experiment). The

VLRT requests contribute the long-tail response time, the total

number of requests whose response time is more than 1000ms

is 1222 while the total number requests whose response time

is less than 10ms is 16722.

Second, Figure 2(b) shows queued requests in Apache,

Tomcat and MySQL during this same time interval. We use

queue length graph to determine if there are millibottlenecks:

large spikes in the graph represent an abnormally large number

of queued requests, which from our experience are usually

indicative of bottlenecks. On the other hand, the steady short

queue length of a tier (or server) might indicate the tier (or

server) is performing well. We see a strong correlation between

peaks of Apache’s queue length in Figure 2(b) and peaks in

VLRT requests in Figure 2(a). A detailed analysis of the A-

pache queues (omitted here) [28] shows that packets are being

dropped by Apache due to queue overflow. VLRT requests

materialize due to dropped packets being retransmitted.

To find out which server has the millibottleneck, we con-

duct per-server queue analysis by integrating and comparing

the requests queued in Apache with the requests queued in

Tomcat. We establish the link between the queuing in Apache

with the queuing in downstream servers by comparing the

queue lengths of Apache, Tomcat, and MySQL in Figure 2(b).

The first Apache queue peak indicates the existence of the

millibottleneck in Apache. The second Apache queue peak

coincides with the peak of Tomcat queue and there is no

queue peak in Mysql tier. A plausible hypothesis is queue

amplification that starts in Tomcat tier, propagating to Apache

tier [27]. As Tomcat tier reaches full queue, a push-back wave



starts to fill Apache tier’s queue. When Apache tier’s queue

becomes full, dropped request messages create VLRT requests.

Further analysis of the queues and resource utilization of

Apache, Tomcat, and MySQL shows that the flushing of dirty

virtual memory pages to the disk causes iowait saturation,

which in turn causes the millibottlenecks that lead to the

observed elongated queues. The detailed analysis is omitted

here since our focus is on the effect of load balancing in this

context.

Lastly, we found pdflush contributed 100% iowait by using

Iotop [4]. Pdflush is a process who is responsible for writing

back dirty pages in page cache to disk. These dirty pages

mainly are Tomcat logs, which include access, servelet and

localhost logs. We show the sum of dirty pages change in

Figure 2(e), We see the abrupt drops correlate strongly with

iowait saturations in Figure 2(d), which confirms flushing

dirty pages lead to transient CPU saturations in Figure 2(c).

This is an unexpected result: flushing dirty pages should have

minimal impact on foreground tasks since it is supposed to be

asynchronous. More detailed explanation about the root cause

of the millibottleneck will be discussed in another paper.

C. Load Balancers Contribute to VLRT in the Presence of

Millibottlenecks

In Section II-B, we reviewed the experiments in an envi-

ronment where millibottlenecks are absent. In this section,

we repeated the same experiments in an environment where

millibottlenecks exist. Our experimental results demonstrate

the load balancing instability. The load balancer sends all of

the requests to the candidate already suffering from millibot-

tlenecks, which amplifies the magnitude of VLRT request. The

load balancing instability was not revealed in the absence of

millibottlenecks.

We ran the RUBBoS benchmark under two load balanc-

ing policies (total request and total traffic policy) at 70000

clients. Our experiments use 4 Apache servers, 4 Tomcat

servers, and 1 MySQL server (The Experimental Setup details

appear in the Appendix A). When looking at statistical average

metrics such as response time, the performance under to-

tal request and total traffic policy are acceptable: their average

response times are below 100ms. However, response time

under the two policies present large fluctuations, as shown

in Figure 3. The average system response times are not

representative of the actual system performance.

The latency long-tail problem happens when very long

response time (VLRT) requests arise. Under the total request

policy, 89 percent of requests finish in 10ms, VLRT (>1000m-

s) requests account for 5 percent of total requests. This means

VRLT requests are responsible for the tremendous increase

in average response time. Total traffic policy has a similar

latency long-tail problem. By plotting the distribution of

request response time, latency long-tail problem can be seen

more clearly. As shown in Figure 4, we observe 3 clusters of

VLRT requests (at 1s, 2s and 3s). Our result is consistent with

previous research, which shows VLRT requests occur even

when all system components are far from saturation. As shown

0

50

100

150

49 50 51 52 53 54 55 56 57
Timeline[s]

# 
Lo

ng
 r

eq
ue

st
s(

>1
s)

(a) Number of VLRT (>1000ms) requests counted at every 50ms
time window.

�

✁��

✂��

✄��

☎��

✆���

✂✝ ✞� ✞✆ ✞✁ ✞✟ ✞✂ ✞✞ ✞✄ ✞✠
✡☛☞✌✍☛✎✌✏✑✒

✓✔✕✖✗✌ ✘✙✑✚✍ ✡✛☞✖✕✜

(b) Request queue for Apache, Tomcat and MySQL tier, the queue
peaks match well with the occurrence of the VLRT requests. The first
queue peak in Apache is caused by a millibottleneck on Apache. The
second queue peak in Apache coincides with the queue peaks in Tomcat,
suggesting push-back wave from Tomcat to Apache.

✢

✣✢

✤✢

✥✢

✦✢

✧✢✢

✤★ ✩✢ ✩✧ ✩✣ ✩✪ ✩✤ ✩✩ ✩✥ ✩✫
✬✭✮✯✰✭✱✯✲✳✴

✵✶✷✸✹✯ ✺✻✳✼✰ ✬✽✮✸✷✾

(c) Transient CPU saturations of Apache servers correlates with the
queue spikes in the corresponding Apache server.

✿

❀✿

❁✿

❂✿

❃✿

❄✿✿

❁❅ ❆✿ ❆❄ ❆❀ ❆❇ ❆❁ ❆❆ ❆❂ ❆❈
❉❊❋●❍❊■●❏❑▲

▼◆❖P◗● ❘❙❑❚❍ ❉❯❋P❖❱

(d) Iowait saturations correlates with Transient CPU saturations,
indicating I/O activities cause CPU saturations.

❲

❳❲ ❨

❩❲ ❨

❬❲ ❨

❭❲ ❨

❪❲ ❨

❫❲ ❨

❭❴ ❪❲ ❪❳ ❪❩ ❪❬ ❪❭ ❪❪ ❪❫ ❪❵
❛❜❝❞❡❜❢❞❣❤✐

❥❦❧♠♥❞ ♦♣❤q❡ ❛r❝♠❧s

(e) Abrupt dirty page cache size drops correlate with iowait satura-
tions, suggesting flushing dirty pages cause iowait saturations.

Fig. 2: VLRT requests caused by flushing dirty pages

in Figure 5, all the component servers were at moderately low

CPU utilization (the highest average CPU usage among the

servers is 45%).

Interestingly (and somewhat surprisingly), millibottlenecks

in the Tomcat tier cause more severe performance degradation

compared to the case without the load balancer. As shown in

Figure 6(a), the total request policy introduced more VLRT

requests compared to the experiment without the load balancer.

To eliminate the interference from milibottlenecks in Apache,

we increased the memory that holds the dirty pages to 4.8

GB and lengthened the flushing interval to 600 seconds to

ensure no millibottleneck happens on Apache during the









�

✁��

✂��

✄��

☎��

✆✝� ✆✝✞ ✆✝✁ ✆✝✟ ✆✝✂ ✆✝✆ ✆✝✄ ✆✝✠ ✆✝☎ ✆✝✡ ✄✝�
☛☞✌✍✎☞✏✍✑✒✓

☛✔✌✕✖✗✞ ☛✔✌✕✖✗✁ ☛✔✌✕✖✗✟ ☛✔✌✕✖✗✂

(a) Queued requests in each Tomcat server, the huge peak suggests a
millibottleneck happens in Tomcat1.

(b) Lb values of 4 Tomcats: the candidate suffering from a millibot-
tleneck has the lowest lb value, causing all the requests being sent
to it.

Fig. 10: Policy limitations of the total request policy lead

to the load balancer instability.

• During the normal (without millibottlenecks) periods

(phase 1 and phase 4): the lb value of the 4 Tomcats

are identical (i.e., the difference between them is at most

1) since the total request policy evenly distributes the

requests among the 4 Tomcats.

• During the period in which Tomcat1 has the millibottle-

neck (phase 2), the lb value of Tomcat1 is the lowest

among the 4 Tomcats, which explains why it was picked.

As shown in Figure 10(b), the red line is one lower than

the other lines in phase 2.

• During the recovery period (phase 3), the lb value of

Tomcat1 is the highest among the 4 Tomcats, as shown

by the red peak in Figure 10(b). In phase 2, each

Apache accumulates tens of outgoing requests to directed

Tomcat1 while no request was sent to other candidates.

After Tomcat1 becomes available, it starts to process the

requests that have accumulated in phase 2. The other

candidates have no such accumulation, which explains

why Tomcat1’s lb value increases faster than the other

candidates.

The second policy we study is total traffic policy. We veri-

fied the policy limitation of the total traffic policy by plotting

the lb values of the four candidates. The total traffic policy’s

pattern is similar to the total request policy’s: the candidate

experiencing a millibottleneck has the lowest lb value. Recall

that the total traffic policy also picks the candidate with the

lowest lb value. In this setting, lb value is the sum of the

read and write sizes of all of the requests that a candidate

has served. We choose the lb value of one Tomcat without a

millibottleneck (Tomcat2) to establish a baseline against with

which to compare. We observe the common pattern among the

changes in lb value among the 4 Apaches. Because of space

constraints, we only show the first one in Figure 11(b) and

don’t discuss the details of the pattern here.

The load balancers made the following assumptions: work-

load is stable and there is no 100% bottleneck on the Tomcat

✘

✙✘✘

✚✘✘

✛✘✘

✜✘✘

✢✣✢ ✢✣✚ ✢✣✤ ✢✣✛ ✢✣✥ ✢✣✜ ✢✣✦ ✚✣✘ ✚✣✧ ✚✣✙ ✚✣✢
★✩✪✫✬✩✭✫✮✯✰

★✱✪✲✳✴✧ ★✱✪✲✳✴✙ ★✱✪✲✳✴✢ ★✱✪✲✳✴✚

(a) Queued requests in each Tomcat server, the huge peak suggests a
millibottleneck happens in Tomcat1.

(b) Lb values of 4 Tomcats: the candidate suffering from a millibottleneck
has the lowest lb value, causing all the requests being sent to it.

Fig. 11: Policy limitations of the total traffic policy lead

to the load balancer instability.

server. These load balancing policies making decisions based

on accumulated resource utilization can work well in the

absence of millibottlenecks; however, they suffer from limi-

tations in their implementations when millibottlenecks occur.

The policy limitations can make the instability even more

severe. In the original total request and traffic policies, the

candidate experiencing a millibottleneck is treated as available,

and the lb value of that candidate will not be updated due

to the millibottleneck. In contrast, those available candidates’

lb value will keep increasing. This leads the candidate with a

millibottleneck to have the lowest lb value, Accordingly, the

load balancer proceeds to send all requests to the candidate

with millibottleneck, causing all requests to queue in that

candidate.

B. Make Decision Based on Current State

These load balancing policies making decisions based on

accumulated resource utilization are designed to behave stable

under different conditions. The problem faced with these

policies is that they are linear, they are not adaptive to changes.

To overcome the limitation, the load balancer can acquire

additional state information and attempt to make optimistic

scheduling decisions based on the current state. Here we in-

troduce a policy using current information to make scheduling

decision: current load policy, the core idea is that it picks the

candidate with the least current workload. Pseudo code for

current load policy is shown below, it keeps track of how

many requests each candidate is currently assigned at present.

Current load policy has two advantages: First, it is more

adaptive to the millibottlenecks. The candidate suffering from

millibottlenecks is unlikely to process the request. Compared

to available candidates, it has more requests being served from

the perspective of the load balancer. Second, it is robust to the

mechanism limitations. Even though Apache could be stuck in

calling get endpoint on the Tomcat with the millibottleneck,

the lb value of the candidate with the millibottleneck remains

the highest among the candidates. Current load policy doesn’t





Policy # Total Requests Average Response Time (ms) % VLRT requests (>1000 ms) % Normal requests (<10 ms)

Original total request 1791857 41.00 5.33% 88.85%

Original total traffic 1789493 55.50 6.89% 85.55%

Current load 1801765 3.62 0.21% 96.70%

Total request with modified get endpoint 1800562 4.87 0.55% 95.82%

Total traffic with modified get endpoint 1799662 5.87 0.76% 93.93%

Current workload with modified get endpoint 1796697 3.60 0.20% 96.67%

TABLE I: Performance of total request policy, total traffic policy and our remedies at policy and mechanism levels

exist at mechanism level. Our remedy at mechanism level,

modified get endpoint function, can achieve almost the same

performance improvement.

To further verify the effectiveness of our remedies to reduce

the VLRT requests amplified by the load balancer instability,

we investigate the percentage of VLRT requests (>1000ms),

as shown in Table I. We found that current load policy and

fixed get endpoint reduce the number of the VLRT requests

significantly. The percentages of VLRT requests under the

total request policy and total traffic policy were 5.3% and

6.9%, respectively. Current load policy, total request policy

with modified get endpoint and total traffic policy with mod-

ified get endpoint reduces the percentage of VLRT requests

to 0.2%, 0.55% and 0.76% respectively. These VLRT requests

are only caused by millibottlenecks. While under total request

and total traffic policy, the VLRT requests are caused by mil-

libottlenecks and amplified by scheduling issue. We can draw

a conclusion based on the comparison: scheduling instability

is the dominating factor that leads to the VLRT requests (more

that 96% of VLRT requests are caused by scheduling issue).

The current load policy with modified get endpoint is the case

where we overcome limitations at both policy and mechanism

levels, but will not gain further improvement because they

achieve the same goal.

VII. RELATED WORK

There are efforts focusing on exploring sources of poor tail

latency in high large scale distributed applications [12], [6],

[7], [29], [21], [22], [27], [26], [28], [24], [30]. Dean et al. [12]

present their approaches to bypass/mitigate tail latency in

Google’s large-scale software application. PriorityMeister [30]

automatically and proactively configures workload priorities

and rate limits across multiple stages to meet tail latency SLOs

for shared networked storage. Suresh et al. [24] propose an

adaptive replica selection mechanism to reduce tail latencies,

the core idea is using a combination of in-band feedback from

servers to rank and prefer faster replicas along with distributed

rate control. Bobtail [29] proactively detects and avoids these

bad neighboring VMs to avoid long tail problem caused by

co-scheduling of CPU-bound and latency-sensitive tasks.

A plethora of approaches are proposed to diagnose per-

formance problems. Li et al. [22] attempt to identify the

hardware, operating system, and application-level sources of

poor tail latency in high throughput servers executing on

multi-core machines. Wang et al. [27] propose a statistical

correlation analysis between a server’s fine-grained throughput

and concurrent jobs in the server to infer the server’s real-time

performance state. Cohen et al. [11] use a class of probabilis-

tic models (Tree-Augmented Bayesian Networks) to identify

combinations of system-level metrics and threshold values that

correlate with SLO violations. Chow et al. [10] analyze end-

to-end performance of large-scale Internet services through

3 steps: [1] generating a causal model of system behavior

via reasoning over software component logs, [2] generating

potential hypotheses about program behavior, [3] rejecting hy-

potheses contradicted by the empirical observations. Aguilera

et al. [5] propose approaches to infer the dominant causal

paths trough a distributed system from the traces without

modifying the system or having semantic knowledge about it.

Koskinen et al. [18] obtain precise traces for black-box system

without application-specific instrumentation, however, it relies

on knowledge of protocols to isolate events or requests.

Chopstix [8] collects profiles of low-level OS events at the

granularity of executables, procedures and instruction. Then

these events are reconstructed to diagnose problems in a large-

scale production system.

There is a long history of work in academia and industry

to study load balancer [9], [15], [14], [25]. However, these

previous works assume the servers are in stable state: either

available or failed. Their goal is to achieve good response time

and resource utilization. In contrast to these works, our work

deals with avoiding long tails in response times in the presence

of millibottlenecks. To the best of our knowledge, our paper is

the first to systematically analyze load balancer performance

in the presence of millibottlenecks. To achieve low latency,

Sparrow [23] uses the similar conservative mechanism as we

propose when scheduler failure happens: if the scheduler has

failed, the client connects to the next scheduler in the list.

VIII. CONCLUSIONS

Load balancers in N-tier systems have proven to work well

in stable environments. However, we have identified several

limitations of some load balancing policies and mechanisms

in the presence of millibottlenecks. Our experimental results

demonstrate the load balancers instability, where new requests

are sent to the candidate suffering from millibottlenecks in-

stead of idle ones, amplifying the magnitude of very long

response time request caused by the millibottlenecks.

In this paper, we have found the load balancer instability is

caused by limitations at both mechanisms and policy levels.

At mechanism level, millibottlenecks are often mistakenly

treated as available. To overcome the limitation, we can treat

millibottlenecks as busy state. At policy level, policies making

decisions based on accumulated resource utilization cannot

react to millibottlenecks. Our remedy is using policies that

make scheduling decision based on candidate’s current state.





[16] Greg Linden. Make Data Useful. ”http://www.gduchamp.com/media/
StanfordDataMining.2006-11-28.pdf”.

[17] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to
controlled experiments on the web: Listen to your customers not to
the hippo. In Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’07, pages
959–967, New York, NY, USA, 2007. ACM.

[18] E. Koskinen and J. Jannotti. Borderpatrol: Isolating events for black-
box tracing. In Proceedings of the 3rd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2008, Eurosys ’08, pages 191–203,
2008.

[19] C. A. Lai, Q. Wang, J. Kimball, J. Li, J. Park, and C. Pu. Io per-
formance interference among consolidated n-tier applications: Sharing
is better than isolation for disks. In Proceedings of the 2014 IEEE

International Conference on Cloud Computing, CLOUD ’14, pages 24–
31, Washington, DC, USA, 2014. IEEE Computer Society.

[20] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish.
Detecting failures in distributed systems with the falcon spy network. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, SOSP ’11, pages 279–294, New York, NY, USA, 2011.
ACM.

[21] J. Leverich and C. Kozyrakis. Reconciling high server utilization
and sub-millisecond quality-of-service. In Proceedings of the Ninth

European Conference on Computer Systems, EuroSys ’14, pages 4:1–
4:14, 2014.

[22] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble. Tales of
the tail: Hardware, os, and application-level sources of tail latency.
Technical Report UW-CSE14-04-01, Department of Computer Science
& Engineering, University of Washington, April 2014.

[23] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages
69–84, New York, NY, USA, 2013. ACM.

[24] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail
latency in cloud data stores via adaptive replica selection. In Proceedings

of the 12th USENIX Conference on Networked Systems Design and

Implementation, NSDI’15, pages 513–527, Berkeley, CA, USA, 2015.
USENIX Association.

[25] Y. M. Teo and R. Ayani. Comparison of load balancing strategies on
cluster-based web servers. Simulation, 77(5-6):185–195, 2001.

[26] Q. Wang, Y. Kanemasa, C.-A. Li, Jack Lai, M. Matsubara, and C. Pu.
Impact of dvfs on n-tier application performance. In Proceedings of

ACM Conference on Timely Results in Operating Systems (TRIOS 2013),
pages 33–42, 2013.

[27] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,
M. Kawaba, and C. Pu. Detecting transient bottlenecks in n-tier appli-
cations through fine-grained analysis. In Proceedings of the 33rd IEEE

International Conference on Distributed Computing Systems (ICDCS

2013), pages 31–40, 2013.
[28] Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho, Y. Nomura, and

C. Pu. Lightning in the cloud: A study of transient bottlenecks on n-tier
web application performance. In 2014 Conference on Timely Results in

Operating Systems (TRIOS 14), Broomfield, CO, Oct. 2014. USENIX
Association.

[29] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail: Avoiding long
tails in the cloud. In Proceedings of the 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’13), pages 329–
342, 2013.

[30] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger. Prioritymeister: Tail latency qos for shared networked storage.
In Proceedings of the ACM Symposium on Cloud Computing, SOCC
’14, pages 29:1–29:14, New York, NY, USA, 2014. ACM.


