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Abstract 
 
We present a software tool for creating an optimal class-
hierarchy from the use-relationship among data-items 
and functions based on the method in Kundu and Gwee 
[3]. The tool determines the classes and their inheritance 
relationship, including the assignment of variables and 
functions to the various classes and their appropriate 
access levels (private, etc.). We define a class-design 
language for modeling the classes and the use-
relationship and a script language for manipulating the 
classes. The input to the tool and its operations are based 
on the constructs of these languages. We illustrate the 
tool with a small non-trivial class design problem.  
 
1  INTRODUCTION 
 
 Although various metrics have been suggested [1, 2] 
to measure the quality of a class hierarchy, a general 
definition of an optimal class hierarchy remains elusive: 
an optimal class hierarchy for software efficiency may not 
necessarily be optimal for maintainability. Kundu and 
Gwee [3] consider a class hierarchy to be optimal if it 
minimizes unnecessary access of functions to data and to 
other functions, and if it avoids unduly long chains of 
single inheritance classes. Based on this, they presented a 
method to create an optimal class hierarchy design from a 
given use-relationship among a set of functions and data-
items (which includes the inputs and outputs of those 
functions). Their method first extracts a partial ordering 
of the functions from the use-relationship and thereby 
creates an initial class hierarchy, and then uses a series of 
operations to improve the class hierarchy via refactoring 
and decomposition of classes and merging of variables 
and functions [5].  

We present here a tool called OCHD (Optimal Class 
Hierarchy Designer) to demonstrate the feasibility of the 
method in [3]. We illustrate the tool with a small but non-
trivial class design problem. The input to the tool OCHD 
can be a use-relationship or an arbitrary class hierarchy 
specified by the class-design language; in the second case, 
the tool first derives a use-relationship from the class 

hierarchy. The tool can be used interactively to 
manipulate the classes or run in batch mode, with the 
operations specified in the script language.  
 A given class hierarchy H can have several faults 
with respect to the design specification described by a 
use-relationship. For example, H may fail to satisfy the 
basic properties: (1) It uses exactly the same functions 
and variables as given in the use-relationship: (2) It 
allows each function to access the variables it needs via 
the inheritance relationship in H. The OCHD tool can 
detect these faults in a given class hierarchy against a use-
relationship. Moreover, it can show the best placement of 
missing variables and functions within the existing classes 
in H, or add new classes to the existing class hierarchy to 
accommodate them, or create a new class hierarchy from 
scratch. Our tool can also facilitate the integration of a 
group of class hierarchies designed separately (not 
illustrated in this paper owing to space limitations).  
 
2  OUTLINE OF THE PARTIAL ORDER METHOD 
 

We briefly describe the method for creating a class 
hierarchy from the partial ordering of functions given in 
[3]. Given a finite set of functions F, a finite set of 
variables V, and a use-relationship U(F, V), where U = 
{〈f, v 〉: f ∈ F and v ∈ V, f reads or writes v}, let V(fi) = {vj 
: 〈fi, vj〉 ∈ U(F, V)}, and let [fi] be the equivalence class of 
all fj ∈ F for which V(fi) = V(fj). We define a partial 
ordering on F as follows: fi < fj if and only if V(fi) ⊃ V(fj). 
Clearly, this gives a partial ordering on the equivalence 
classes [fi]. We can now define a class Ci for each [fi], 
with Ci having member variables V(Ci) = V(fi) – ∪{V(fj) : 
fi < fj} and member functions F(Ci) = [fi].  We also make 
Ci a subclass of Cj if fi < fj.  

If we are given a class hierarchy CH, say in C++ 
style, then F = { fi: fi is a function in some class in CH} 
and similarly for V. We determine U(F, V), or 
equivalently, each V(fi), as follows: for each fi, we 
initialize V(fi) to be the variables directly used by fi (from 
the source code of fi). Then, we expand each V(fi) by 
letting V(fi) = V(fi) ∪ V(fj), the union taken over for all fj 
directly called by fi. Finally, we repeat this expansion step 
until none of the V(fi)’s change. Observe that for functions 
fi that are higher up in CH the final value of V(fi) will tend 
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to be determined before those of functions that are lower 
down in CH.  

The above computations of F, V, and U(F, V) are 
essentially step (1) of the following algorithm to optimize 
CH. Steps (2)–(4) build an initial class hierarchy that may 
contain some redundant artifacts, which are eliminated in 
steps (5)–(7).  

 
Algorithm: Build Optimal Class Hierarchy (BOCH)  
Input:  A class hierarchy CH, specified using the language CHSL given 

in section 3.  
Output: An optimal class hierarchy OptCH consistent with CH.  
 
1. [Preprocessing] Extract F, V, and U(F, V) from CH.  
2. [Build function equivalence classes] Collect all functions fi from F 
 and partition them into equivalence classes based on U (F, V).   
3. [Build classes from function equivalence classes] For each 
 equivalence class, create a class containing the functions of that 

equivalence class and the variables these functions use (read, write, or 
read-write).  

4. [Establish class-subclass relationship] For all pairs of functions fi and 
 fj, if fi < fj then make Ci a subclass of Cj.  
5. [Remove subclass transitivity] Form transitive reduction of the 

acyclic class-subclass relationship.  
6. [Prune instance variables] For each class Ci and for each variable vj in 

Ci, remove vj from Ci if vj is in some parent class Ck of Ci. (Note that 
this does not eliminate duplicate variable occurrences in classes 
unrelated by “<”.)  

7. [Resolve remaining occurrences of duplicate variables by use of 
referencing] For each such variable vi, arbitrarily choose one 
occurrence, say in class Ci, as the primary and treat each of the other 
occurrences of vi as a reference to the primary occurrence. (The 
choice of Ci is left to the user)  

8. [Merge classes] For all pairs of classes Ci and Cj,  
 if Ci is a unique subclass of Cj and Cj is a unique parent class of Ci, 
 then merge Ci and Cj into a single class Ck. 

 
3  CLASS HIERARCHY SPECIFICATION LANGUAGE 

CHSL  
 

The class hierarchy input to the tool OCHD is 
specified by CHSL, which is described below using an 
extended BNF grammar. CHSL specifies classes in an 
abstract form using some of the data types and other 
concepts from C++ (one can easily modify or extend 
CHSL to include the data types and concepts of other 
object-oriented languages). For example, we specify a 
method by only giving its return type, its parameters, the 
variables used, and the methods called by it, without 
specifying the method’s body. This suffices for 
determining an optimal class hierarchy.   
 
‹class hierarchy› := ‹hierarchy name› ‹newline›  
 ‹num classes› ‹newline›  

‹class›n Predicate: n = Value (‹num classes›)  
 
‹hierarchy name› := ‹identifier› 
‹identifier› := ‹alpha› | ‹alpha› ‹alphanumeric›+  
‹alpha› := a | b | ... | Z  
‹alphanumeric› := ‹alpha› | ‹digit›  
‹digit› := 0 | ‹positive digit›  
‹positive digit› := 1..9  
‹newline› := '\n'  
 
‹num classes› := ‹positive integer›  

‹positive integer› := ‹positive digit›  
|  ‹positive digit› ‹non-negative integer›  

‹non-negative integer› := 0 | ‹positive integer›  
 
‹class› :=  ‹class name› ‹newline›  
 ‹num parent classes› ‹parent class name›m ‹newline›  

Predicate: m = Value (‹num parent classes›)  
AND names must have been previously defined 

 ‹num instance variables› ‹newline›  
 ‹instance variable declaration›p  

Predicate: p = Value (‹num instance variables›)  
‹num methods› ‹newline›  

 ‹method›q ‹newline›  
 Predicate: q = Value (‹num methods›) 
  
‹class name› := ‹identifier›  
‹num parent classes› := ‹non-negative integer› 
‹parent class name› := ‹identifier ›  

Predicate: ‹identifier› must have been previously defined  
 
‹num instance variables› := ‹non-negative integer›   
‹instance variable declaration› := ‹access level› ‹variable declaration› |  
 ‹access level› ‹reference declaration› 
‹access level› := private | protected | public  
‹variable declaration› := ‹cit› ‹variable name›  
‹reference declaration› := reference ‹class::variable name›  
‹cit› := ‹constness› ‹indirection› ‹type› 
‹constness› := ε | const   
‹indirection› := ε | pointer | constPointer  
‹type› := void | bool | char | short | int | long | float | double | ‹user-
defined type›  
‹user-defined type› := ‹class name›  
 Predicate: ‹class name› must have been previously defined  
‹variable name› := ‹identifier›  
 
‹num methods› := ‹non-negative integer›  
‹method› := ‹method declaration›  
 ‹num variables used› ‹class::variable name›r ‹newline›  
 ‹num methods used› ‹class::method name›s ‹newline›  
  Predicate: r = Value (‹num variables used›) 
  Predicate: s = Value (‹num methods used›) 
‹method declaration› := ‹access level› ‹abstractness› ‹cit›  
 ‹method name› ‹num parameters› ‹parameter declaration›u 
  Predicate: u = Value (‹num parameters›)  
‹abstractness› := ε | abstract  
‹method name› := ‹identifier›  
‹num parameters› := ‹non-negative integer›  
‹parameter declaration› := ‹variable declaration›  
 
‹num variables used› := ‹non-negative integer›  
‹num methods used› := ‹non-negative integer›  
 
‹class::variable name› := ‹class name›::‹variable name›  

Predicate: ‹class name› must have been previously declared and 
‹variable name› must be from that class  

‹class::method name› := ‹class name›::‹method name›  
Predicate: ‹class name› must have been previously declared and 
‹method name› must be from that class 

 
 Note that we express reference declarations in CHSL 
differently from C++; the rationale for this will become 
clear later (figs. 5 and 6). Also, the determination of V in 
the use-relationship U(F, V) is now slightly different: a 
reference declaration “reference C::v” in any class is 
simply an alias of the variable v in class C and does not 
contribute to V, nor to any V(fi). The non-terminal symbol 
〈class::variable name〉 in the rule for 〈reference 
declaration〉 stands for the variable referenced. The non-



terminal symbol 〈class::variable name〉 in the rule for 
〈method〉 stands for a variable directly used  by 〈method 
name〉 in the 〈method declaration〉. Similarly, the symbol 
〈class::method name〉 stands for a method directly called 
by the same 〈method name〉 above.  
 
 Example 1. Shown below is a description in CHSL 
of a class hierarchy containing a single monolithic class 
with all the variables and functions (methods) of a small 
but non-trivial design problem considered in [3], 
involving a door with a lock and several operations on it. 
Despite only a few variables and functions to consider 
here, one can still design several alternative class 
hierarchies that look reasonable at first sight. A thorough 
analysis, however, reveals that there is only one optimal 
design [3]. 

The sets F, V, and V(fi) for fi ∈ F in this design 
problem are given by  
 

F = {Lock, Unlock, Close, Open} 
V = {lockedStatus, origKey, openClosedStatus}  
V(Lock) = {lockedStatus, origKey, openClosedStatus}  
V(Unlock) = {lockedStatus, origKey}  
V(Close) = {openClosedStatus}  
V(Open) = {openClosedStatus, lockedStatus}  

 
We use the convention of class names starting with ‘C_’ 
and member variable names starting with ‘f’.  

 
ch // class hierarchy name 
1 // number of classes  
C_MonolithicClass // class name  
 0 // number of parent classes and their names (if any)   
 3 // number of member variables  
 protected bool fLockedStatus  
 protected const int fOrigKey  
 protected bool fOpenClosedStatus  
 4 // number of methods  
 public void Unlock 1 int key // class declaration and parameters  
  2 // number of variables directly used 
  C_MonolithicClass ::fLockedStatus  
  C_MonolithicClass ::fOrigKey  
  0 // number of methods directly called 
 public  void Close 0   
  1  
  C_MonolithicClass ::fOpenClosedStatus  
  0  
 public  void Open 0   
  2  
  C_MonolithicClass ::fLockedStatus  
  C_MonolithicClass ::fOpenClosedStatus  
  0  
 public  void Lock 1 int key   
  3  
  C_MonolithicClass ::fLockedStatus  
  C_MonolithicClass ::fOrigKey  
  C_MonolithicClass ::fOpenClosedStatus  
  0  
 

Fig. 1 shows the corresponding class. In the interests 
of space, we have omitted some information and shown 
the data in a more compact form. Clearly, this class 
structure is undesirable, e.g., Unlock() has unnecessary 

access to the variable fOpenClosedStatus. This and other 
shortcomings are addressed in Examples 2–4.♦ 

 
C_MonolithicClass

prot: fLockedStatus
prot const: fOrigKey
prot: fOpenClosedStatus

publ: Unlock (key)
publ: Close ()
publ: Open ()
publ: Lock (key) ch

 
 

Fig. 1. Specification of functions and variables in 
Example 1 as a single monolithic class. 

 
4  CLASS HIERARCHY OPTIMIZATION SCRIPTING 

LANGUAGE CHOSL 
 
CHOSL gives the user control of the class design 

process. The user can selectively invoke the various 
optimizing operations and observe their effects. 
Immediate feedback on intermediate operations can be 
useful in indicating certain weaknesses in the current class 
hierarchy, and the need for redefining one or more 
methods (and variables) to simplify the class hierarchy.  

CHOSL is partially specified by the following 
grammar, showing only a subset of the various operations. 
The operations shown are directly related to the steps of 
the algorithm BOCH in section 2.  

 
〈script› := ‹operations› ‹newline› ‹halt› ‹newline›  
‹operations› := ‹operation› | ‹operation› ‹newline› ‹operations›  
‹operation› :=  ‹build optimal class hierarchy›  
 | ‹build classes from function equivalence classes›  
 | ‹establish subclass relationship› | ‹remove subclass transitivity› 
 | ‹prune instance variables› | ‹resolve by referencing› 
 | ‹merge classes› 
 … … …  
‹build optimal class hierarchy› := BuildOptimalClassHierarchy  
 ‹source class hierarchy name› ‹destination class hierarchy name›  
‹build classes from function equivalence classes› :=  
 BuildClassesFromFuncEquivClasses  
 ‹source class hierarchy name› ‹destination class hierarchy name›  
‹establish subclass relationship› := EstablishSubclassRelationship  
 ‹source class hierarchy name› ‹destination class hierarchy name›  
‹remove subclass transitivity› := RemoveSubclassTransitivity  
 ‹source class hierarchy name› ‹destination class hierarchy name›  
‹prune instance variables› := PruneInstanceVariables  
 ‹source class hierarchy name› ‹destination class hierarchy name› 
‹resolve by referencing› := ResolveByReferencing  
 ‹source class hierarchy name› ‹destination class hierarchy name› 
‹merge classes› := MergeClasses  
 ‹source class hierarchy name› ‹destination class hierarchy name›  
‹halt› := Halt  
‹source class hierarchy name› := ‹alphanumeric string›  
‹destination class hierarchy name› := ‹alphanumeric string›   
 
 OCHD builds an internal representation (see section 
5) of the input class hierarchy from its CHSL 
specification. The next operation 〈build optimal class 
hierarchy〉 invokes a series of sub-operations 〈build 
classes from function equivalence classes〉, …, 〈merge 
classes〉, which correspond to steps (3)–(8) of algorithm 
BOCH, and finally, the operation 〈halt〉. The semantics of 



these operations are explained and illustrated in Examples 
2–4 below. The sub-operations could be invoked in 
various combinations on class hierarchies created 
previously. Operations not shown above include 
refactoring functions (MoveInstanceVariable and 
MoveMethod), writing class hierarchies onto an external 
file (WriteClassHierarchy), and printing class hierarchies 
onto the screen (Print-ClassHierarchy).  

Fig. 2 shows a finite state automaton for typical uses 
of various operations. The transition L indicates a 
modification to a class or to a class hierarchy. For 
example, a modification may involve addition or deletion 
of methods or of variables to an existing class, addition or 
deletion of a class in a hierarchy, or of a child-parent 
relationship between some classes in a hierarchy (these 
operations were omitted in the description of CHOSL). 
Not shown are transitions to other states beside State 1 
that could be made from States 2–7, depending on the 
nature of the modification (see Examples 3 and 4). Note 
that, as the automaton indicates, merging of classes is an 
optional operation. Note also that refactoring of a method 
can be modeled as a series of additions of methods in 
CHSL specification, including modifying the list of 
variables and methods used directly by the refactored 
functions (see Example 3).  
 

BuildOptimal
ClassHierarchy

Read
ClassHierarchy Halt

BuildClassesFrom
FunctionEquivalence

Classes

Establish
Subclass

Relationship
Prune
Instance
Variables

Remove
Subclass
Transitivity

Merge
ClassesL

S 1

2

3 4

5

7 H

6

Halt
ResolveBy
Referencing

 
 

Fig. 2. Finite-state automaton for operations in 
CHOSL: S = start-state; H = halt-state.  

Example 2. We now illustrate the class hierarchy 
optimization process by the tool OCHD for the class 
hierarchy ‘ch’ in fig. 1. Our goal is to group methods and 
the variables they use into classes, in order to minimize 
unnecessary access to variables by various methods.   

Fig. 3 shows the classes corresponding to [fi] using 
the operation “BuildClassesFromFuncEquivClasses ch 
ch2”. The tool assigns names to the classes according to 
the names of the functions fi. The duplications of variables 
in different classes, e.g., fLockedStatus, are merely 
redundant artifacts of step (3) of the algorithm, and will 
be eliminated and/or resolved in subsequent steps.  

 
C_Close

prot: 
fOpenClosedStatus

publ: Close ()

C_Open

prot: fLockedStatus
prot const: fOpenClosedStatus

publ: Open ()

C_Unlock

prot: fLockedStatus
prot const: fOrigKey

publ: Unlock(key)

ch2

C_Lock

prot: fLockedStatus
prot const: fOrigKey
prot const:fOpenClosedStatus

publ: Lock (key)  
 

Fig. 3. Classes built from function equivalence 
classes.  

 
Fig. 4 shows intermediate class hierarchies resulting 

from the processing of BOCH. Class hierarchy ch3 
represents the class-subclass relationship corresponding to 
the partial ordering “<” using “EstablishSubclass-
Relationship ch2 ch3”. Note that only some of the 
duplications of variables have been eliminated. If we view 
class hierarchy ch2 as four separate but interdependent 
class hierarchies (each consisting of one class) due to the 
multiple occurrences of some variables, then ch3 
represents an integration of these four hierarchies.  

 

ch3

C_Unlock

prot: fLockedStatus
prot const: fOrigKey

publ: Unlock(key)

C_Close

prot: 
fOpenClosedStatus

publ: Close ()

C_Open

prot: fLockedStatus
prot const: 
fOpenClosedStatus

publ: Open ()

C_Lock

prot: fLockedStatus
prot const: fOrigKey
prot const: 
fOpenClosedStatus

publ: Lock (key)

ch5

C_Open

prot: fLockedStatus

publ: Open ()

C_Lock

publ: Lock (key)

ch4

C_Unlock

prot: fLockedStatus
prot const: fOrigKey

publ: Unlock(key)

C_Close

prot: 
fOpenClosedStatus

publ: Close ()

C_Open

prot: fLockedStatus
prot const: 
fOpenClosedStatus

publ: Open ()

C_Lock

prot: fLockedStatus
prot const: fOrigKey
prot const: 
fOpenClosedStatus

publ: Lock (key)

C_Unlock

prot: fLockedStatus
prot const: fOrigKey

publ: Unlock(key)

C_Close

prot: 
fOpenClosedStatus

publ: Close ()

 
 

Fig. 4. Intermediate classes ch3: Establishment of class-subclass relationship based upon partial ordering of 
methods; ch4: Class hierarchy after removal of class-subclass transitivity; ch5: Class hierarchy after pruning of 
member variables.  
 



The class C_Lock in ch3 appears to have three parent 
classes, but this is only an illusion: actually the “parent 
class” C_Close appears here as another processing artifact 
of the algorithm. Since C_Lock’s true parent class 
C_Open’s own parent class is C_Close, we can eliminate 
the latter as C_Lock’s parent class. Eliminating such 
artifacts using “RemoveSubclassTransitivity ch3 ch4” 
produces ch4. Next, elimination of variables from classes 
whose parent(s) contain(s) the same variable in the 
hierarchy ch3 using “PruneInstanceVariables ch4 ch5” 
produces ch5.  

Finally, fig. 5 shows the result of resolving the 
duplicate occurrence of fLockedStatus using 
“ResolveByReferencing ch5 ch6”, followed by merging 
classes C_Close and C_Open, which have a unique 
parent-child connection, using “MergeClasses ch6 ch6” 
(here C_Unlock::fLockedStatus is taken as the primary 
occurrence). This last operation does allow an 
unnecessary access of the Close() method to 
fLockedStatus, and was undertaken simply to reduce the 
number of classes. It is an optional step (as reflected in 
the finite-state automaton of fig. 2).  

Note that if we start with the class hierarchy ch2 (fig. 
3) or any of hierarchies ch3–ch5 (fig. 4), OCHD will 
produce the same optimal class hierarchy ch6 (fig. 5). ♦ 

 
C_Open_C_Close

ref: C_Unlock::fLockedStatus
prot: fOpenClosedStatus

publ: Close ()
publ: Open ()

ch6

C_Lock

publ: Lock (key)

C_Unlock

prot: fLockedStatus
prot const: fOrigKey

publ: Unlock(key)

 
 

Fig. 5. Class hierarchy after resolving of 
duplicate variable occurrences and merging of 
classes with a unique parent-child connection.  
 
To eliminate the referencing of fLockedStatus and to 

use only subclassing as the means for variable access, we 
could manually factor out fLockedStatus by creating a 
separate class to contain it and cause both C_Unlock and 
C_Open to be subclasses of this new class (Example 3). 
Alternatively, we could factor out the part of Open() that 
needs to use fLockedStatus (Example 4).  

 
Example 3. Class hierarchy ch7 (fig. 6) is a new but 

related class hierarchy to ch5 (fig. 4). This can be created 
by adding to ch5 the class C_GetLockedStatus, including 
its member variables and methods, and also the subclass 
relationship between it and C_Unlock. In C_Open, 
fLockedStatus is explicitly specified as a reference 
variable. BOCH will now modify the access means of the 
variable fLockedStatus by Open() from referencing to 
subclassing. Class hierarchy ch8 is the optimized class 
hierarchy obtained using “BuildOptimalClassHierarchy 

ch7 ch8”. The latter can also be obtained “from scratch” 
as follows. First, add information about the method 
GetLockedStatus() to the CHSL specification in Example 
1, let the list of methods called by Unlock(), Open(), and 
Lock() consist of the single item GetLockedStatus(), and 
finally remove fLockedStatus from the list of variables 
used by those three methods. Let ch1’ denote the new 
monolithic class. We can get ch8 from ch1’ by applying 
“BuildOptimalClassHierarchy ch1’ ch8” without going 
through ch7 and, in particular, without creating any 
reference declarations to fLockedStatus. We would still 
get ch8 if we do not remove flockedStatus from the list of 
variables used by Unlock(), Open(), and Lock(). ♦ 

 
C_Close

prot: fOpenClosedStatus

publ: Close ()

C_Open

publ: Open ()

ref:C_GetLockedStatus::
fLockedStatus

C_Lock

publ: Lock (key)

C_Unlock

prot const: fOrigKey

publ: Unlock(key)

ch7

C_GetLockedStatus

prot: fLockedStatus

prot const: 
GetLockedStatus ()

C_Close

prot: fOpenClosedStatus

publ: Close ()

C_Lock

publ: Lock (key) ch8

C_GetLockedStatus

prot: fLockedStatus

prot const: 
GetLockedStatus ()

C_Open

publ: Open ()

C_Unlock

prot const: fOrigKey

publ: Unlock(key)

 
 
Fig. 6. ch7: Class hierarchy after creating a 
separate class to hold fLockedStatus; ch8: Class 
hierarchy after building new hierarchy from ch7.  

 
C_OpenClosedStatus

prot: fOpenClosedStatus

publ: Close ()

C_DoorWithLock

publ: Open ()
publ: Lock (key)

C_Unlock

prot const: fOrigKey

publ: Unlock(key)

ch9

C_LockedStatus

prot: fLockedStatus

prot const: 
GetLockedStatus ()

C_SubOpen

prot: SubOpen ()

C_CloseSubOpen

prot: fOpenClosedStatus

publ: Close ()
prot: SubOpen ()

C_Lock

publ: Lock (key)

C_Unlock

prot const: fOrigKey

publ: Unlock(key)

ch10

C_LockedStatus

prot: fLockedStatus

prot const: 
GetLockedStatus ()

C_Open

publ: Open ()

 
 

Fig. 7. ch9: Class hierarchy with refactoring of 
Open() to contain a submethod SubOpen(); 
ch10: Class hierarchy after building new 
hierarchy from ch9.  
 
Example 4. In addition to creating a new class to 

allow use of fLockedStatus, we could refactor the method 
Open() by isolating into SubOpen() the part that does not 
require use of fLockedStatus (“Extract Method”) [5, p. 
110]. Fig. 7 shows this modified class hierarchy (ch9). 
Note that this class hierarchy departs slightly from a 
class-subclassing based strictly upon a partial ordering, 
since Open() never uses fOrigKey, and thus V(Open) is 
not a proper superset of V(Unlock). The class hierarchy 
ch10 is obtained using “BuildOptimalClassHierarchy ch9 
ch10”. Note its similarity to ch8 (fig. 6). The class 
hierarchy ch10 can also be obtained by modifying the 



CHSL specification of ch1’ in Example 3 by adding 
SubOpen() and specifying that it uses fOpenClosedStatus 
(but not fLockedStatus) and adding SubOpen() to the list 
of methods called by Open(). ♦  

 
5  IMPLEMENTATION OF OCHD  
 

We briefly describe some aspects of the software 
implementation of OCHD. Fig. 9 shows the class 
hierarchy CHModel which is used in OCHD for modeling 
the components (instance variables, methods, classes, 
etc.) of the user’s input class hierarchy CH. The tool 
OCHD assigns unique ID’s to all components of CH in 
order to identify and retrieve them for analyzing CH. Note 
that the user may use the same variable name in two 
different classes. The top-level class C_Component in fig. 
9 contains data structures common to all other classes. 
The instance variable fID belongs to a type of class C_ID 
(not shown) that enables unique ID’s to be created.  

 
Abstract C_Component

string fName
C_ID fID

…   …   …
void Print () const

C_ClassHierarchy

vector<C_Class> fClasses

void Print () const
…   …   …

C_Class

vector<C_ID> fParentClassID
vector<C_InstanceVariable>
   fInstanceVariables

vector<C_Method> fMethods

C_Class Merge
   (const C_Class&)const

void Print () const
void Absorb (const C_Class&)

…   …   …

C_Method

C_DataType 
   fReturnType

C_AccessLevel 
    fAccessLevel

vector<C_Variable>
   fParameters
set<C_ID>
   fVariablesUsedID

void Print () const

set<C_ID>
   fMethodsUsedID

C_ID fOwningClassID

…   …   …

C_Variable

C_DataType fType

void Print ()const
…   …   …

C_InstanceVariable

C_AccessLevel 
    fAccessLevel

void Print ()const

C_ID fOwningClassID

…   …   …

 
 

Fig. 9. The class hierarchy CHModel in OCHD to 
model an input class hierarchy.  

 
The instance variable C_ClassHierarchy::fClasses 

stores all the classes in CH. In turn, C_Class stores its 
instance variables and methods in vectors of type 
C_InstanceVariable and C_Method respectively. 
Additionally C_Class stores its parents in a vector of type 
C_ID. This pattern of reference to components by their 
unique ID’s can be seen also in C_Method:: 
fVariablesUsedID. In this case, however, the ID’s are 
stored in a set (the template class ‘set’) instead of in a 
vector simply because the procedure used to optimize CH 
employs primarily set operations.  

Most of the methods in the above classes are access 
(and, where feasible, modifying) methods for the instance 
variables of each class (e.g., C_Component GetID()), and 
are not shown in the class diagram. A few, however, 
perform some manipulation, e.g., C_Class::Merge (const 
C_Class& class2) and C_Class::Absorb (const C_Class& 
class2); the difference between these two methods is as 
follows: C_Class::Merge returns a new class that contains 

the instance variables and methods of both class2 and the 
class to which this message is given, without modifying 
the latter, whereas C_Class::Absorb transforms the class 
to which this message is given by inserting a copy of the 
instance variables and methods of class2. 

The class C_ClassDesignAlgorithms (not shown) 
contains the optimization algorithm BOCH, which makes 
use of the methods in CHModel (fig. 9). The methods in 
C_ClassDesignAlgorithms are declared static because 
they rely solely on attribute data stored in the components 
of CHModel.  
 
6  CONCLUSION  

 
The optimal class hierarchy design based on the use-

relationship as produced by OCHD can provide a useful 
basis for comparing initial designs by the user.  Since the 
use-relationship does not capture the whole semantics of 
variables and functions, this optimal design may not be 
completely satisfactory to the user. Nevertheless, the 
comparison can highlight certain potential drawbacks that 
may be present in the initial designs. In Examples 2–4, 
the presence of extensive multiple inheritance (figs. 4, 6, 
7) suggests the need for alternative means of providing 
access to variables in ancestor classes. Factoring out parts 
of methods that use those variables into submethods, and 
using object composition [4, p. 20] are two ways to 
eliminate multiple inheritance.  

One way to enhance OCHD is to include other 
optimization algorithms that will result in class 
hierarchies better suited, say, for maintainability. Another 
possibility is to include special features of object-oriented 
languages like Java packages. 

The interface of OCHD can also be further developed 
to produce a UML-like graphical view of the class 
hierarchy. One can also use a graphical interface to input 
new class specifications.  
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