
A Distributed O(|E|) Algorithm
for Optimal Link-Reversal

Sukhamay Kundu

Computer Sc. Dept, Louisiana State University
Baton Rouge, LA 70803, USA

kundu@csc.lsu.edu

Abstract. We first characterize the minimal link-sets L whose direc-
tions must be reversed for reestablishing one or more directed paths
from each node x to a fixed destination node d in a network when a
link fails. Then, we give a distributed O(|E|) algorithm for determining
such a link-set L, where |E| = �(links in the network). This improves the
previous lower bound O(n2), where n = �(nodes in the network). The
minimality of the reversed link-set L has other important consequences.

1 Introduction

We consider a connected network G = (V , E) with a fixed destination node
d, where all links E are directed to form an acyclic digraph with one or more
directed paths to d from each node x. A message arriving at x �= d along any
of its incoming links is forwarded via one of its outgoing links. Thus, a message
originating at any node follows an acyclic path and reaches d. The link-reversal
is an important technique to reestablish one or more new xd-paths for each x
when a failed link (y, z) destroys all current yd-paths and possibly all xd-paths
from some other nodes x as well. Our algorithm differs from other link-reversal
algorithms in several ways: (1) we first determine a minimal set of links L whose
directions can be reversed to reestablish at least one path to d from each node x,
keeping the network acyclic, and then we reverse the direction of the links in L;
in particular, we reverse a link at most once. (2) it improves the time complexity
to O(|E|) from O(|V |2) for the previous algorithms [1-4], and (3) each node
x knows when its computation terminates so that it can begin to redirect the
messages properly towards the destination node d along the new xd-paths.

The importance of minimizing the reversed link-set L can be seen follows. For
each link u → v ∈ L, the messages currently queued at u for transmission to d
have to be redirected now along a new link u → w. Also, the messages that are
queued at v (some of which might have arrived at v via the link u → v) may
be directed now either along v → u or v → w′ for w′ �= u (which might also
be in L). Clearly, it would be best if we could choose L that minimizes |{v: v
is one of the end nodes of a link in L}|. Our algorithm does not always achieve
this. Some other link-reversal algorithms in the literature are TORA [2, 3] and
LMR [4]; they are variations of the original algorithm in [1]. The performance

V. Garg, R. Wattenhofer, and K. Kothapalli (Eds.): ICDCN 2009, LNCS 5408, pp. 243–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 S. Kundu

analysis of a class of link-reversal algorithms is given in [5], [6] gives an overview
of link-reversal algorithms, and [7, 8] give some recent surveys.

2 Terminology

We sometimes write x → x′ to emphasize that the undirected link (x, x′) ∈ E is
currently directed from x to x′. We say that both x and x′ are incident with or
belong to the link x → x′. A path π from x to y (in short, an xy-path) will mean
a directed path; we say that a node u is incident with or belongs to π if it belongs
to a link in π. We write N+(x) = {x′: the link (x, x′) is directed as x → x′}; the
nodes in N+(x) are called the downstream neighbors of x. Likewise, we write
N−(x) = {x′: the link (x, x′) is directed as x′ → x} and the nodes in N−(x)
are called the upstream neighbors of x. The node x is a source-node if N−(x)
= ∅ and is a sink-node if N+(x) = ∅. Initially, d is the only sink-node.

Let G(y, z) denote the directed network G without the failed link y → z.
We assume that the elimination of the link y → z destroys all yd-paths without
disconnecting the network itself, i.e., G(y, z) is still connected as an undirected
graph. This means y → z is the only downstream link from y, and y is the only
sink-node other than d in G(y, z). Let Vb = {x: there is no xd-path in G(y, z)},
the set of ”bad” nodes; clearly, y ∈ Vb. For x ∈ Vb, all xd-paths in G use the link
y → z. Let Vg = V − Vb, the set of ”good” nodes, i.e., the nodes which still have
at least one path to d in G(y, z). See Fig. 1(i). The nodes Vb form an acyclic
digraph of G with node y as the only sink-node and the nodes Vg form an acyclic
digraph of G with node d as the only sink-node. Also, all links connecting nodes
in Vg and nodes in Vb are directed to nodes in Vb, and there is at least one such
link. Note that node z can be arbitrarily far away from node d. We write Gb for
the subdigraph of G on Vb and Gg for the subdigraph of G on Vg.

We write Vbg = {x ∈ Vg: there is a link x → x′ for some x′ ∈ Vb} ⊂ Vg. This
is the subset of good nodes which have at least one path in G(y, z) to y without
using any link in Gg. We define Vbg = {x ∈ Vg: there is a path in G(y, z) from x
to some node in Vb and hence to y} ⊂ Vg; this is the subset of good nodes which
have at least one path to y using zero or more links in Gg. Clearly, Vbg ⊆ Vbg

and the nodes d and z do not belong to Vbg. We write Gbg for the subdigraph
of G on Vbg . We sometimes call a node in Vb simply a b-node, a node in Vbg a
bg-node, a node in Vbg − Vbg a bg-node, and finally a node in Vg − Vbg a g-node.
Note that a bg-node is a good-node that has a downstream b-node neighbor, and
that not all good nodes are g-nodes. We write type(x) for the b/g/bg/bg-type of
node x. In Fig. 1(i), the sets Vb, Vg, Vbg, and Vbg are unchanged if we remove
any one or more of the links in {8 → 7, 8 → 6, 7 → 6} except for removing both
8 → 7 and 8 → 6; in that case, the nodes 8 and 9 become b-nodes.

3 Minimal Link-Sets for Reversal

Definition 1. A subset of links L in G(y, z) is called a reversal link-set if the
reversal of their directions reestablishes at least one xd-path in G(y, z) from

A Distributed O(|E|) Algorithm for Optimal Link-Reversal 245

1

d

2

6

4

z

3

5 7

8

9

10

y

11

12

13

14

15

16

17
Vbg

Vg

(i) A network G with all links directed to form
an acyclic digraph with d as the only sink-node.

Vbg

Vb

5 7

8

10

11

12

13

16

15

14

Vbg(8) Vb(8)

(ii) The links L(8), the nodes Vbg(8) and Vb(8)
belonging to L(8), and the subdgraph G(8) of G.

Fig. 1. Illustration of Bb, Vg, Vbg , etc. The bold lines show a spanning-tree Tg on Vg

rooted at d and a spanning-tree Tb on Vb rooted at y.

each node x, keeping the digraph acyclic. We write Lmin for a minimal reversal
link-set set L; such a set does not contain any link joining the nodes in Vg.

In Fig. 1(i), the two possible minimal L are Lmin = {3 → 11, 11 → 10}, which
corresponds to the links on the paths from node 3 to node 10, and Lmin =
{5 → 16, 5 → 13, 16 → 15, 16 → 12, 15 → 14, 15 → 10, 13 → 11, 12 → 11,
12 → 10, 11 → 10}, which corresponds to the links on the paths from node 5
to node 10. There are many non-minimal L’s. It is clear that for any reversal
link-set L we have L contains at least one link from Lbg = {x → x′: x ∈ Vbg

and x′ ∈ Vb}. We now characterize all reversal link-sets L. Let x ∈ Vbg and πxy

be an xy-path. If we reverse the directions of all links in πxy, then each node
in Vb now has a path to x and hence to d. To see this, let xb ∈ Vb which is
not on πxy and let π′ be a path from xb to a node x′′ in πxy, where x′′ may
equal y. Let π′′ be the initial part of πxy upto the node x′′. Clearly, π′ together
with reversed version of π′′ gives an xbx-path and hence we have an x′′d-path.
However, just reversing the links in πxy may create one or more cycles, as is the
case in Fig. 1(i) for x = 8 and πxy = 〈8, 12, 11, 10〉. Some of the cycles formed
on reversing the links in the path πxy are 〈8, 13, 11, 12, 8〉 and 〈12, 10, 11, 12〉.
Indeed, any cycle formed would involve links of a path πuv joining two nodes
u and v on πxy where πuv is disjoint from πxy except for the end nodes u and
v. This suggests the following definition. (Note that choosing πxy a shortest or
longest xy-path does not resolve this problem, in general.)

Definition 2. For a node x ∈ Vbg, let L(x) = {u → v: u → v is in some xy-path
and v ∈ Vb} = {u → v: u → v is in some xy-path and not both u and v ∈ Vg}.
Also, let G(x) denote the subdigraph of G(y, z) consisting of the links L(x) and
the nodes belonging to those links. See Fig. 1(ii).

246 S. Kundu

Theorem 1. For each x ∈ Vbg, L(x) is a reversal link-set. Also, each reversal
link-set L =

⋃
{L(x) : x ∈ Vbg and x belongs to a link in L}. ♥

The proof of Theorem 1 and other proofs are omitted here for want of space.
Def. 2 plays a critical role in the proof of Theorem 1.

Definition 3. A node x ∈ Vbg is called a bg-sink node if there is no path from x
in G(y, z) to some other node in Vbg. (Although a bg-sink node x is a sink-node
in Gbg, the converse need not be true; nodes {3, 5} are the only bg-sink nodes in
Fig. 1(i).) We write Sbg ⊆ Vbg for the set of bg-sink nodes.

The following corollary is immediate from Theorem 1 and forms the basis of our
algorithms in the next Section.

Corollary 1. A necessary and sufficient condition for L to be a minimal rever-
sal link-set is L = L(x) for some bg-sink node x. ♥

4 Minimal Link-Reversal Algorithm

There are several phases in the our algorithm using a minimal reversal link-set L
= L(x) for some bg-sink node x. We assume that each node x knows its N+(x)
and N−(x).

We first identify the node-type (b, g, bg, or bg) of each node of G by using a
standard ”flooding” technique on G(y, z). We use four kinds of messages, but
only one kind from each node (and only one message on any link). A node x
sends the same (b, g, bg, or bg) message to all its upstream neighbors N−(x) in
the flooding, i.e., backwards along the link to x after it receives the messages
from all its downstream neighbors and identifies its type. Thus, a b-node sends
only b-messages, a g-node sends only g-messages, etc. In the process, we also
determine a directed spanning tree Tb of Vb rooted at y and a directed spanning
tree Tg of Vg rooted at d, with all links directed from a children to its parent;
see Fig. 1(i). The trees Tb and Tg are used later for choosing a specific bg-sink
node x, the associated minimal link-set L(x), etc.

The flooding begins with node d marking itself as a g-node and sending a g-
message to all nodes in N−(d) and similarly with node y marking itself as a b-node
and sending a b-message to all nodes in N−(y). Subsequently, when a node x has
received a message from each of its neighbors N+(x), it determines its node-type
and the bg-sink node status according to the criteria (C1)-(C5) below and then
forwards the corresponding b/g/bg/bg-message to each node in N−(x). Note that
a node x can determine its type to be bg before receiving a b/g/bg/bg-message
from each of N+(x), but we nevertheless wait to send the bg-message out from x
till x receives the b/g/bg/bg-messages from all of N+(x) for the sake of simplicity.

(C1) If x receives only b-messages, then type(x) = b.
(C2) If x receives only g-messages, then type(x) = g.
(C3) If x receives at least one b-message and at least one g/bg/bg-message, then

type(x) = bg.

A Distributed O(|E|) Algorithm for Optimal Link-Reversal 247

(C4) If x receives no b-message and at least one bg/bg-message (and possibly
zero or more g-message), then type(x) = bg.

(C5) Finally, if type(x) = bg and x has not received any bg/bg-message, i.e., it
has received only b/g-messages, then x is a bg-sink node.

4.1 Algorithm FindSinkNodes Sbg

We assume that when the only outgoing link (y, z) from a node y fails, node
y initiates the algorithm FindSinkNodes; in addition, it asks node z to inform
the destination node d of the link-failure situation (which can be done using at
most O(|E|) messages) and then node d on receiving this information initiates
the algorithm FindSinkNodes. The other nodes x in G(y, z) start executing
the algorithm FindSinkNodes when they receive their first b/g/bg/bg-message.
We also assume that the node failures are sufficiently infrequent that all phases
of the link-reversal algorithm terminates before a new link failure occurs. We
simply use the conditions (C1)-(C5) as described above to determine the type
of each node, including if it is a bg-sink node. For this purpose, each node
x maintains a vector of four counts numBmssgRcvd(x), numGmssgRcvd(x),
numBGmssgRcvd(x), and numBGmssgRcvd(x). The termination of FindSin-
kNodes requires additional work, including identification of the spanning trees
Tb and Tg, and is described later.

Theorem 2. FindSinkNodes uses a total of O(|E|) messages. ♥

The first column in Fig. 2 shows a possible sequence in which the nodes in
Fig. 1(i) can determine their types. Here, we assume that each message takes
one unit of time to reach its recipient and zero processing time for the messages.
The smallest node x which received all |N+(x)| messages first is listed first.
We indicate type(x) in parentheses next to x in the first column. In the second
column, we show the b/g/bg/bg-message sent by x and the nodes u ∈ N−(x)
receiving that message; we also show type(u) next to each u provided u can
determine its type based on the messages received upto this point. Until all
nodes have determined their types, there is always at least one node which is
ready to forward its selected b/g/bg/bg-message. The third column shows the
determination of parent-child links in Tb and Tg, which is explained below.

4.2 Terminating Computation of bg-Sink Nodes

We use two other messages for this purpose: a p-message (p for ”parent”) and
an np-message (np for ”not parent”). Exactly one of these messages go forward
along each link of G(y, z).

We let each node x /∈ {d, y} maintain a unique parent(x), which is the node
from which x receives its first g/bg/bg-message if type(x) ∈ {g, bg, bg} or the
node from which x receives its first b-message if type(x) = b. Note that x may
have to wait till it receives a b/g/bg/bg-message from each of the neighbors
N+(x) to determine parent(x) simply because x may not know type(x) until

248 S. Kundu

Node x b/g/bg/bg-message Parent-child link
and type(x) sent to N −(x) in Tb or Tg

1(g) g: 2(g), 3, 4(g) 2→1, 4→1 in Tg

10(b) b: 11(b), 12, 14(b), 15 11→10, 14→10 in Tb

2(g) g: 3, 5, 7
4(g) g: −
11(b) b: 3(bg), 12(b), 13(b) 12→10, 13→11 in Tb and 3→1 in Tg

14(b) b: 15(b) 15→10 in Tb

3(bg) bg: −
12(b) b: 7(bg), 8, 16 7→2 in Tg

13(b) b: 5(bg), 8 5→2 in Tg

15(b) b: 16(b) 16→12 in Tb

16(b) b: 17(b), 5 17→16 in Tb

5(bg) bg: 6(bg) 6→5 in Tg

17(b) b: −
6(bg) bg: 7, 8(bg) 8→6 in Tg

7(bg) bg: 8
8(bg) bg: 9(bg) 9→8 in Tg

9(bg) bg: −

Fig. 2. A possible sequence of the determination of type(x) for nodes x in Fig. 1(i)

that point. This means a node x has to maintain four potential parents, one for
each possible value of type(x) and in the order they are found, and then finally
select parent(x) to be one of those based on type(x). It is easy to see that the
parent-links form two trees, a tree Tb spanning the nodes Vb with the root at
y and a tree Tg spanning the nodes Vg with the root at d. The bold links in
Fig. 1(i) show these trees assuming that each b/g/bg-message takes one unit
time to reach its recipient. We have chosen parent(16) to be simply the smaller
of {12, 15} from which it receives b-message at time 3.

After a node x /∈ {d, y} has determined type(x) it can safely determine
parent(x) and at that point it sends an np-message to each node in N+(x)
other than parent(x). (Sometime, it is actually possible to determine parent(x)
even earlier; for example, node 3 in Fig. 1(i) can determine parent(3) = 1 af-
ter it receives its first message from node 1, which is a g-message.) A node x
waits, however, to send the p-message to parent(x) until the number of p/np-
messages received by x equals |N−(x)|, and it is at this point that x terminates
its computation for determining the bg-sink nodes. This means, in particular,
that p-messages are initiated by the source-nodes in G(y, z), which includes
node z, and perhaps zero or more other terminal nodes in the trees Tb and Tg.
For Fig. 1(i), only the nodes {3, 4, 9, 17} initiate p-messages. The terminal node
13 in Tb sends its p-message to node 11 only after receiving np-messages from the
nodes 5 and 8; similarly, the terminal node 7 in Tg sends its p-message to node 2
only after receiving np-message from node 8. The special node y (d) terminates
its computation last among the nodes in Vb (resp., Vg) and this happens when
it receives |N−(y)| (resp., |N−(d)|) many p/np-messages.

A Distributed O(|E|) Algorithm for Optimal Link-Reversal 249

4.3 Selecting One bg-Sink Node

We briefly describes the steps in this task. Only the nodes Vbg ∪ Vb participates
in this step; the only links that participate in this step are Lbg and the links
in Tb. We use two kinds of s-messages (s for sink-node). (Note that we do not
try to choose x ∈ Sbg such that |L(x)| is minimum because this can increase
the total number of messages to O(|V |3).) We use the null s-message, s(), to
coordinate the starting and ending of computations of the nodes participating
in this phase, and use a non-null s-message s(x), where x is a bg-sink node.

We begin by letting each node x ∈ Sbg initiate the message s(x) to the small-
est numbered node from which it received a b-message during the execution of
FindSinkNodes algorithm and initiate the message s() to all other nodes from
which it received b-message. For each node x′ ∈ Vbg − Sbg, we let it initiate the
message s() to all nodes from which it received b-message. (This means each
terminal node in Tb, which sends b-messages only to nodes in Vbg, will receive
exactly a total of |N−(u)| ≥ 0 many s-messages.) For Fig. 1(i), node 3 initiates
the message s(3) to node 11, node 5 initiates the message s(5) to node 13 and
s() to node 16, node 7 initiates the message s() to node 12, node 8 initiates the
message s() to each of the nodes 12 and 13, and finally node 17 initiates the
message s() to node 16.

Each terminal node u in Tb on receiving |N−(u)| many s-messages does the
following: if it does not receive any non-null s-message, then it sends s() to its
parent; otherwise, if s(x) is the first non-null s-message received by u, then it
sends the entire s-message s(x) to its parent. For a non-terminal node u in Tb,
exactly the same thing happens except that some of its |N−(u)| many s-messages
come from its children before it sends an appropriate s-message to its parent.
When the root node y of Tb receives an s-message from each of its children, it
selects the node x in the first non-null s-message it received and terminates its
computation for this phase. The other nodes in Tb terminate their computation
in this phase on sending their s-message to their parents, and the nodes in Vbg

terminate their computation on sending their s-messages to the nodes in Vb. Let
xs denote the bg-sink node x selected by y.

The following theorem is immediate from the fact that there will be exactly
one s-message along each link of the tree Tb, in addition to at most

∑
|N+(x)|,

summed over x ∈ Sbg, many s-messages originating from the nodes in Sbg.

Theorem 3. The selection of a specific bg-sink node xs ∈ Sbg by the special
node y takes O(|E|) messages. ♥

4.4 Actual Link-Reversal Phase

This is the final step of our algorithm and has two parts. In the first part, node
y informs the bg-sink node xs that it has been selected, and in the second part
each link in the set L(xs) is reversed, i.e., each node x belonging to the links in
L(xs) updates N−(x) and N−(x) to represent the new orientation of G.

For the first part, we assume that during the selection of xs, each node u in Tb,
save u �= y, which forwarded a non-null s-message of the form s(x) remembers

250 S. Kundu

both the parameter x in that s-message and the node u′ from which it received
that s-message. We have u′ is either a child of u in Tb or u′ = x, the gb-sink node
where the message s(x) originated. By abuse of notation, we write s-child(u) =
u′, which is unique. We can follow the trail of nodes backward (from u to u′)
starting from the root y of Tb corresponding to the s-message s(xs). We begin
by node y sending an f -message (f for find) to s-child(y), which is the child of
y that sent the message s(xs) to y. Then y′ = s-child(y) sends an f -message to
s-child(y′), and so on until we reach the node x ∈ Vbg .

The second part begins with the bg-sink node xs reversing each of the links
xs → u corresponding to the nodes u from which it received b-message, i.e.,
adding each such u to N−(xs) and deleting u from N+(xs), and then sending
an r-message (r for reverse) to each of those node u. When a b-node u receives
the first r-message, it does exactly the same thing as above, updating its N−(u)
and N+(u), and then sending an r-message to each node added to N−(u). The
second and subsequent r-messages received by a b-node u, if any, are ignored.

Theorem 4. The reversal of the links in L(xs) for the selected bg-sink node xs

takes O(|E|) messages. ♥

5 Conclusion

We have presented a O(|E|) distributed algorithm for the link-reversal problem,
where |E| = �(links in the network). It first selects a minimal reversal link-set
and reverses the direction of those links exactly once.

References

1. Gafni, E.M., Bertsekas, D.P.: Distributed algorithms for generating loop-free routes
in networks with frequently changing topology. IEEE Trans. on Communication 29,
11–18 (1981)

2. Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for mobile
wireless networks. In: Proc. IEEE Conf. on Computer Communications (INFOCOM
1997) (1997)

3. Park, V.D., Corson, M.S.: A performance comparison of temporally-ordered routing
algorithm and ideal link-state routing. In: Proc. IEEE Intern. Symp. on Systems and
Communications (June 1998)

4. Corson, M.S., Ephremides, A.: A distributed algorithm for mobile wireless networks.
ACM Wireless Networks Journal 1, 61–82 (1995)

5. Busch, C., Surapaneni, S., Tirthapura, S.: Analysis of link-reversal routing algo-
rithms for mobile ad-hoc networks. In: Proc. of 15th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), San Diego, pp. 210–219 (June 2003)

6. Perkins, C.E.: Ad-hoc Networking. Addison-Wesley, Reading (2000)
7. Rajarama, R.: Topology control and routing in ad-hoc networks: a survey. SIGACT

News (June 2002)
8. Samir, R., Robert, C., Jiangtao, Y., Rimli, S.: Comparative performance evaluation

of routing protocols for mobile ad-hoc networks. In: Proc. IEEE 7th Intern. Conf.
on Computer Communications and Networks (IC3N 1998) (1998)

	Introduction
	Terminology
	Minimal Link-Sets for Reversal
	Minimal Link-Reversal Algorithm
	Algorithm FindSinkNodes Sbg
	Terminating Computation of bg-Sink Nodes
	Selecting One bg-Sink Node
	Actual Link-Reversal Phase

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

