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Abstract—Identifying the location of performance bottlenecks
is a non-trivial challenge when scaling n-tier applications in
computing clouds. Specifically, we observed that an n-tier ap-
plication may experience significant performance loss when
bottlenecks alternate rapidly between component servers. Such
rapidly alternating bottlenecks arise naturally and often from
resource dependencies in an n-tier system and bursty workloads.
These rapidly alternating bottlenecks are difficult to detect
because the saturation in each participating server may have
a very short lifespan (e.g., milliseconds) compared to current
system monitoring tools and practices with sampling at intervals
of seconds or minutes. Using passive network tracing at fine-
granularity (e.g., aggregate at every 50ms), we are able to
correlate throughput (i.e., request service rate) and load (i.e.,
number of concurrent requests) in each server of an n-tier system.
Our experimental results show conclusive evidence of rapidly
alternating bottlenecks caused by system software (JVM garbage
collection) and middleware (VM collocation).

I. INTRODUCTION

Web-facing enterprise applications such as electronic com-

merce are not embarrassingly parallel (e.g., web indexing and

data analytics). They are typically implemented using an n-tier

architecture with web server, application server, and database

server tiers. Such n-tier applications have implicit dependen-

cies among their components, which create alternating bot-
tlenecks [4], [6], [12], [14]. These alternating bottlenecks are

both interesting and challenging. They are interesting because

they cause the entire n-tier system to reach its performance

limit (i.e., flat throughput) even though all system resources

are measurably below 100% utilization. They are challenging

because classic queuing models that assume independent jobs

predict single resource saturation bottlenecks, so they are

inapplicable to alternating bottlenecks.

The main hypothesis of this paper is that (contrary to previ-

ously common belief) alternating bottlenecks occur naturally

in real application scenarios and they can be found by experi-

mental measurements using appropriate tools. Alternating bot-

tlenecks constitute an important problem because there is lin-

gering skepticism about their prevalence (and even existence)

in the real world, despite early theoretical predictions [4], [6],

[14]. In the past, observed evidence of alternating bottlenecks

was rare and it was not easy to reproduce them reliably in

experiments. We report consistent experimental results which

suggest that alternating bottlenecks may be far more common

than previously believed. The perception of rarity is simply

due to many alternating bottlenecks being short-lived (on the

order of tens of milliseconds). Consequently, these interesting

phenomena have been (and still are) completely invisible to

normal monitoring tools that sample at time intervals measured

in seconds or minutes.

The main contribution of the paper is an unequivocal con-

firmation of our hypothesis through reproducible experimental

observation of two rapidly alternating bottlenecks when run-

ning the standard n-tier RUBBoS benchmark [1]. Specifically,

we found that bottlenecks alternate between the Tomcat tier

and the MySQL tier at time interval of tens of milliseconds.

Our study further shows that alternating bottlenecks can be

caused by factors at the software level (e.g., JVM garbage

collection (GC), see Section III-B) and middleware level (e.g.,

VM collocation, see Section III-C). Despite its relatively short

duration, the impact of this alternating bottleneck becomes

significant when the frequency and intensity of the alternating

pattern increase.

The detection of alternating bottlenecks required a novel

method that differs from traditional bottleneck detection in

two main aspects. First, since alternating bottlenecks may

arise without any single resource saturation, our method

is completely independent of any single resource saturation

measurements. Concretely, Section II-B shows an example in

which the throughput of a four-tier system stops increasing

even though the highest resource utilization in the system

(MySQL CPU) is only 86.9%. Second, our method works at

an unprecedented fine time granularity (milliseconds), which is

more precise than normal sampling tools (e.g., dstat consumes

12% of CPU at 20ms intervals). Our method uses passive net-

work packet tracing, which captures the arrival and departure

time of each request of each server at microsecond granularity

with negligible impact on the servers. By correlating the

load and throughput of each server at millisecond granularity,

our method is able to find short-lived alternating bottlenecks

(lifetime of tens of milliseconds) that have been invisible to

state-of-the-art sampling tools.

The rest of the paper is organized as follows. Section II
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WL 14,000

(a) Average end-to-end response time and throughput
at each workload
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(b) Tomcat CPU utilization at WL 14,000; the
average is 86.9%.
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(c) MySQL CPU utilization at WL 14,000; the
average is 84.3%.

Fig. 1: A non-single bottleneck case. The system achieves the highest throughput at WL 14,000 while no hardware resources are saturated.

Server/Resource
CPU util. Disk I/O Network receive/send

(%) (%) (MB/s)

Apache 45.9 0.5 23.8/39.9
Tomcat 86.9 0.3 7.6/13.1
CJDBC 36.23 0.2 11.2/14.3
MySQL 84.3 0.4 0.8/4.6

TABLE I: Average resource utilization in each tier at WL 14,000.
Except Tomcat/MySQL CPU, other resources are far from saturation.

introduces various kinds of bottlenecks. Section III shows our

experimental observations of rapidly alternating bottlenecks

of an n-tier application. Section IV shows solutions to resolve

the observed rapidly alternating bottlenecks. Section V sum-

marizes the related work and Section VI concludes the paper.

II. VARIOUS KINDS OF BOTTLENECKS

A. Single Bottlenecks

A system bottleneck in an n-tier system is the place where

requests start to queue (or congest) and throughput is limited

in the system. Classic queuing models assume independent

jobs and predict single resource bottleneck in an n-tier sys-

tem, in which the system achieves the maximum throughput

when the single bottleneck resource is 100% utilized. Due to

its simplicity and intuitiveness, classic queuing models have

provided the foundation for system administrators to manage

and predict system performance [18], [22], [11]. Despite their

popularity, classic queuing models are based on assumptions

(e.g., independent jobs among component servers in a system)

that do not necessarily hold in an n-tier system in practice.

B. Saturation without Single Bottlenecks

We use an example where an n-tier system is saturated

while no hardware resources are fully utilized. The example

was derived from a three-minute experiment of RUBBoS [1]

benchmark running on a four-tier configuration 1L/2S/1L/2S

(see Figure 12(c)), which means one web server (apache),

two application servers (tomcat), one database clustering mid-

dleware (C-JDBC), and two database servers (MySQL). The

details of the experimental setup is in Appendix A.

Figure 1(a) shows the system works well from a workload

of 1,000 concurrent users to 13,000. At 14,000, the average re-
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Fig. 2: A rapidly alternating bottleneck in a 3-tier web application.

sponse time increases significantly and the throughput reaches

a maximum. The interesting observation is that the saturated

system does not have any single resource bottleneck. Since

CPU is the critical resource in a browse-only workload, we

show the timeline graphs (with one second granularity) of

CPU utilization. During the execution of the WL 14,000, both

Tomcat (Figure 1(b)) and MySQL (Figure 1(c)) show less than

full CPU utilization, with an average of 86.9% (Tomcat) and

84.3% (MySQL). We also summarize the average usage of

other main hardware resources of each server in Table I. This

table shows that except for Tomcat and MySQL CPU, the

other system resources are far from saturation.

This example shows that monitoring hardware resource

utilization at one second granularity is unable to identify the

system bottleneck, since there is no single saturated resource.

Later in Section III-B we explain the bottleneck alternates

rapidly between MySQL and Tomcat. During normal process-

ing, MySQL CPU is the primary system bottleneck, being fully

utilized for processing bursty requests from Tomcat. However,

the JVM GC in Tomcat freezes the server and consumes

the server CPU (at the granularity of milliseconds). Thus

the Tomcat becomes the system bottleneck during JVM GC

periods. In either case, the system throughput is limited.

C. Rapidly Alternating Bottlenecks

Alternating bottleneck describes a phenomenon that the

bottleneck alternates among multiple system resources while
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(a) MySQL load average at each 50ms time inter-
val in a 12-second period. Large fluctuation sug-
gests MySQL frequently becomes the bottleneck.
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(b) MySQL throughput average at each 50ms
time interval in the same 12-second period as in
Figure 4(a).
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(c) MySQL load vs. throughput in the same 12-
second period as in Figure 4(a), 4(b); MySQL is
temporarily saturated once the load exceeds N�.

Fig. 4: Performance analysis of MySQL using fine-grained load and throughput at WL 14,000. Figure 4(a) and 4(b) show the MySQL load
and throughput measured at the every 50ms time interval. Figure 4(c) is derived from 4(a) and 4(b); each point in Figure 4(c) represents the
MySQL load and throughput measured at the same 50ms time interval in the 12-second experimental time period.
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Fig. 3: A transaction execution trace captured by SysViz.

at any moment one system resource becomes the main bot-

tleneck. Alternating bottleneck arises due to the implicit de-

pendencies among servers in an n-tier system. For example,

requests that originate from a client arrive at the web server,

which distributes them among the application servers, which

in turn ask the database servers to carry out the query. The de-

pendencies among the servers are in the long invocation chain

of transaction processing in the system and maintained by soft

resources (threads, TCP connections [21]). The dependencies,

combined with many system events including database locks,

JVM GC, memory contention, and/or characteristics of the

scheduling algorithms and many others, may cause requests to

congest in different servers at different time periods. Figure 2

illustrates a rapidly alternating bottleneck case in a 3-tier web

application. In this case, Tomcat and MySQL face congestions

in a rapidly alternating pattern.

III. EXPERIMENTAL OBSERVATION OF RAPIDLY

ALTERNATING BOTTLENECKS

In this section, we first explain our fine-grained analysis to

detect rapidly alternating bottlenecks. Then we show two case

studies of applying our method to detect rapidly alternating

bottlenecks of an n-tier application, which are caused by JVM

GC and VM collocation respectively.

A. Fine-Grained Load/Throughput Analysis

1) Trace Monitoring Tool: Our fine-grained analysis is

based on the tracing of client transaction executions of

an n-tier system. We first briefly explain our tool (Fujitsu

SysViz [2]) for the tracing of transaction executions.

Figure 3 shows an example of such a trace (numbered

arrows) of a client transaction execution in a three-tier system.

A client transaction services an entire web page requested

by a client and may consist of multiple interactions between

different tiers. SysViz can reconstruct the entire trace of

each transaction executed in the system based on the traffic

messages (odd-numbered arrows) collected through a network

switch which supports passive network tracing. Thus, the

arrival/departure timestamps of each request (small boxes with

even-numbered arrows) for any server can be recorded.

In fact transaction tracing technology has been studied

intensively in previous research [5], [8], [16], [17]; how to

utilize the captured tracing information to diagnose system

performance problem is the ongoing research trend.

2) Detecting Rapidly Alternating Bottleneck: Since each

participating server in a rapidly alternating bottleneck case

only presents short-term saturations, a key point of detecting

the rapidly alternating bottleneck is to find the participating

short-term saturated servers. Instead of monitoring hardware

resource utilizations, our approach measures a server load

and throughput in continuous fine-grained time intervals. The

throughput of a server can be calculated by counting the

number of completed requests in the server in a fixed time

interval, which can be 50ms, 100ms, or 1s. Load is the average

number of concurrent requests over the same time interval 1.

Both these two metrics for each server in the system can be

easily derived from the trace captured by SysViz 2.

Figure 4(a) shows the MySQL load average at every 50ms

time interval over a 12-second time period at WL 14,000 (See

1At each time tick, we know how many requests for a server have arrived,
but not yet departed. This is the number of concurrent requests being processed
by the server. Concurrent requests can also be thought as “queued” requests.

2The detailed fine-grained load/throughput calculation can be found in [20].
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Fig. 5: Fine-grained load/throughput(50ms) analysis for Tomcat and MySQL. Figure 5(c), 5(f) are derived from Figure 5(b), 5(e) respectively,
with 3-minute experimental data. Figure 5(b), 5(e) show that both Tomcat and MySQL frequently present short-term saturations at WL 14,000.

4

4'

(a) Correlation between Tomcat load and MySQL load; negative
correlation suggests rapidly alternating bottleneck.
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in (a); high GC running ratio causes long queue in Tomcat.

Fig. 6: Correlation analysis of the rapidly alternating bottleneck between Tomcat and MySQL at WL 14,000. Figure 6(b) shows that Tomcat
temporarily becomes the bottleneck due to frequent JVM GC.

the case in Figure 1). This figure shows frequent high load

(large number of queued requests) in MySQL, which suggests

MySQL frequently presents short-term saturation. Figure 4(b)

shows the fine-grained MySQL throughput over the same 12-

second time period as in Figure 4(a). This figure shows that in

some time intervals MySQL even produces zero throughput,

which suggests MySQL is frequently under-utilized.

To precisely diagnose in which time intervals a server

is temporarily saturated, we correlate the server’s load and

throughput as shown in Figure 4(c). This figure is derived

from Figure 4(a) and 4(b); each point in Figure 4(c) represents

the MySQL load/throughput measured at the same 50ms time

interval during the 12-second time period. This figure shows

the clear trend of load/throughput correlation (main sequence
curve), which is consistent with Denning et al.’s [7] operational

analysis result for the relationship between a server’s load

and throughput. Specifically, a server’s throughput increases

as the load on the server increases until it reaches TPmax
3,

the maximum throughput. The saturation point N� is the

minimum load beyond which the server starts to saturate.

Given the N� of a server, we can decide the time intervals in

which the server is saturated based on the measured load. For

example, Figure 4(c) highlights three points labeled 1, 2, and

3; each point represents the load/throughput in a time interval

that can match back to Figure 4(a) and 4(b). Point 1 shows

that MySQL is saturated during the time interval because the

high load far exceeds N�. Point 2 shows that MySQL is not

saturated due to the zero load and throughput. Point 3 also

shows MySQL is not saturated because the corresponding load

3Due to the Utilization Law, the maximum throughput TPmax of a server
is fixed by the bottleneck resource in terms of 1/d, where d is the service
demand for the bottleneck resource per job [7].
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Fig. 7: Collocation strategy between SysA and SysB; SysA-App2 is
collocated with SysB-DB.

TABLE II: Workload of SysA and SysB during collocation. SysA is
at constant stable WL 14,000 with I = 1 and SysB is in constant
workload but with different burstiness levels.

#
SysA-App2 SysB-DB

WL Burstiness CPU WL Burstiness CPU
(# users) level (%) (# users) level (%)

1 14,000 I=1 74.1 0 0

2 14,000 I=1 74.9 400 I=1 10.2
3 14,000 I=1 74.7 400 I=100 10.6
4 14,000 I=1 75.5 400 I=200 10.5
5 14,000 I=1 75.2 400 I=400 10.8

is less than N� though it generates high throughput.

After we detect all the short-term saturated servers, the next

step is to analyze whether the short-term saturation of each

participating server occurs in an alternating pattern. We will

illustrate this point in the following case studies.

B. Rapidly Alternating Bottleneck Caused by JVM GC

In this section we explain the rapidly alternating bottleneck

mentioned in Section II-B. In that example, the poor system

performance is caused by the frequent short-term saturations

of both Tomcat and MySQL. Our further correlation analysis

shows that the frequent JVM GC in Tomcat cause the bottle-

neck to alternate between Tomcat and MySQL.

Figure 5 shows the fine-grained load/throughput(50ms)

analysis for Tomcat and MySQL at WL 7,000 and 14,000

with the same system configuration as in Section II-B. Fig-

ure 5(a) and 5(d) show that both Tomcat and MySQL are not

saturated at WL 7,000 since the load of each tier is below

the corresponding N�, which is derived from Figure 5(c) and

Figure 5(f) respectively.

The interesting figures are Figure 5(b) and 5(e), which show

that at WL 14,000 both the Tomcat tier and the MySQL

tier frequently present short-term saturations. Specially, Fig-

ure 5(b) shows that in some time intervals the Tomcat load

is high (e.g., the point labeled 4) but the corresponding

throughput is zero, which means that many requests are queued

in Tomcat but no output responses (throughput). Figure 5(c),

which is derived from Figure 5(b) but based on the 3-minute

runtime experiments, shows that there are many time intervals

when Tomcat has a high load but low or even zero throughput

(POI inside the rectangular area). Since Tomcat is the upstream

tier of MySQL, the output responses of Tomcat feeds the

input requests of MySQL; thus having fewer output responses

from Tomcat means there will be fewer input requests sent

Baseline, non-
colloca�on case

Fig. 8: SysA response time (at WL 14,000) when collocated with
SysB (at WL 400 but with increased burstiness level).

to MySQL, which leads to the under-utilization of MySQL

as shown in Figure 5(e). For instance, the point labeled 4 in

Figure 5(b) illustrates zero throughput in Tomcat, which leads

to the zero throughput and load of MySQL (see the point

labeled 4′ in Figure 5(e)).

To illustrate the rapidly alternating bottleneck between Tom-

cat and MySQL, Figure 6(a) shows the correlation between the

Tomcat load and the MySQL load over the same 12-second

time period. This figure shows that these two metrics have a

negative correlation (the Pearson correlation is -0.42), which

suggests that the short-term saturation alternates between

Tomcat and MySQL. Thus, the reason for the limited system

throughput is clear: at any moment either Tomcat or MySQL

becomes the bottleneck in the system.

Our further analysis shows that the short-term saturations

of Tomcat are caused by frequent JVM GC. In this set of

experiments, the JVM in Tomcat (with JDK 1.5) uses a

synchronous garbage collector; it waits during the garbage

collection period and only starts processing requests after the

garbage collection is finished. To confirm that JVM GC causes

the bottleneck in Tomcat, Figure 6(b) shows the timeline graph

which correlates the Java GC running ratio 4 with the Tomcat

load (50ms). This figure shows the occurrence of Tomcat JVM

GC has a strong positive-correlation with the high load in

Tomcat. The high peaks of JVM GC in Figure 6(b) stops

Tomcat and makes requests queued in Tomcat dramatically.

We note that such long freeze times in Tomcat do not happen

frequently when the system is under low workload as shown

in Figure 5(a). This is because JVM GC has a non-linear

relationship with workload [19].

C. Rapidly Alternating Bottleneck Caused by VM Collocation

In this section we show the second rapidly alternating bottle-

neck case which is caused by VM collocation, i.e., collocating

multiple under-utilized VMs into the same physical host so

that VMs can share hardware resources such as CPU. Although

VM collocation can reduce infrastructure and maintenance

costs [9], it may significantly hamper the performance of

the collocated applications in a non-trivial way, especially

when the workload for the collocated applications becomes

bursty [13], [14].

4Java GC running ratio means the total time spent on Java GC during each
monitoring time interval to the total monitoring time interval length. JVM
provides a tool recording the starting/ending timestamp of every GC activity.
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(a) Tomcat tier of SysA (SysA-App) when the bursti-
ness level of SysB workload is I = 400

5'

(b) MySQL tier of SysA (SysA-DB) when the bursti-
ness level of SysB workload is I = 400

5'
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(c) Negative correlation between SysA-App/SysA-
DB load suggests rapidly alternating bottleneck.

Fig. 9: Fine-grained load/throughput analysis for the Tomcat and MySQL of SysA in the collocation experiments (see Figure 7 and Table II).
Figure 9(a) and 9(b) show that both the Tomcat and MySQL of SysA frequently present short-term saturations.
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Fig. 10: SysA-App load vs. SysB-DB CPU; burst of SysB-DB CPU
utilization causes frequent high load (long queue) in the SysA-App
tier, which indicates frequent transient bottlenecks in SysA-App.

We illustrate this problem by collocating two VMs, each

of which is from a separate n-tier application, into the same

host and with each VM sharing the same CPU core. Fig-

ure 7 shows our collocation strategy of the two applications;

SysA with 1L/2S/1L/2S configuration and SysB with 1S/1S/1S

configuration. SysA keeps the same hardware configuration as

in the previous sections but with JDK1.6 in Tomcat 5. The

VM of SysA-App2 is collocated with the VM of SysB-DB on

the same ESXi host and they share the same CPU core; the

VMs of the front tiers of SysB are deployed in separate ESXi
hosts from SysA to simplify the analysis. Table II shows the

workload conditions for both systems and the average CPU

utilization for the collocated VMs. SysA is at a constant stable

workload of 14,000 in all five experiments. Except for the first

experiment (the non-collocation case), SysB is at constant WL

400 but with varying burstiness levels, which is represented by

I 6. The average CPU utilization of both the collocated VMs

SysA-App2 and SysB-DB are almost constant and the total CPU

utilization is less than 90%, which justifies the collocation

strategy based on traditional bin packing practices.

Figure 8 shows the average response time of SysA in all

the five cases. This figure shows that the SysA response time

5The upgrade of JDK version in Tomcat solves the rapidly alternating
bottleneck caused by frequent JVM GC; see Section IV for more details.

6Mi et al. [15] introduced index of dispersion (abbreviated as I) to
characterize the intensity of the traffic surges. The larger the I is, the longer
the duration of the traffic surge. The burstiness level of the by default RUBBoS
workload is I = 1.

only increases significantly when the burstiness level of the

workload for SysB becomes high (e.g, I = 400). The significant

increase in response time for SysA may seem strange since the

average CPU utilization remains constant as seen in Table II.

Figure 9(a) shows a similar interesting phenomenon as

in the previous sections that in some time intervals (e.g,

the point labeled 5) the SysA-App has a high load but low

throughput; during these time intervals, SysA-App presents

short-term saturations and SysA-DB is under-utilized due to

fewer input requests fed from SysA-App (see Figure 9(b)).

Figure 9(c) shows the correlation of the load between SysA-
App and SysA-DB over the same 8-second time period. This

figure shows that SysA-App load has a negative correlation

with SysA-DB load (ρX1,Y 2 is -0.46), which suggests the

bottleneck alternates rapidly between SysA-App and SysA-DB.

Our further analysis shows that the short-term saturation of

SysA-App is caused by the burst of SysB-DB CPU utilization.

Figure 10 shows the timeline graph of the CPU utilization

of SysB-DB (measured using VMware esxtop with 2s granu-

larity) and the SysA-App load (measured at every 50ms time

interval). This figure shows that the SysA-App load increases

significantly when there is a spike in the SysB-DB CPU

utilization 7,which indicates that Tomcat of SysA temporarily

becomes the system bottleneck due to the interference of SysB-
DB. More detailed research about the CPU contention between

collocated VMs has been studied by Malkowski et al. [13].

IV. RESOLVING RAPIDLY ALTERNATING BOTTLENECKS

Once we detect a rapidly alternating bottleneck case, we

can resolve the bottleneck through various ways, depending

on whether we can find the exact cause for the rapidly

alternating bottleneck. Specifically, we can simply scale-out/up

the participating servers if we cannot find the exact cause,

or we can resolve the bottleneck by addressing the exact

cause. For instance, we can resolve the rapidly alternating

bottleneck caused by frequent JVM GC in Tomcat as described

in Section III-B through upgrading the JDK version from 1.5

to 1.6, which has more efficient garbage collectors.

7We cannot show the fine-grained CPU utilization of SysB-DB because 2s
is the finest granularity the lastest esxtop supports.
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(a) Tomcat tier under WL 14,000
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(b) Tomcat tier under WL 16,000
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(d) MySQL tier under WL 14,000
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Fig. 11: Fine-grained load/throughput(50ms) analysis for Tomcat (with JDK 1.6) and MySQL. Figure 11(b) and 11(e) show that the rapidly
alternating bottleneck is resolved and the MySQL tier becomes the single bottleneck.

Figure 11 shows the fine-grained load/throughput analysis

for Tomcat and MySQL at WL 14,000 and 16,000 after

we upgrade the Tomcat JDK version from 1.5 to 1.6. The

experiments here have the same hardware/software configura-

tion as in Section III-B except for the Tomcat JDK version.

Recall from Section III-B the system throughput reaches the

maximum at WL 14,000 due to the rapidly alternating bot-

tleneck between Tomcat and MySQL. After the JDK version

upgrade, Figure 11(a) and 11(d) show that Tomcat does not

have long “freezing” periods (high load but low throughput)

and only MySQL presents frequent short-term saturations at

WL 14,000; further workload increase to 16,000 leads to the

full saturation of MySQL as shown in Figure 11(e) (the load is

above the N� most of the time). Thus, the rapidly alternating

bottleneck is resolved.

Figure 11(c) and 11(f) show the system response time and

throughput gain after we resolve the rapidly alternating bot-

tleneck. At WL 17,000, the system with JDK 1.6 outperforms

the system with JDK 1.5 by a 21.1% higher throughput while

achieving an average response time that is about 71% lower.

We note we can resolve the rapidly alternating bottleneck

caused by VM collocation described in Section III-C through

migrating the collocated VM to a different ESXi host. We omit

such analysis due to space constraints.

V. RELATED WORK

Shifting/Alternating bottlenecks have been studied before

in either multiclass queueing networks or n-tier enterprise

systems. Balbo et al. [4] and Casale et al. [6] use analyti-

cal approaches to illustrate that bottlenecks in a multiclass

queueing network with load independent servers can switch

to different servers, depending on the current workload mix.

Malkowski et al. [12] showed an alternating bottleneck case

with slow alternating pattern among eight MySQL databases

in the system. As shown in this paper, alternating bottlenecks

can be far more common than previously believed.

Analytical models have been proposed for bottleneck de-

tection and performance prediction of n-tier systems. Xiong

et al. [22] present a multi-level control approach for n-tier

systems that employs a flexible queuing model to determine

the optimal resources to each tier of the application under

both total resource constrains and SLA constrains. However,

such model uses Mean Value Analysis (MVA), which may

not handle the alternating bottleneck cases in the system.

Mi et al. [14] propose an analytical model that considers

shifting bottleneck in an n-tier system due to bursty workloads;

however, the accuracy of their model is unclear once the

frequency of shifting becomes high.

Perhaps the work closest to ours is Aguilera et al.’s per-

formance debugging based on Black boxes [3]. The authors

propose a statistical method to derive causal paths (the trace of

a transaction) in a distributed system from the communication

messages between different nodes. By measuring the delay of

each request in each node, they detect the “bottleneck server”

as the node where a request has the longest delay. Though this

approach can be effective to detect the single bottleneck case,

it may fail to detect rapidly alternating bottlenecks.

VI. CONCLUSIONS

We observed a significant performance loss of an n-tier

system due to rapidly alternating bottlenecks between mul-

tiple tiers (Section II-B). We proposed a novel bottleneck
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Fig. 12: Details of the experimental setup.

detection method to detect these rapidly alternating bottlenecks

(Section III-A). We found that rapidly alternating bottlenecks

can be caused by factors at different levels of a system; for

instance, JVM GC at the software level (Section III-B), VM

collocation at the middleware level (Section III-C). Solving

those rapidly alternating bottlenecks leads to significant per-

formance improvement (Section IV). More generally, our work

is an important contribution towards scaling complex n-tier

applications under elastic workloads in cloud environments.
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APPENDIX

In our experiments we adopt the RUBBoS [1] standard n-tier
benchmark, based on bulletin board applications such as Slashdot.
RUBBoS can be configured as a three-tier (web server, application
server, and database server) or four-tier (addition of clustering mid-
dleware such as C-JDBC [10]) system. The benchmark includes two
kinds of workload modes: browse-only and read/write interaction
mixes. We use browse-only workload in this paper.

We run the RUBBoS benchmark on our virtualized testbed.
Figure 12 outlines the software components, ESXi host and virtual
machine (VM) configuration, and a sample topology used in the
experiments. We use a four-digit notation #W/#A/#C/#D to
denote the number of web servers, application servers, clustering
middleware servers, and database servers. Each server runs on top
of one VM. We have two types of VMs: “L” and “S”, each of which
represents a different size of processing power. Figure 12(c) shows a
sample 1L/2S/1L/2S topology. Each ESXi host runs the VMs from the
same tier of the application. The VMs from the same tier are pinned
to separate CPU cores to minimize the interference between VMs.
Hardware resource utilization measurements (e.g., CPU) are taken
during the runtime period using Sysstat at one second granularity
and VMware esxtop at two second granularity.
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