An Experimental Study of Rapidly Alternating Bottleneck in n-Tier Applications

Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsubara, Motoyuki Kawaba, Calton Pu

Scaling Web Applications On-Demand in Cloud

Good performance + Cost efficiency

What If No Bottleneck Was Detected?

How to scale a web application while no bottleneck is identified?

Rapidly Alternating Bottlenecks

- 1. Throughput is limited with no saturated resources
- 2. Duration of each bottleneck is short (e.g., < 100ms)

Experimental Setup

- □ RUBBoS benchmark: a bulletin board system like Slashdot
- ☐ 24 web interactions

CPU intensive

Workload consists of emulated clients

☐ Intel Xeon E5607 2 quad-core 2.26 GHz 16 GB memory

Motivational Example

Response time & throughput of a 3-minute benchmark on the 4-tier application with increasing workloads.

No Obvious Bottleneck is Detected at WL 14,000

Workload is CPU intensive

Disk I/O utilization (<5%), network I/O utilization (<
 20%), Memory usage (<40%);

Rapidly Alternating Bottleneck: Sources and Detection

- Sources: We find that other than bursty workload, system environmental conditions:
 - JVM garbage collection
 - VM collocation
- Detection and Visualization: We implement a fine-grained monitoring method based on passive network tracing.
 - Negligible monitoring overhead for running applications

Outline

- Introduction & Motivation
- Detection and Visualization
 - Fine-grained load/throughput analysis
 - Two Observations of Rapidly Alternating Bottlenecks
 - JVM garbage collection (JVM GC)
 - VM collocation
 - Conclusion & Future Works

Two Steps for Detecting Rapidly Alternating bottlenecks

- Find the participating servers that present transient bottlenecks(e.g., 50ms)
- Check whether the transient bottlenecks of each participating server occur in an alternating pattern

Passive Network Tracing Infrastructure

- Collect interaction messages in the system using SysViz to measure fine-grained active load and throughput on each server.
 - Active load: The # of concurrent requests in a server
 - Throughput: The # of completed requests of a server

Fine-Grained Active Load Calculation in a Server

Active-Load/Throughput Correlation Analysis

Active-Load/Throughput Analysis for MySQL at WL 14,000

Outline

- Introduction & Motivation
- Detection and Visualization
 - Fine-grained load/throughput analysis
- Two Observations of Rapidly Alternating Bottlenecks
- JVM garbage collection (JVM GC)
 - VM collocation
 - Conclusion & Future Works

Active-Load/Throughput Analysis at Workload 7,000

Active-Load/Throughput Analysis at Workload 14,000

Timeline Analysis at Workload 14,000

Timeline Analysis at Workload 14,000 (Cont.)

Correlation Analysis of Rapidly Alternating Bottlenecks

Correlation coefficient: -0.42, negative correlation suggests rapidly alternating bottleneck.

Outline

- Introduction & Motivation
- Detection and Visualization
 - Fine-grained load/throughput analysis
- Two Observations of Rapidly Alternating Bottlenecks
 - JVM garbage collection (JVM GC)
 - VM collocation
- Conclusion & Future Works

Conclusion & Future Work

- Rapidly alternating bottlenecks can cause non-trivial performance loss in an n-tier system.
- We proposed a rapidly alternating bottleneck detection and visualization method through fine-grained active-load/throughput analysis
- Ongoing work: more analysis of different types of workloads and more system factors that cause rapidly alternating bottlenecks.

Thank You. Any Questions?

Qingyang Wang

qywang@cc.gatech.edu

Backup slides

Resolving Rapidly Alternating Bottlenecks

Performance Gain After Resolving Rapidly Alternating Bottlenecks

Active-Load/Throughput Analysis at Workload 14,000

