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Abstract—Modern distributed systems are often consid-
ered to be black boxes that greatly limit the potential
to understand behaviors at the level of detail neces-
sary to diagnose some of the most important types of
performance problems. Recently researchers have found
abnormal response time delays, one to two orders of
magnitude longer than the average response time, that
exist in short periods and cause economic loss for service
providers. These very short bottlenecks are hard to detect
due to their short life spans and their variety of possible
reasons. In this paper, we propose milliScope (mScope), the
first millisecond-granularity software-based resource and
event monitoring for distributed systems that achieves both
performance, low overhead at high frequency, and high
accuracy matched with other firmware monitoring tool.
More specifically, milliScope is a fine-grained monitoring
framework to collaborate multiple mScopeMonitors for
event and resource monitoring to reconstruct the flow
of each client request and profile execution performance
in a distributed system. We utilize the resource mScope-
Monitors for system resource monitoring, and we develop
our own event mScopeMonitors to identify the execution
boundary in a lightweight, precise and systematic method-
ology. The semantic and syntactic of these monitoring logs
with arbitrary formats are enriched by our multistage
data transformation tool, mScopeDataTransformer, which
unifies the diverse monitoring logs into a dynamic data
warehouse, mScopeDB, for advanced analysis. We conduct
several illustrative scenarios in which milliScope success-
fully diagnoses the response time anomalies caused by very
short bottlenecks using a representative web application
benchmark (RUBBoS).

I. INTRODUCTION

Previous researchers [1] [2] have found short-lived
bottlenecks can introduce abnormal latency, i.e., system
response times growing to 1 to 2 orders of magnitude
greater than their average. According to an Amazon
report [3], an increase of 100 milliseconds in system
latency can lead to a 1% loss in sales. Isolating the
root cause of these bottlenecks is challenging because

of their fleeting nature and the large number of potential
causes [4] [5].

Diagnosing very short bottlenecks in complex dis-
tributed systems necessitates researchers collecting mea-
surements on many different system resources from
potentially different monitors. For instance, individual,
system-level monitors like SAR and IOstat can provide
important system resource metrics at an individual node
level [6]. Consequently, researchers need a framework
to integrate and correlate these different monitors’ mea-
surements. Moreover, these measurements need to occur
at very fine-grained timescales on the order of tens of
milliseconds. The fact that no single, comprehensive
utility exists speaks to the difficulty in diagnosing short-
lived performance anomalies in large-scale systems.

In this paper, we present milliScope, the first mil-
lisecond granularity software-based resource and event
monitor for distributed systems, which has both ac-
ceptable performance (low overhead at high measure-
ment frequency) and high accuracy when compared to
other firmware monitors, such as SysViz [7]. milliScope
utilizes other, widely available monitoring tools, such
as SAR, IOstat, Collectl, to monitor system resources
at extremely fine-grained timescales. To capture each
request’s complete execution path and each node’s com-
plete execution profile in a complex distributed sys-
tem, we develop our own lightweight event mScope-
Monitors. These event monitors identify the execution
boundaries of the requests. Our methodology is most
similar to some other previous, excellent instrumentation
techniques, such as Dapper [8], Magpie [9] and X-
Trace [10]. Compared with these other approaches, our
event mScopeMonitors impose negligible overhead by
leveraging the native logging infrastructure accompa-
nying each component server. Each request receives
a unique identifier that accompanies the request as it



propagates across the system. As system components
process requests, the corresponding unique identifiers are
recorded at millisecond granularity in the components’
logs, creating a composite of the components’ execution
boundaries.

Researchers need to be able to connect the critical
points in a system’s infrastructure to components’ intact
performance profiles to successfully debug performance
anomalies. Constructing complete performance profiles
requires a large number of measurements distributed over
disparate monitoring logs to be merged and integrated.
milliScope’s fine-grained monitoring framework sup-
ports joining monitoring records generated by multiple
mScopeMonitors. This integration enables researchers to
analyze the distributed system performance across a wide
variety of use cases. Concretely, milliScope contains
its own data transformation tool, mScopeDataTrans-
former, which adopts a multi-stage parsing approach
for enriching the semantics and syntax of ambiguous
log messages. At the end of the pipeline, these semi-
structured data are transformed into structured tuples and
loaded into a dynamic data warehouse, mScopeDB. By
encapsulating the diversity of monitoring tools through
a uniform interface, milliScope is capable of correlating
information across several system components at ideal
granularity. Researchers are then able to use the collected
and integrated information to more easily diagnose the
root cause of performance anomalies.

We present two illustrative scenarios in which milliS-
cope successfully diagnoses the response time anomalies
caused by very short bottlenecks. These two scenarios
look similar at first glance. They both exhibit requests
with very long response times occurring over short
time spans, but these long-running requests materialize
due to different circumstances. In the first scenario,
IO activities on the database server induce very long
requests while the number of dirty page reaches a critical
threshold on the web and application servers in the
second situation. By integrating the tracing results from
the resource mScopeMonitors and the event mScope-
Monitors, milliScope provides the requisite monitoring
data resolution to successfully diagnose response time
anomalies caused by very short bottlenecks. Thus, the
case studies demonstrate the benefits of milliScope: (1)
it is able to zoom into the specific system components at
fine-grained timescale granularity and (2) it can identify
the root causes of very short bottlenecks, which provide
opportunities for performance improvement.

II. MOTIVATION & RELATED WORK

Tracing tools play key roles in performance debugging
and optimization of complex distributed systems like

Fig. 1: An example of a four tier Web-App-Middleware-
DB architecture with a possible causal path denoted as
a thick line.

Figure 1. Profiling tools have traditionally focused on
instruction-level operations within a single node con-
text. For example, Paradyn and DTrace are two such
tools [11] [12]. System-level tracing tools have been
designed with either specific system models in mind
or have operational constraints, which limit their utility.
For example, tools in this latter group sometimes impose
significant overhead on the instrumented system, causing
broader system performance degradation [8]. Tools in
the former category, which either rely on system opera-
tional models or on machine learning techniques to infer
behavior from system throughput measurements, lack
the necessary precision to diagnose millisecond-scale
phenomena [13] [14]. Some tools like the one we use
to validate own method, which provides the appropriate
resolution for isolating these types of phenomena, lacks
scale because of its rigid configuration requirements [7].

Recently, researchers have found that very short bot-
tlenecks (VSBs, also called transient bottlenecks) can
cause very long response time requests (VLRTs) , which
are those that take one to two orders of magnitude longer
to complete than average [1] [2]. The VSBs appear and
disappear during a very short period of time, typically on
the order of hundreds of milliseconds. Consequently, the
VLRT requests also appear and disappear during these
very short time periods. For example, Figure 2 shows
the requests during this short interval have Point-In-
Time response times that are more than twenty times the
average. These VLRTs are often masked by the normal
requests that only take a few milliseconds, particularly
when the response time of requests is averaged over
(typical) measurement periods of minutes. Current mon-
itoring tools cannot capture and isolate VLRT requests,
since they cannot provide fine-grained monitoring data
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Fig. 2: The maximal Point-In-Time response time is
more than twenty times larger than the average response
time in the same period. If a monitoring tool samples
at 1 second intervals, it would miss the response time
fluctuations.

without degrading the system’s overall performance.
Furthermore, diagnosing the root cause of VLRT

requests is challenging due to the number of possible
offending system resources. As previous works have
shown, VLRT requests can occur for very different
reasons. Potential root causes span different system
levels, including CPU dynamic voltage and frequency
scaling (DVFS) control at the architectural layer [4], Java
garbage collection (GC) at the system software layer [2],
virtual machine (VM) consolidation at the VM layer [5],
and performance interference of memory thrashing [15].
As such, multiple resource monitors need to be deployed
simultaneously to account for this resource and root
cause diversity. For instance, we might simultaneously
use SAR for CPU utilization, IOstat for IO activities,
and Perf for memory bus usage.

Research has shown that a bottleneck cannot be de-
tected using hardware utilization alone [16]. To study
VSBs and the induced VLRT requests, we need an
infrastructure capable of linking the monitoring data
from resource monitoring tools to information about
requests dependencies and causality at fine-grained time
scales. By doing so, sampling methods can be avoided,
since they can miss peaks like the one shown in
Figure 2. In addition, the overhead imposed on the
system-under-study by the method can be kept to a
minimum. Previous end-to-end tracing implementations
inserted metadata into requests to correlate individual
system behaviors, and they relied on sampling to re-
duce overhead [17] [18] [19] [20] [21] [22]. A fine-
grained framework on the other hand that captures the
entire request execution map without needing to sample
prevents assigning the wrong reason to a short-lived
bottleneck. Black-box monitoring systems, which use
statistical regression analyses to reconstruct causality
without modifying traced systems, cannot meet these
objectives [9] [23] [24] [25] [26] [14]. Although black-

box methods incur low-overhead and do not require soft-
ware modification, they are limited to specific workflows,
since they rely on pre-built analytical models.

Fugitsu SysViz [7], which we use to validate the
accuracy of our event mScopeMonitors in this paper, can
reconstruct the entire trace for each transaction at sub-
second levels, making very short bottleneck detection
possible [27]. It uses special server hardware connected
to network switches, which support passive network
tracing, to collect its traces. Instead of hardware-based
solutions for providing fine-grained monitoring func-
tionality, milliScope provides the first software-based,
millisecond-level resource and event monitoring solu-
tion for distributed systems. As we demonstrate later,
it achieves comparable tracing accuracy (compared to
SysViz) without comprising on scale or measurement
frequency.

For a system phenomenon detection tool to be con-
sidered “complete,” it should meet the following design
objectives:

• The framework has to provide fine-grained moni-
toring data and distributed event correlation across
a variety of native system logs.

• An interface that is able to easily reconstruct the
causal path and profile the performance of each
request.

• The overhead caused by the monitoring tool has to
be negligible to prevent performance degradation.

III. MILLISCOPE

milliScope is a monitoring framework for n-tier
applications–built specifically to document millisecond-
level system phenomenon. It enables researchers to sys-
tematically reason about the relationships among indi-
vidual component servers and corresponding resources
on very small time scales. To achieve this objective,
milliScope contains its own lightweight event mScope-
Monitors to identify requests’ execution boundaries, and
it leverages an assortment of resource mScopeMonitors,
such as Collectl, SAR and IOstat, to capture server
components’ resource utilization statistics. The disparate
measurement data typically locked in various systems’
log files can be imported into a dynamic data warehouse,
mScopeDB, with mScopeDataTransformer, a multi-stage
data transformation tool as shown in Figure 3. By
connecting the instrumentation to the data transformation
and integration pipeline, milliScope provides researchers
with a unified interface for systematically identifying
VLTRs, isolating corresponding resource bottlenecks
and begin determining the underlying root causes for
millisecond-level performance anomalies.
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Fig. 3: The data transformation flow of milliScope. The event mScopeMonitors capture timestamps, as shown
in Figure 5, in the component logs, while the resource mScopeMonitors record the system resource utilization.
mScopeDataTranformer adopts a multi-stage approach to transform these unstructured data to structured tuples
through different mScopeParsers, mScope XMLtoCSV Converter and mScope Data Importer respectively. And the
monitoring data are loaded into a dynamic data warehouse, mScopeDB, for advanced analysis.

A. Resource mScopeMonitors
Applications produce a variety of resource consump-

tion situations. To understand these usage and capability
scenarios, milliScope uses several resource mScopeMon-
itors to monitor the utilization of targeted resources
on specific system components. Currently, resource
mScopeMonitors support a variety of resource monitor-
ing tools such as SAR, IOstat and Collectl.

Each of the mScopeMonitors support different log
formats. For example, SAR mScopeMonitor outputs
monitoring data in pure text format by default, while
Collectl mScopeMonitor is able to log its data in both
plain text and csv file formats. The log format for
these monitors is also affected by the resources a user
chooses to monitor. For example, users might choose
to CPU, memory, network, disk IO and process-level
statistics or a subset of these. This choice can effect
a given monitor’s log format any number of ways,
including the number of columns and rows and whether
information like a header is repeated or not. milliScope
handles this file structure and data format variability with
mScopeDataTransformer.

B. mScopeDataTransformer
mScopeDataTransformer makes several passes over

specified log files to transform the monitoring data into
structured tuples, which can be loaded later into our
dynamic data warehouse, mScopeDB. With each pass,
additional semantics are added to the files to support a
uniform downstream parsing activity. mScopeDataTrans-
former contains multiple customized parsers, convert-
ers and data importers to handle each of the different

mScopeMonitors in the infrastructure. For example, SAR
mScopeMonitors log files might be enriched over sev-
eral passes with SAR-specific semantics, or files might
be transformed directly through a one-pass customized
parser like Collectl mScopeMonitors. We introduce the
main stages of the data transformation in the following.

1) Parsing Declaration: Given the format and struc-
ture variability among the log files, the data extrac-
tion challenge is a non-trivial matter. We employ two
techniques to help mitigate this complexity. We ex-
plicitly separate data extraction and log parsing from
schema creation and data ingest. Our collection of
parsers actually enrich their input log data with monitor-
specific semantics, and their operation is governed by
declarative-style instructions. mScopeDataTransformer
maintains a mapping between input log files and their
specific mScopeParser. Along with this parser-to-log
file relationship, mScopeDataTransformer also records
instructions for how the specified mScopeParser should
inject semantics into its input logs. Currently, these
parsers support adding semantics to files using either
the sequence of lines in a file or specific string tokens
(expressed as regular expressions). In short, during this
stage, mScopeDataTransformer specifies which parser
should be used for a given file and how the parser should
inject meaning into said file.

2) Adding Semantics to Semi-structured Data: The
next step in our process concerns mScopeParser execu-
tion. As shown in Figure 3, the Apache mScopeParser
corresponds to Apache mScopeMonitor, and it begins by
wrapping each line in the native log with the <log>
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tag. This parser uses specific substrings as markers,
so similar tags are added using the positions of other
specific tokens. SAR mScopeMonitor has two paths
presented in the figure. We originally built a customized
SAR mScopeParser for SAR mScopeMonitor to infer its
schema, because our two methods for providing instruc-
tions were insufficient. After we upgraded our version
of SAR mScopeMonitor to a more recent version, we
were able to directly output XML, obviating our custom
approach.

3) From semi-structured Data to Structured Tuples:
The final stage in our transformation pipeline turns
semi-structured XML data into structured tuples. The
mScope XMLtoCSV Converter is the component respon-
sible for completing this final step. This component’s
XML interface separates the data annotation provided
by specific mScopeParsers from the data warehouse
schema creation. First, mScope XMLtoCSV Converter
infers the table schema from the XML annotation. To
materialize the data warehouse schema, we adopt a
bottom-up approach. The number of columns for a table
schema is based on applying the union operation to all of
the metadata in the XML file. The datatype for a given
column is determined using the best match principle, i.e.,
the narrowest data type that can store all of the values
for the same XML tag is the one selected. Besides the
inferred schema, the converter extracts the data from the
XML file and outputs it to CSV files. The downstream
data loader, entitled mScope Data Importer, uses these
artifacts to create the tables and load the data tuples into
the appropriate database table.

C. mScopeDB

mScopeDB is a dynamic data warehouse for persisting
performance data generated by milliScope. Concretely, it
uses four static tables to store data loading-metadata like
environmental configuration and dynamically created
tables to persist the data like CPU, Memory, Network
and I/O originating from resource mScopeMonitors. The
event mScopeMonitor data and the component boundary
timestamps are also treated as another type of resource.
As mentioned in the previous section, mScopeData-
Transformer creates and populates these dynamic tables
on-the-fly. Our dynamic data warehousing approach aims
to hide some of the complexity associated with analyzing
a large amount of performance data collected from
a variety of sources. For instance, researchers might
wonder if any disk activities happen during the period
when Point-In-Time response time fluctuates heavily
as in Figure 2. With mScopeDB, researchers are able
to explore the disk utilization scenario across different
component nodes, and observe in this case that the disk

Fig. 4: Disk Utilization at different n-tier component
nodes in the same period as shown in Figure 2. We
observe that disk of Mysql has reached full utilization a
couple of times during this period.

of the database node has reached full utilization during
this short span, as shown in Figure 4.

IV. EVENT MSCOPEMONITORS

A. Distributed Event Monitoring & Logging

In addition to the data transformation utility de-
scribed in Section III, we have developed event
mScopeMonitors–lightweight, scalable, and precise re-
quest flow tracing tools that can identify the execution
boundary of each request. This comprehensive utility,
which leverages existing logging infrastructure to min-
imize overhead, provides complete system component
coverage. This enables these tools to reveal request
dependencies and correlate events (generated by request
activity) with resource mScopeMonitor data.

Each event mScopeMonitor modifies the component
source code to collect request-specific execution infor-
mation. Generally, it makes three types of code modifi-
cations using code specialization techniques: generating
request-specific timestamps, adding logging to output
timestamps and inserting unique identifiers into requests.
The event mScopeMonitor has dual objectives: detect ab-
normal phenomena, like the one presented in the Point-
in-Time response time graph in Figure 2, and provide
sufficient information to support a detailed diagnosis of
the problem. For example, to identify the server causing
VLRT requests and contributing to queue amplification,
we need to know the contribution of each server to the
response time of each request.

B. Event of Interest

The first question is deciding how much information
an event-logging monitoring tool needs to capture in
order to re-create a request’s set of related activities
across a distributed system. Removing any unnecessary
data also helps to reduce a monitoring tool’s overhead–
another goal of the event mScopeMonitors.
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Fig. 5: Each event mScopeMonitor records four times-
tamps for each request on each component, which can
be used to rebuild the causal relationship.

To accomplish this end, our approach records only
four timestamps for each request on each component
server that the request touches. These timestamps are
as follows:

• Upstream Arrival timestamp: the timestamp when
the request arrives at the component server from an
upstream tier.

• Upstream Departure timestamp: the timestamp
when the request is returned to an upstream server.

• Downstream Sending timestamp: the timestamp
when the request leaves the component server for a
downstream server.

• Downstream Receiving timestamp: the timestamp
when the request is returned from a downstream
server.

To identify a specific request’s causally-related activi-
ties occurring across an n-tier system, Apache mScope-
Monitor inserts a static, fixed-width request ID into the
URL, and this request ID propagates to downstream
tiers as a URL parameter or as part of a comment to a
SQL query. By joining the tracing records containing the
same request ID located in the event mScopeMonitor log
files, milliScope is able to reconstruct the execution path
explicitly, as Figure 5 shows. This enables milliScope to
establish happens-before relationships among component
servers in the system without making any assumptions
about the interactions among servers. This data can
also be used to calculate metrics useful for filtering
potential bottlenecks. For example, once we calculate the
instantaneous number of queued requests for each tier
for the same period as Figure 2, we find the pushback
phenomena occurs when the database tier’s queue length
increases concurrently with the other tiers’, as shown in
Figure 6.

Fig. 6: Instantaneous # of queued requests for each tier
for the same period as shown in Figure 2. Pushback
is found, since the database queue length increases
concurrently with the other tiers’ increases.

C. Specialized Logging Facilities

Logging activities have been known to cause a dra-
matic reduction in performance by introducing signif-
icant overhead, since they involve a lot of CPU and
IO operations [28]. Previous monitoring tools such as
Dapper [8] and Zipkin [21] have used sampling to
reduce their overhead. However, as we saw in Figure 2,
VSBs (very short bottlenecks) probably only endure for
tens or hundreds of milliseconds, and would not have
been detectable with sampling intervals of seconds or
minutes [27].

The event mScopeMonitors by design trace all request
activities, so our tool needs to intelligently manage
logging to limit its overhead. An intuitive and common
approach for handling the IO associated with logging
is to leverage the existing logging facility of a host,
since it enables runtime logging without modifying the
application binary. Concretely, the event mScopeMon-
itors modify the source code of software components
to integrate the previously mentioned timestamps into
existing log files. Using deliberate specification in the
source code, the overhead can be reduced to 1% to
3% CPU utilization. We show the complete overhead
comparison in Section VI-B, and we illustrate the detail
of specialization using Apache as an example in Ap-
pendix A.

V. ILLUSTRATIVE SCENARIOS

In this section, we provide two illustrative scenarios
for how milliScope accomplishes each of the following
activities: collects data from the event mScopeMonitors
and the resource mScopeMonitors, transforms the native
logs into structured data through mScopeDataTrans-
former and loads it into mScopeDB. With milliScope, we
are able to “scale the mountain” of data to look for the
root cause of observed performance anomalies. In both
scenarios, we discover the VSBs that cause the VLRT
requests, and we show milliScope makes no assumptions
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Fig. 7: Further investigation for Figure 2 via milliScope.
Once the IO of the database tier is saturated because the
database flushes logs from memory to disk, the requests
at the Apache tier starts queueing. This figure shows disk
IO is the very short bottleneck and makes the Point-In-
Time response time increase dramatically during the very
short bottleneck period.

about the origin of bottlenecks. This is exhibited by
highlighting the different reasons for the bottlenecks
in the scenarios, database I/O activities and memory
thrashing respectively.

A. Database IO as the Very Short Bottleneck

In our first case, we review the period in which the
maximal Point-In-Time response time suddenly becomes
twenty times larger than the average response time as
shown in Figure 2. This period only exists for hundreds
of milliseconds, and the Point-In-Time response time
returns to normal quickly. Coarse-grained monitoring
tools, such as periodically sampling at one second inter-
vals, might overlook the peak and miss the opportunity
for performance improvement.

To better understand the reason for such performance
degradation, we calculate the instantaneous, concurrent
requests in each tier using the monitoring data provided
by the event mScopeMonitors. Other event monitoring
tools cannot usually provide the correct number of
concurrent requests, since they usually adopt sampling
to reduce overhead. As depicted in Figure 6, obvious
cross-tier pushback phenomena [27] occurs, evidenced
by the database tier’s and the other tiers’ queue lengths
increasing simultaneously. To investigate the reason why
these elongated queues persist for hundreds of millisec-
onds, we apply Collectl mScopeMonitor to interrogate
the resource utilization of each tier during this period.
Since milliScope has transformed the native logs into
structured tuples housed in our dynamic data warehouse,
mScopeDB, we can easily associate monitoring data
from several system components for the same period. As
displayed in Figure 4, the disk utilization of the database
tier varies dramatically, while the disk utilization of
the other tiers remains consistently low. We conclude

this case by showing the high correlation that exists
between the disk utilization of the database and the
Apache queue length found in Figure 7. This relationship
provides strong evidence for the database IO causing the
very short bottleneck. Previous research has shown short
lifespan IO activity is triggered by the database flushing
its logs from memory to disk in order to maintain
consistency [29].

B. Memory Dirty-Page as the Very Short Bottleneck

A dramatic increase in Point-In-Time response time
might be caused by different system components or
system layers. With milliScope, researchers are able to
utilize a variety of fine-grained resource mScopeMoni-
tors and still integrate their data easily. In this section, we
demonstrate another example of our system performance
debugging system, milliScope, successfully detecting
another performance anomaly. First, we observe the
Point-In-Time response time reaches one thousand mil-
liseconds twice while the average response time is less
than twenty milliseconds during a five second interval
as shown in Figure 8a. After identifying the execution
boundary of each request with the event mScopeMoni-
tors and calculating the request queue lengths for each
tier in Figure 8b, we found two similar looking Point-
In-Time response time peaks. These peaks however are
actually caused by different system components in the
n-tier system. Specifically, during the first peak, only
Apache’s queue length increases, while the queue lengths
for both Apache and Tomcat increase during the second
peak. In other words, cross-tier queue amplification is
observed only at the second Point-In-Time response time
peak.

Checking the monitoring data from Collectl mScope-
Monitor, we found the CPU utilization of Apache and
Tomcat are saturated at the first and second peak re-
spectively, as shown Figure 8c. However, the reason for
CPU saturation differs from the previous case study (IO
activities), since we don’t observe high IO utilization
in this period. milliScope is a fine-grained monitoring
framework, which allows researchers to extend the mon-
itoring scope easily. In this case, we utilize another
subsystem in Collectl mScopeMonitor to understand the
memory usage scenario. Once again, milliScope converts
the native log of Collectl mScopeMonitor into struc-
tured tuples through mScopeDataTransformers multi-
stage transformation prior to loading the data into the
data warehouse. As shown in Figure 8d, the abrupt drop
in dirty page cache size correlates with CPU saturation.
This suggests Apache and Tomcat servers’ separate dirty
page recycling processes are the reason why Point-In-
Time response times increase during these periods.
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(a) Point-In-Time response time for a n-tier system reaches 1,000
millisecond twice while the average response time is less than
twenty millisecond.

(b) Request queue length for each tier shows an interesting
phenomena. During the first peak, only request queue length at
Apache increases, but the request queue length at both Apache
and Tomcat increase at the second peak.

(c) Checking the monitoring data through milliScope, we found
CPU utilization of Apache and Tomcat are saturated at the first
and the second peak respectively.

(d) Applying memory subsystem of Collectl mScopeMonitor,
milliScope transforms the relative logs, such as number of dirty
page, to structured tuples and loads them into mScopeDB. We
demonstrate the root cause of CPU saturated is due to dirty page
recycling.

Fig. 8: In a five second interval, we observe two peaks of Point-In-Time response time. Although they look similar
at the first glance, they are actually caused by different components of an n-tier system.
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Fig. 9: Queue length comparison at workload 8000 between SysViz and the event mScopeMonitors among n-Tier
systems, including Apache, Tomcat, CJDBC and MySQL. The event mScopeMonitors’ results are very similar to
SysViz’s, which demonstrates the accuracy of the event mScopeMonitors.

VI. EVALUATION

A. Accuracy Validation

The event mScopeMonitors aim to provide just enough
information to correlate the event information with the
monitoring data generated by the resource mScopeMon-
itors on n-tier systems. These systems are typically
organized as a pipeline of servers, starting at web
servers, through application servers, middleware servers
and ending with database servers organized in four tiers
as shown in Figure 1. To validate the accuracy of each

specific event mScopeMonitor, we compare its request
queue length accounting for each system component with
a commercial request tracing tool Fujitsu SysViz [7].
SysViz is able to reconstruct the entire trace of each
transaction executed in a system based on interaction
messages collected through network taps or network
switches that support passive network tracing. In addi-
tion, we use RUBBoS, a standard n-tier benchmark [30],
to simulate bulletin board applications such as Slashdot.
The workload of RUBBoS consists of 24 different in-
teractions such as “view story”, and the value of the
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(a) Overhead is about 1%.
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(b) Overhead is about 3%.
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(c) Overhead is about 1%.

 0

 50

 100

 150

 200

 1000  2000  3000  4000  5000  6000  7000

W
rit

e 
S

iz
e 

(M
B

)

Workload

Apache

Apache
Apahce mScopeMonitor

(d) Write size increases around 33%.
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(e) Write size increases around 50%.
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(f) Write size increases around 50%.

Fig. 10: Compared to unmodified servers, the aggregated disk write size for event mScopeMonitors are up to two
times, but they only increase 1% to 3% overhead.
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Fig. 11: Performance comparison between disable and enable mScopeMonitors using RUBBoS benchmark on a
n-tier system, in which Apache, Tomcat, CJDBC and Mysql are running in one component node respectively.

workload represents the number of concurrent users.
Each experimental trial is running for 7 minutes.

Due to space limitations, we only show the queue
length, an important metric that can be derived from the
request flow tracing data [27] for each tier at workload
8,000 as depicted in Figure 9. As these figures show,
the event mScopeMonitors and SysViz determine very
similar queue lengths for each tier regardless of the
scenario. Consequently, this demonstrates milliScope’s
event mScopeMonitor’s ability to trace requests accu-
rately.

B. Overhead Comparison

We evaluate the impact of logging on system per-
formance using three metrics: system throughput, sys-
tem response time and IOWait as a component of
overall CPU utilization. We investigate the impact of
monitoring-related logging on system performance by
comparing the performance of the RUBBoS [30] bench-
mark when the event mScopeMonitors are enabled on
each of the component nodes of the underlying n-
tier system. Whether the event mScopeMonitors are

enabled or not, there is almost no difference in system
throughput, as Figure 11 shows. Similarly, we compare
the system response times for the same benchmark and
underlying system. The instrumented system experiences
two milliseconds more latency than its un-instrumented
equivalent.

Figure 10 shows each node’s respective IOWait via
an aggregate CPU utilization metric, which includes the
time the CPU spends in user mode, system mode and
IOWait. Even though logging is not a computationally
intensive task, an efficient logging method should not in-
crease CPU IOWait. The graph depicts the magnitude of
the IOWait penalty imposed by the event mScopeMoni-
tors on the modified server components relative to their
unmodified counterparts. We present these utilization
measurements across a range of workloads to account
for any decline in the percentage of idle time (and hence
IOWait) as a consequence of larger workloads.

Apache mScopeMonitor and C-JDBC mScopeMoni-
tor add about 1% overhead to their respective CPUs,
which demonstrates that our monitors by integrating
into the system’s existing logging infrastructure impose
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no additional IOWait penalty beyond what the logging
infrastructure itself contributes. On the other hand, Tom-
cat mScopeMonitor adds about 3% to its CPU. The
difference in overhead between Tomcat mScopeMonitor
and the other mScopeMonitors is primarily due to an
additional thread being created to record the times-
tamps associated with downstream server communica-
tion. Tomcat mScopeMonitor uses this extra thread to log
variable-width data corresponding to the dynamic com-
munication between Tomcat and the downstream servers.
We also present in this graph the difference between
the event mScopeMonitor-enabled components’ aggre-
gate disk write size and the corresponding unmodified
components’ disk write sizes for the same experiments
and setup, as described in Section VI-A. Taking these
figures together, we see a favorable tradeoff. Our event
mScopeMonitors actually output twice as much data to
disk, most of which is associated with the timestamps as
shown in Figure 5, at the cost of increasing overhead 1%
to 3% due primarily to increased IOWait. These evalua-
tions demonstrate the event mScopeMonitor’s ability to
provide fine-grained monitoring data with only negligi-
ble overhead.

VII. CONCLUSION

In this paper, we present the first millisecond gran-
ularity, software-based resource and event monitor for
distributed systems, milliScope. milliScope provides a
fine-grained monitoring framework composed of dif-
ferent mScopeMonitors, mScopeDataTransformer and
mScopeDB, which used together can provide a complete
system performance profile. We present two illustrative
scenarios in which the abnormalities look similar at first
glance, e.g., response times increasing by one to two
orders of magnitude over a short period, but we find
these phenomena are due to different system operations:
IO activities and dirty page recycling. We also validate
the accuracy and lightweight characteristics of the event
mScopeMonitors through several evaluations. With its
good performance (low overhead at high frequency) and
high accuracy, milliScope is an important contribution
towards performance debugging of complex n-tier appli-
cations in cloud environments.
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APPENDIX

A. Specialized Apache Logging Facilities
We use Figure 5 to illustrate the sequence of events to log

a request with Apache mScopeMonitor.
Since Apache is the first-tier among n-tier systems, it would

insert a unique request ID into the URL and propagate it to
downstream tiers. For example, the original request was:

http://rubbos/StoriesOfTheDay
Under Apache mScopeMonitor, the web server would gen-

erate a unique ID and attach it at the end of the url:
http://rubbos/StoriesOfTheDay?ID=XXX

The application server will retrieve the ID (by simple in-
strumentation) and send it to the corresponding SQL statement
to retrieve related data, and the ID is included as part of a
comment to the SQL statement:

SELECT id,title FROM stories /*ID=XXX*/
In terms of timestamps, the original Apache source code

inherently records the Upstream Arrival and Upstream De-
parture timestamps for each request that it receives. These
can be used to calculate the response time of each request;
however, obtaining the intermediate Downstream Sending and
Downstream Receiving timestamps for requests associated with
Apache/Tomcat communication via ModJK, an Apache plugin
for connecting to Tomcat, is non-trivial. First, we extend the
response data structure request rec in the standard header
template include/httpd.h by adding variables for storing the
Downstream Sending and Downstream Receiving timestamps
as follows:

apr time t connector stime;
Then, we modify mod jk.c, the module responsible for

communicating with Tomcat, by adding calls to the Apache
Portable Runtime (APR) library to record the Downstream
Sending timestamp and Downstream Receiving timestamp as
follows:

r→connector stime = apr time now();
Lastly, to output this added information (i.e., the Down-

stream Sending timestamp and Downstream Receiving times-
tamp variables added to request rec) in the Apache log files,
we modify modules/loggers/mod log config.c to log times-
tamps as follows:

apr psprintf(” %” APR TIME T FMT,
(r→connector stime));
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