
Planetary-scale Terrain Composition

Robert Kooima

November 3, 2008

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Moving forward . 5

2 Terrain rendering and hardware evolution 6
2.1 Regular grids . 6

2.1.1 Motivation . 6
2.1.2 Grid rendering . 7

2.2 Triangulated irregular networks . 8
2.2.1 Motivation . 8
2.2.2 Algorithm . 8
2.2.3 Impact . 9

2.3 ROAM . 9
2.3.1 Motivation . 9
2.3.2 Algorithm . 9
2.3.3 Caveat: T-intersections . 10
2.3.4 Impact . 10

2.4 Geomipmapping . 10
2.4.1 Motivation . 10
2.4.2 Algorithm . 11
2.4.3 Caveat: seams and skirts . 12

2.5 Geometry clipmaps. 13
2.5.1 Motivation . 13
2.5.2 Algorithm . 14

2.6 Current hardware . 15
2.6.1 GPGPU . 15
2.6.2 Geometry generation. 15

2.7 Realism . 15
2.7.1 Normal mapping . 15
2.7.2 Atmosphere rendering . 17

2.8 Terrain on the sphere . 17
2.8.1 Spherical projection . 17
2.8.2 Stereographic polar projection . 20
2.8.3 Spherical tessellation. 20

1

2.9 Moving forward . 22

3 Composition Algorithm 24
3.1 Overview . 24
3.2 Visibility . 24

3.2.1 Patch enumeration . 25
3.2.2 Horizon . 25
3.2.3 Patch bounds . 25
3.2.4 Output . 26
3.2.5 Caveat: precision. 26

3.3 Geometry generation. 27
3.3.1 Subdivision . 27
3.3.2 Iteration . 28
3.3.3 Normal computation . 29
3.3.4 Lat/lon computation . 29
3.3.5 Position computation . 30
3.3.6 Displacement . 30
3.3.7 Output . 31
3.3.8 Aliasing and Error . 31

3.4 Rendering . 32
3.4.1 Patch winding . 32
3.4.2 Deferred texturing . 32
3.4.3 Surface map accumulation. 33
3.4.4 Output . 34

4 Composition Operations 36
4.1 Projection Quality Adaptation . 36

4.1.1 Background . 36
4.1.2 Implementation . 38

4.2 Data Overlay . 39
4.2.1 Background . 39
4.2.2 Implementation . 40

4.3 Level-of-detail and Paging . 40
4.3.1 Background . 40
4.3.2 Implementation . 41

5 Implementation and Results 43
5.1 Performance Measurement. 43

5.1.1 Baseline performance. 44
5.1.2 Variance with resolution . 44
5.1.3 Variance with geometry . 45
5.1.4 Variance with data . 45
5.1.5 Performance Qualities . 46

5.2 Displays and installations . 47

6 Conclusions and Future Work 50

2

Acknowledgements

Thank you to the Adler Planetarium and Astronomy
Museum for partial support of this work and use of
the De�niti Space Theater and facilities during the
defense. Thank you to Doug Roberts and Mark Sub-
baRao of the Adler for serving on my committee.

Thanks to the California Institute for Telecommu-
nications and Information Technology for partial sup-
port of this work and for signi�cant exposure through
the use of the Varrier and StarCAVE virtual reality
environments.

Thanks to Paul Morin of the University of Min-
nesota's Antarctic Geospacial Information Center for
nearly a terabyte of source data used in this work.

Finally, thank you to everyone at the Electronic
Visualization Laboratory for welcoming me into their
community. Thanks to Jason Leigh and Andy John-
son for their leadership and advising. Thanks es-
pecially to Tom DeFanti and Dan Sandin for their
continued mentoring.

Summary

Many inter-related planetary height map and sur-
face image map data sets exist, and more data are
collected each day. Broad communities of scien-
tists require tools to compose these data interac-
tively and explore them via real-time visualization.
While related, these data sets are often unregistered
with one another, having di�erent projection, reso-
lution, format, and type. I present a GPU-centric
approach to the real-time composition and display of
unregistered-but-related planetary-scale data. This
approach employs a GPGPU process to tessellate
spherical height �elds. It uses a render-to-vertex-
bu�er technique to operate upon polygonal surface
meshes in image space, allowing geometry processes
to be expressed in terms of image processing. With
height and surface map data processing uni�ed in
this fashion, a number of powerful composition op-
erations may be universally applied to both. Exam-
ples include adaptation to non-uniform sampling due
to projection, seamless blending of data of disparate
resolution or transformation regardless of boundary,

and the smooth interpolation of levels of detail in
both geometry and imagery. Issues of scalability and
precision are addressed, giving out-of-core access to
giga-pixel data sources, and correct rendering at sub-
meter scales.

Abbreviations

AFR Alternate Frame Rendering

BMNG Blue Marble Next Generation

CUDA Compute Uni�ed Device Architecture

GLSL OpenGL Shading Language

GPGPU General Purpose GPU

GPU Graphics Processing Unit

LIMA Landsat Image Mosaic of Antarctica

LOD Level of Detail

LROC Lunar Reconnaissance Orbiter Camera

MOLA Mars Orbiter Laser Altimeter

NED National Elevation Dataset

ROAM Real-time Optimally Adaptive Mesh

SFR Split Frame Rendering

SRTM Shuttle RADAR Topography Mission

USGS United States Geological Survey

VRAM Video RAM (Random Access Memory)

3

Chapter 1

Introduction

1.1 Motivation

A vast quantity of data exists describing the Earth
and other planets, their terrain and features, their
surface re
ectance in many wavelengths, and a va-
riety of other quantities sampled across their land-
forms. Thanks to the many sensors and instruments
currently deployed and in development, this quan-
tity of data is expanding at an ever increasing rate.
These data �nd use in a wide variety of disciplines in-
cluding geology, geography, climatology, astronomy,
planetary science, and more.

The format, type, projection, resolution, and cov-
erage of these data sets are appropriate to their sub-
ject, and thus are as varied as the subjects. However,
all of the data relating to given land-form are related,
and there is a clear motivation to bring these data to-
gether in a common visualization.

Unfortunately, terrain visualization literature does
not emphasize thecomposition of disparate data sets.
The brute-force approach is assumed: if you want
to juxtapose multiple elements, you merely render
each in turn. The extent to which the composition
of elements is addressed usually goes no further than
simply texturing an image data set onto the geometry
of a height data set.

We are motivated then to consider mechanisms for
enabling more powerful data composition operations.
Here are some examples.

� Neither spherical nor polar projections su�ce
to usefully represent global data (Section2.8.2).
To render the entire globe, at least three dis-

tinct data sets should be used. We need a
means to seamlessly combine dissimilar projec-
tions, adapting to the areas of optimal sampling
of each.

� Data coverage may not be of uniform resolution.
For example, a high resolution map of a fault line
may be displayed in the context of the terrain
where it lies. It is of no bene�t to re-sample one
to the resolution of the other, so when surface
geometry is generated we may make no assump-
tions of granularity and must smoothly accept
transitions in resolution.

� As a visualization zooms, the granularity of the
geometry must adapt. If signi�cant care is not
taken, these adaptations occur suddenly and
the output pops from one level of detail to the
next. However if geometry is operated upon as
imagery, then discontinuous level-of-detail tran-
sitions may be smoothed using simple image
blending.

� Realistic rendering bene�ts from the use of per-
pixel illumination processing using bump texture
mapping. However, such textures are derived
from height maps, which are not necessarily reg-
istered with the image map giving the di�use
surface color. We need a means of adaptively
registering the inputs to the lighting model with
one another.

� Surface re
ectance sensors measure in limited
wavelengths, giving science data, but not nec-
essarily giving visual realism. If for example the

4

high resolution luminance of Mars Reconnais-
sance Orbiter (MRO) HiRISE were combined
with the low-resolution chroma of Viking Or-
biter, a high-resolution photo-real image of Mars
would result. To support this, we need the abil-
ity to transform input color-space, register data
sets, and transform output to RGB on the
y.

� Many data sources are time-variant. For exam-
ple, Blue Marble Next Generation (BMNG) pro-
vides a separate 3 giga-pixel image of the Earth
for each of the 12 months of the year 2004. The
BMNG images prior to and following any given
date may be blended, giving a smoothly-varying
approximation of the appearance of the Earth at
any time in 2004. Thus we can produce an ani-
mation spanning the year without popping from
month to month.

� Shaded relief is a non-photorealistic topograph-
ical representation highly valued by geologists.
Users insist upon precise control over lighting
parameters and tinting, while still retaining the
ability to merge relief shading with other geo-
logic data. We desire a means to extract relief
from height maps and illuminate it with interac-
tive control.

� Many data are layered. For example, Antarctica
has both an ice layer and a bedrock layer. We
need the means to peel these structures apart
and see their layers in relation to one-another.

Enabling such operations
exibly and interactively
elevates terrain rendering from a static visualization
tool to a dynamic query and exploration tool. Pro-
viding the means to integrate arbitrarily large data
stores in this fashion in real-time leads to new ways
of working with the streams of data
owing in from
throughout the solar system. Recent advances in
graphics processing hardware make these possible.

1.2 Moving forward

I propose a GPU-centric real-time approach to gen-
erating and rendering planetary bodies composed of

arbitrary quantities and types of height-map data,
textured and illuminated using arbitrary quantities
and types of surface-map data. At the core of this ap-
proach lies the assertion that modern graphics hard-
ware need not draw a distinction between colors and
vectors. Massively parallel vector stream processors
allow color computation to be performed with 32-
bit
oating point precision, merging the processing
of color with that of geometry. With the distinction
between color and vector blurred, a variety of highly
e�cient image processing operations become appli-
cable to both terrain geometry and terrain surface
maps.

We begin the discussion of this approach with
Chapter 2, an overview of the history of terrain ren-
dering and the 3D hardware that made it possible,
including a discussion of current hardware capabil-
ities. These capabilities set the stage for the main
focus of this work, the proposed terrain rendering
approach documented by Chapter3. Chapter 4 then
examines in detail a few terrain composition techin-
ques enabled by this algorithm. Finally, we validate
the approach with an examination of an implementa-
tion of the algorithm that demonstrates all of these
concepts. We see its use in a parallel real-time com-
position of 115GB of Earth data, with a quantitative
analysis of the algorithm's behavior under this load
in Chapter 5.

5

Chapter 2

Terrain rendering and hardware
evolution

The �eld of terrain rendering algorithm research
is vibrant, and has been for many decades. Tradi-
tional motivations dating back to the birth of com-
puter graphics focus on
ight simulation as the driv-
ing application for real-time algorithms. Since then
real-time visualization has been embraced by broad
communities of scientists including geographers, ge-
ologists, cartographers, and planetary scientists. To-
day, rendered terrain has spread to the entertainment
industry, becoming ubiquitous in �lm and 3D gam-
ing, forming the substrate of virtual worlds of all
types.

The simplicity of basic terrain rendering and the
satisfying output of even a modest e�ort lends the
�eld a wide appeal. Invariably, all 3D graphics pro-
fessionals, researchers, and enthusiasts approach the
problem of terrain rendering at some point in their
careers, often at a very early stage. This has led to a
proliferation of implementations and approaches.

In this chapter we will review several notable ter-
rain rendering algorithms. Each approach will be
described and we will examine their strengths and
weaknesses. Most signi�cantly, we will see how each
is motivated primarily by the capabilities of the hard-
ware of the day. This will lead us to examine the ca-
pabilities of current and future hardware, and �nally
to extrapolate the in
uence this may have on terrain
rendering.

Again, the �eld of terrain rendering is vast, and
this discussion is by no means a complete review of

it. It is instead a presentation of the dominant forms
of algorithms used throughout the long history of the
�eld, with speci�c regard to the interplay of in
uence
between hardware and software which guided it.

We will begin by examining the regular grid, the
simplest possible approach to mapping height onto
geometry. From there, we will see how triangu-
lated irregular network approaches preprocess these
grids, optimizing them for better performance on
early graphics hardware. Then, we will see this static
optimization replaced by ROAM, a dynamic optimiz-
ing approach that adapts to the viewer. The arrival
of powerful GPUs enables a shift from CPU-centric
algorithms toward GPU-centric algorithms, such as
geomipmapping. Finally, the fully programmable
GPU enables the geometry clipmap approach to ter-
rain geometry rendering. Having arrived at the state
of the art, we touch upon additional background ma-
terial surrounding realism, and the application of ter-
rain rendering techniques to spherical planets.

2.1 Regular grids

2.1.1 Motivation

In Figure 2.1 we see the basic 3D rendering pipeline,
loosely as de�ned by the original OpenGL speci�ca-
tion in 1992 [36].

The application submits geometry in the form of
vertices, normals, texture coordinates, and materi-

6

Figure 2.1: The OpenGL �xed-function pipeline. (Gray areas are �xed; white areas are user-controlled.)

als. View and projection transformations are applied
to these, and lighting is computed. Polygons are as-
sembled into triangular primitives with a position,
texture coordinate, and color at each vertex. These
attributes are interpolated across the face of each tri-
angle during rasterization, and each resulting frag-
ment is textured and tested for inclusion in the frame
bu�er.

2.1.2 Grid rendering

Given a two-dimensional block of elevation values,
submitting a height map to the 3D pipeline is
straightforward. The (x; y) position of the center
of each pixel in the height map, with the z posi-
tion taken from the pixel's value, gives a coordinate
(x; y; z) in 3D space, which is biased and o�set as
needed to achieve the desired scale.

Triangles are wound from the grid as in Figure2.2,
with an n � m height map giving an n � 1 � m � 1
array of right triangles. The result is 2(n � 1)(m � 1)
triangles connecting n � m vertices. Normal vectors
for each triangle are computed from vertex positions,
and the normal vector for each vertex is the average
of those of all adjacent triangles.

Given that the transform-lighting (\T&L") stage
of the pipeline must process each of thesen�m vertices
in turn, a common optimization submits geometry to
the 3D pipeline in the form of triangle strips, lin-

Figure 2.2: An 8� 8 height map gives a 7� 7 triangle
grid.

ear sequences of adjacent triangles, each sharing one
edge with the previous. As shown in Figure2.3, this
reduces the total vertex processing cost to 2n(m � 1).

Figure 2.3: A triangle strip , e�ciently de�ning n tri-
angles usingn + 2 vertices

The application of a color map texture to this ge-
ometry is equally straightforward. It is commonly as-
sumed that the color map is registered with the height

7

map. That is, while the two maps are not assumed to
have the same image size, they are assumed to have
the same surface coverage. See Figure2.4. Under
these circumstances, the texture coordinate (s; t) of
each vertex is merely the pixel center (x; y) divided
by the height map size to the range [1; 1].

(a) Height map (b) Color map

Figure 2.4: Registered color and height maps have
identical surface coverage

This registration assumption is near universal in
terrain rendering literature. In most cases, color map
application is taken for granted or relegated to an af-
terthought, barely worthy of mention. This is not
unreasonable given the relative e�ciencies of geome-
try processing versus texture processing.

2.2 Triangulated irregular net-
works

2.2.1 Motivation

Early research in terrain rendering focused on the
task of geometry minimization. The goal was to de-
termine the minimum number of triangles necessary
to represent a given land-form to within some mea-
sure of precision. This goal was motivated by the
computational cost of each individual geometry ele-
ment. Circa 1995 a high-end graphics workstation
could display a scene consisting 10,000 triangles at
30Hz, so the 2M triangles of a 1K� 1K regular grid
were out of the question.

2.2.2 Algorithm

The most widely-cited grid simpli�cation approach is
that of Garland and Heckbert [12]. A survey of simi-
lar algorithms compiled by the same authors accom-
panies that document [13]. The algorithm is greedy
and proceeds iteratively, beginning with a
at plane
approximating the surface, and adding vertices and
triangles as needed until a minimum error bound is
met.

At each step, every point of the input grid is
compared against the current surface approximation.
The point that deviates the farthest from the surface
is added to the output, and a Delaunay triangulation
of the current set of output points is computed, giv-
ing the re�ned surface approximation. This repeats
until no point deviates farther than the desired error
bound.

As background, a Delaunay triangulation of points
maximizes the minimum angle of each triangle in an
attempt to avoid thin sliver triangles.

Figure 2.5: A triangulated irregular network near
Crater Lake, with many triangles in areas of high
detail

Figure 2.5 shows an example output Delaunay tri-
angulation consisting of 555 vertices from an input
grid 336 � 459 in extent. The dots in this �gure de-
note candidate points for potential insertion, an opti-
mization of the basic algorithm using a priority queue

8

to reduce the cost of searching the input data for the
next re�nement.

2.2.3 Impact

Triangulated irregular networks are very e�ective at
minimizing the geometry cost of rendering. The re-
�nement algorithm succeeds in seeking out the areas
of high detail in the input land-form, and focusing
geometry there. However, this happens at signi�cant
preprocessing expense. Triangulated irregular net-
works are appropriate for static data sets rendered
at a prede�ned resolution, though they do not allow
for dynamic data or run-time re�nement.

2.3 ROAM

2.3.1 Motivation

When attempting to minimize geometry, there is a
computational trade-o� to be made. From any given
view point, an optimal triangulation of a surface
places many small triangles near the viewer, and a
few large triangles farther away. This is referred to
as level-of-detail, and is a basic tenet of real-time op-
timization. LOD algorithms attempt to ensure that
each on-screen triangle makes a similar contribution
to the complexity of the scene, regardless of that tri-
angle's position in virtual space. Unfortunately, up-
dating the working geometry for each frame adds an
additional computational cost on top of the basic cost
of rendering.

2.3.2 Algorithm

The canonical example of this type of system is Mark
Duchaineau's Real-time Optimally-Adapting Mesh
(ROAM) [5]. The ROAM algorithm successfully
manages level-of-detail and visibility determination
while exploiting frame-coherence, the frame-to-frame
similarity in the solution resulting from the assumed
smooth motion of the viewer.

In Figure 2.6 we see an explanatory representation
of the output of the ROAM algorithm. The viewer is

at the left, looking to the right, with light-colored tri-
angles falling within the �eld of view. The small tri-
angles near the viewer indicate the satisfaction of the
level-of-detail criterion. In addition, the triangula-
tion re
ects the distribution of detail in the true sur-
face by simplifying planar neighborhoods using larger
triangles, as would a triangulated irregular network.

Figure 2.6: ROAM algorithm adaptive triangulation.
The viewer is at the left, looking right.

To accomplish this, ROAM begins by tessellating
the height �eld using right triangles and preprocess-
ing these to determine a hierarchical bintree, Fig-
ure 2.7. Each node of this hierarchy stores an er-
ror metric quantifying the deviation of the triangula-
tion from the true surface over the same area. Fine-
grained nodes deep in the hierarchy approach the res-
olution of the height �eld and have small error values.
Coarse nodes near the root represent the surface at
lower levels of detail and have large errors.

Figure 2.7: A bintree, a recursive subdivision of right
triangles

At run time, ROAM maintains a set of the bin-
tree nodes giving a current triangulation. A pair of

9

priority queues track the largest and smallest error
values of the current bintree node set, biased by the
on-screen size of each node. Each time the view point
changes the highest priority nodes are split (replaced
by their bintree children) in order to maintain a min-
imum error bound. The lowest priority nodes are
merged (replaced by their bintree parents) in order
to maintain a consistent triangle count.

The hierarchical nature of the geometry represen-
tation leads to an e�cient visibility mechanism. A
bintree node is tested against the planes de�ning the
�eld of view. If the node is entirely inside or outside
of the view, then all of its children may be assumed
to be inside or outside respectively. If the node is
partially visible, the test proceeds recursively to the
children. This approach is O(log n) in the extent of
the height �eld.

2.3.3 Caveat: T-intersections

When tessellating a surface, care must be taken to
ensure that adjacent triangles meet only at their ver-
tices. In Figure 2.8a we see an erroneous con�gura-
tion highly likely to occur during adaptive tessella-
tion. The �ne-grained geometry does not meet the
coarse-grained, leaving a gap in the triangulation.
Adjusting the vertex as in Figure 2.8b would seem
to �ll the gap, but the problem remains unresolved.
When rasterized, interpolation along the long edge of
the large triangle is not guaranteed to touch the same
set of pixels as the interpolation along the two short
edges. The result is a sparkle of random pixels along
the edge. This condition is known as aT-intersection .

(a) Unaligned (b) Aligned

Figure 2.8: T-intersections. Both aligned and un-
aligned are to be avoided

From Figure 2.6, it is clear that ROAM solves this

problem elegantly. It merely mandates that spatially-
adjacent bintree nodes be within one level of each-
other in the hierarchy. Given this restriction, the
bintree ensures that no vertex can fall along the edge
of an adjacent triangle.

2.3.4 Impact

The ROAM algorithm does an excellent job of main-
taining a consistent triangulation in real-time. How-
ever its preprocessing requirement mandates an in-
core data source, limiting its scalability. Performance
testing presented in [5] was performed using a Silicon
Graphics Onyx, the most powerful 3D hardware of
the day, and the algorithm achieved 6,000 triangles
per frame at 30Hz, given a 1K height �eld. While
impressive at the time, these numbers would soon be
eclipsed.

2.4 Geomipmapping

2.4.1 Motivation

By the late 1990s, the consumer-grade graphics
hardware industry had begun its rapid advance.
The increase in competition within the industry
led to signi�cant additional capability and capac-
ity, and the accompanying drop in hardware prices
brought widespread adoption. Real-time 3D algo-
rithms adapted to take advantage.

A signi�cant departure from previous hardware
generations was the addition of hardware-based ge-
ometry processing, commonly known as \hardware
T&L." This allowed processing such as transforma-
tion matrix application and lighting computation to
be o�-loaded from the CPU, to be performed instead
by the graphics hardware itself.

At the same time, with more video RAM avail-
able, e�ciency could be improved by storing geom-
etry data in VRAM rather than main RAM. This
would eliminate most per-frame geometry speci�ca-
tion and reduce CPU-GPU communication, an in-
creasingly problematic bottleneck.

Together, these in
uences caused CPU-centric ver-
tex and triangle generation algorithms to pass out

10

of style. A brute-force o�-loading of geometry to
VRAM could easily outperform the most careful
geometric algorithm simply because a balance had
shifted. It became cheaper to render 100,000 trian-
gles directly from VRAM than to select 10,000 opti-
mal triangles to transfer from main RAM.

Focus turned to the concept ofbatching, and a clas-
sic granularity trade-o� emerged. We de�ne a batch
as a static set of geometry, stored in VRAM, rendered
as an atomic unit. A large batch may make optimal
use of the GPU, but its geometry may extend be-
yond the view frustum, resulting in the processing of
unseen data. A large number of small batches may
allow for e�ective visibility testing, but will reduce
total throughput.

An in
uential analysis by Matthias Wloka of the
trade-o�s inherent in batching [45] resulted in a best-
practices target of only 300 batches per frame when
rendering at 30Hz using a 2GHz CPU. More batches
would lead to a CPU bottleneck, and fewer would
leave idle GPU. Of course this number is expected to
increase as CPU power (or more precisely, bus band-
width) increases, but it underscores the fundamental
transition in the philosophy of the design of real-time
algorithms for the hardware of the day: previously,
6,000 rendered units was maximal, but after a hard-
ware advance 300 rendered units was maximal, and
the complexity of each unit is increased.

2.4.2 Algorithm

Several distinct terrain rendering approaches have
been proposed that address this transition in simi-
lar fashion. These approaches will be collectively re-
ferred to here asGeomipmappingalgorithms [4]. This
name draws an appropriate parallel to the traditional
mipmapping [44] approach to texture level-of-detail.

A mipmapped texture stores a series of source im-
ages subsampled to successive powers of two (Fig-
ure 2.9). When the texture is referenced during
rasterization, screen-space texture coordinate deriva-
tives determine which of these source images most
closely matches the resolution of the display, and the
corresponding pixel from the optimal image is used,
thus achieving a level-of-detail optimization.

Figure 2.9: A mipmap, a pyramid of images subsam-
pled at powers of two

Similarly, a geomipmapped geometry representa-
tion stores a quad-tree hierarchy of surface batches
(Figure 2.10). Each node of a geomipmap hierarchy
batches a similar amount of geometric detail, but a
given child node covers a quarter of the surface area
of its parent node. Taken together, each individual
layer of the hierarchy covers the full area of the sur-
face, but does so at four times the resolution of the
layer above, using four times the number of nodes as
the layer above.

Rendering proceeds much like ROAM. The same
O(log n) visibility optimization applies, and active
quad-tree nodes are selected based upon the geom-
etry resolution they provide, scaled by their distance
from the view point.

Unlike ROAM however, frame coherence combined
with the coarse granularity of the geometry leads to
a relatively static working set. This allows batches
to be stored in VRAM, to be reused rather than re-
speci�ed at each frame. When an update becomes
necessary, a batch is uploaded in a single large trans-
fer, maximizing bus e�ciency.

The relative infrequency of batch upload allows
data access to be extended downward. A batch not
found in RAM may be loaded from disk, giving a true
out-of-core data access mechanism. Geomipmapping
algorithms gain signi�cant scalability in this fashion.

The basic geomipmapping algorithm given by de
Boer [4] de�nes each node as a uniform grid of geom-
etry, just as described in Section2.1. A re�nement of
this technique, called \chunked LOD" by Ulrich [39],

11

Figure 2.10: The top three levels of a chunked LOD tree, a variation on geomipmapping. Each successive
layer covers the same area at 4� resolution.

optimizes the geometry using a bintree approach as in
Section 2.3. Both gain the e�ciency of static batch-
ing, though \chunking" does imply a preprocess.

2.4.3 Caveat: seams and skirts

All geomipmapping algorithms encounter the same
T-intersection challenge described in Section2.3.3.
However, with coarsely-grained nodes, solutions lack
the elegance of ROAM. In Figure 2.11 we see part
of two adjacent geomipmap nodes, with the T-
intersections marked.

Figure 2.11: Adjacent geomipmap nodes with erro-
neous T-intersections.

In the case of basic geomipmapping [4] a clean so-
lution uses multiple distinct triangulations of a given
set of surface vertices. In Figure2.12 we see aseam
triangulation that avoids the problem vertices. While

this solution requires a separate seam triangulation
for each of the 4 edges of the node, it can be made
very e�cient using vertex indices to avoid duplicating
geometry.

Figure 2.12: Adjacent geomipmap nodes with proper
seaming, correcting T-intersections.

The chunked LOD [39] implementation must show
extra caution, considering T-intersections in the pre-
process, as apparent in Figure2.10,

Finally, a brute-force solution exists. Gap-�lling
skirt triangles may be generated at each level-of-
detail transition. Long, thin skirt triangles �ll the
type of gap depicted in Figure 2.8a, and degenerate
(zero-area) skirt triangles eliminate edge sparkling in
cases similar to Figure2.8b. Google Earth [15] takes
this approach.

12

Figure 2.13: The OpenGL programmable pipeline. Contrast Figure2.1. The vertex and fragment shader
phases are new. (Gray areas are �xed; white areas are user-controlled.)

2.5 Geometry clipmaps

2.5.1 Motivation

Hardware capability continued to increase, as did the

exibility of the APIs used to control it. In 2001, with
the release of the NVIDIA GeForce3 [28], hardware
capability had reached a point where the complex-
ity of the necessary APIs became intractable. Tradi-
tional CPU code would no longer su�ce to compre-
hensively control the graphics hardware, and tools
emerged allowing the programmer to develop pro-
cesses to run on the GPU itself. Just as the move-
ment of data toward the GPU transformed real-time
thinking (as described in Section2.4.1), so too would
the movement of instructions toward the GPU.

Figure 2.13depicts the structure of this new type of
GPU. Contrast this with the �xed-function pipeline
in Figure 2.1. Two areas have changed. The vertex
transform and lighting stage has been replaced by
the vertex shader, and the fragment texture/color/fog
stage has been replaced by thefragment shader.
These programmable pipeline stages are the points
at which applications may inject custom processing
in the form of \shaders," scripts written in GPU lan-
guage. The vertex shader executes for each incoming
vertex, and the fragment shader executes for each
outgoing fragment.

To some extent, custom vertex shaders still do

transform and lighting, and custom fragment shaders
still do texturing, but applications are free to do as
little or as much of these as necessary. Beyond emu-
lating previously �xed functionality, new illumination
models and visual e�ects become possible. Shadow-
ing, surface relief, volumetric lighting, and skeletal
animation are just a few of the techniques to become
common given this
exibility.

Early shader dialects resembled assembly language,
though high level languages soon followed. Support
was fragmentary early on, with NVIDIA's Cg [25]
working only with NVIDIA hardware and Microsoft's
High Level Shading Language (HLSL) [26] working
only with DirectX under Windows. In time how-
ever, the OpenGL Shading Language (GLSL) [18]
arrived as a cross-platform standard, enabling GPU
programming across all hardware and under any op-
erating system.

A generalization of the input to the pipeline accom-
panies the generalization of its function. Previously,
applications were required to submit speci�c types
of geometric data: vertices, normals, texture coordi-
nates, etc. These have been replaced byattributes,
generalized vector values with meaning assigned by
the application. The output of the vertex stage,
which is the input to the rasterizer, has also been
abstracted. Where the �xed-function rasterizer com-
puted the position, color, and texture coordinate of
each fragment, the programmable pipeline allows the

13

de�nition of arbitrary varying variables to be inter-
polated across each triangle. These varying variables
are the primary means of communication from the
vertex shader to the fragment shader. Finally, uni-
form storage allows the application to express con-
stant data to be used as input to both the vertex and
fragment stages.

This
exibility has triggered an avalanche of new
ideas and techniques in the real-time computer
graphics world. New literature continues to prolifer-
ate, and results published decades ago as photo-real
techniques have been revisited and reformulated for
real-time.

2.5.2 Algorithm

The geometry clipmap algorithm by Losasso and
Hoppe [24] takes advantage of much of this new GPU
functionality. At its core, a geometry clipmap is simi-
lar to a geomipmap. It is a hierarchy of batches, each
representing a similar amount of geometry data, and
each layer covering four times the area of the layer
above at a quarter the resolution.

However, a geometry clipmap is more dynamic
then a geomipmap. A geometry clipmap pyramid
remains centered at the view point, moving with it,
with VRAM geometry minimally updated with each
change of the view (Figure2.14).

Figure 2.14: A geometry clipmap: geomipmaps cen-
tered on the view point giving small triangles near
the viewer and large triangles in the distance.

To support these updates e�ciently, the VRAM

vertex bu�ers are accessedtoroidally. While these
bu�ers are fundamentally two-dimensional in layout,
as is a common regular grid (Section2.1), they wrap
around along both axes. The top, bottom, left,
and right edges do not necessarily coincide with the
boundaries of the bu�er or the stride of its rows, but
instead are dynamic. Mapping such a data bu�er is
non-trivial, requiring o�sets and modular arithmetic
not provided by the �xed-function pipeline. This ne-
cessitates the use of the programmable pipeline.

As the view point moves, the data shift beneath
it. Each change in the view discards some number
of rows and columns as they move out of range, and
requires the loading of an equal number of rows and
columns as they come into view. It would be ine�-
cient to actually move the data within the bu�er, so
only the logical origin of torroidal the bu�er is moved.
The new data are loaded into the same bu�er loca-
tions vacated by the discarded data.

When such a move occurs, part of the triangula-
tion of the vertices is invalidated. To repair this dam-
age, the vertex indices of the triangulation are recom-
puted by the CPU and uploaded to VRAM. This is
expensive and inelegant, and a later re�nement by
Asirvatham and Hoppe [1] resolves the problem us-
ing vertex shader texture access. In this formulation,
the x and y values of the vertices areconstant in eye
space, and thez values are dynamically referenced
from the height map, bound as a texture.

The inspiration for this toroidal update is acknowl-
edged by the name. \Clipmap" refers to a feature
of SGI's OpenGL Performer [6]. Clip texturing was
a hardware mechanism that dynamically paged very
large texture images from disk, usually based on view
position. This mechanism used toroidal access to e�-
ciently pan the VRAM image cache. Geometry clip-
mapping is a natural extension.

Note the similarity between the geometry clip-
map output (Figure 2.14) and the geomipmap T-
intersection
aw (Figure 2.11). The geometry clip-
map algorithm makes no signi�cant advance in the
realm of T-intersection mitigation, and all of the
potential solutions described in Section2.4.3 apply.
Losasso's implementation [24] does use vertex shad-
ing to perform a simple morphing at level-of-detail
transitions, but must rely upon degenerate triangle

14

skirts to eliminate the remaining edge sparkle. Tran-
sitions in texture level-of-detail are blended away us-
ing fragment shading.

Losasso and Hoppe go to great pains to describe
a land-form data compression method, and they do
demonstrate browsing a 1-arc-second data set of the
entire continental US in real-time. Despite this how-
ever, their implementation works strictly with in-core
data. For this reason, the geometry clipmap algo-
rithm does not scale. This restriction is slightly sur-
prising given the authors' adoption of the term \clip-
map," which initially referred speci�cally to an out-
of-core mechanism.

2.6 Current hardware

2.6.1 GPGPU

The capabilities of real-time 3D graphics hardware
continue to tend toward generality. Among the most
signi�cant recent enhancements has been an increase
in available frame bu�er formats. While frame bu�ers
were previously limited to 32-bit pixels with each
channel an 8-bit unsigned byte, current hardware
provides pixels as wide as 128 bits with each channel
a 32-bit IEEE
oating point value.

Given the ability to both read from and write to
such bu�ers, the practice of General Purpose GPU
programming (GPGPU) has emerged. With as many
as 128 4-channel vector parallel stream processors (on
the NVIDIA GeForce 8800 Ultra [29]) total computa-
tional throughput approaches a teraFLOP in a single
workstation PC. Developers were quick to adapt the
existing practices of textured polygon rendering and
programmable fragment shading to perform arbitrary
computation, having no relation to the creation of 3D
scenes.

Software soon evolved to support this prac-
tice. NVIDIA's Compute Uni�ed Device Archi-
tecture (CUDA) [30] and Stanford University's
BrookGPU [21] abandon the traditional concepts of
vertices and fragments to abstract the hardware's
processing capabilities. They provide languages and
APIs that map more straightforwardly onto the va-
riety of problems faced by users of high performance

computing. Physical simulation, ray tracing, data en-
coding and encryption, computer vision, and image
processing are just of few of the many �elds that have
bene�ted.

2.6.2 Geometry generation

Meanwhile, back in the world of 3D rendering,
ex-
ibility has also increased. New capability focuses
on the generation of geometry. Just as the vertex
and fragment phases of the 3D pipeline were made
programmable in the last signi�cant revision (Fig-
ure 2.13), now the primitive assembly phase has been
made programmable (Figure2.15).

This geometry shadingphase allows GPU code to
modify the topology of incoming geometry. Geom-
etry shaders take incoming points, lines, and trian-
gles and generate zero or more primitives, optionally
routing them to one of several target frame bu�ers.
\Transform feedback" allows this generated geome-
try to be sent back to VRAM output bu�ers, to be
processed or rendered later.

A similar functionality allows
oating point frame
bu�ers to be bound and rendered as vertex bu�ers.
Rather than drawing a distinction between color
(r; g; b; a) and vector (x; y; z; w), bu�er contents are
treated simply as data. By relaxing the restrictions
on the meaning of the values stored in VRAM, pixels
may be used as vertices, taking advantage of pixel
processing capacity in the processing of geometry.

2.7 Realism

There are a number of simple e�ects that may be
applied to all forms of terrain rendering to heighten
the level of realism in the �nal image. Here we discuss
two of them.

2.7.1 Normal mapping

The �rst of these is known as normal mapping. Dur-
ing rendering, the illumination computation uses the
normal vector of the surface, the vector toward the
light source, and the vector toward the view point
to calculate the re
ectance of the light, and thus the

15

Figure 2.15: OpenGL geometry shader pipeline. Contrast Figure2.13. The geometry shader phase is new.
(Gray areas are �xed; white areas are user-controlled.)

(a) Height (b) Color (c) Normal

Figure 2.16: A height map (SRTM), color map (BMNG), and normal map (SRT M), each showing the same
region.

16

appearance of the object. The resulting shading is a
strong indication of the nature of the surface.

Traditionally, the normal vector of a surface is de-
termined by the surface geometry, and is speci�ed
once for each vertex or triangle. However, if the nor-
mal vector is given instead by a texture map, then the
illumination calculation may be performed on a per-
pixel basis, rather than a per-vertex basis. This high-
resolution shading gives the illusion of a great deal of
geometric complexity, regardless of the true number
of vertices and triangles. The basic concept of this
dates back to the work of Jim Blinn in 1978 [2] and
was known as \bump mapping" prior to the adapta-
tion of the technique to modern real-time hardware.

In the case of uniformly-projected terrain, a normal
map may be easily computed from a height map using
a Sobel �lter [37]. The result of this is shown in
Figure 2.16. The components of a normalized vector
fall in the range [� 1; +1], so to store a normal in a
color map it must be o�set and biased to the range
[0; 1]. In this space the Z axis is (0:5; 0:5; 1:0). For
this reason, terrain (which usually faces up) produces
roughly blue normal maps.

Real-time rendering using normal maps requires
the use of fragment shading to shift the normal back
to its native range, transform it into the local coor-
dinate system tangent to the surface, and perform
the illumination calculation on a per-fragment basis.
The result of this process can be seen at the center of
Figure 2.17, in contrast with the top of that �gure,
which lacks normal mapping.

2.7.2 Atmosphere rendering

Earth's atmosphere has a profound e�ect on the
appearance of its terrain. Light passing through
the atmosphere is randomly scattered and attenu-
ated at various wavelengths due to absorption by air
molecules and dust particles, varying exponentially
with altitude. Light is scattered both in and out
along the line of sight between any two points. This
results in the blue of the sky, the yellow of a sunset,
and the desaturation of the color of objects seen at a
distance, known as \aerial perspective."

Earth data such as NASA's Blue Marble Next Gen-
eration [27] have had the contribution of the atmo-

sphere subtracted. So for realism, it is necessary to
add it back in. True simulation of atmospheric scat-
tering is intractable, but a number of approximations
have appeared. The most e�ective real-time algo-
rithm developed to date is Sean O'Neil's GPU-based
single-scattering approach [32].

The simulation of in-scattering and out-scattering
involves the evaluation of nested line integrals.
O'Neil's implementation is iterative, using curve-�t
approximation functions to eliminate the inner inte-
gral, but necessarily stepping down the path of the
light to evaluate the outer integral.

This is a relatively expensive operation to perform,
but the visual impact of it is striking. Contrast the
center of Figure 2.17 with the bottom. The out-
put can be di�cult to distinguish from a photograph
taken from space.

2.8 Terrain on the sphere

All mention of scalability thus far has been with re-
gard to the quantity of data, and scalability solu-
tions focus upon data caching protocols. However,
the scalability of the extent of data raises new is-
sues. All examples of real terrain are spherical and
as extent broadens, the underlying shape of a land-
form diverges from the simple plane assumed by all
algorithms discussed to this point. Extending these
algorithms to map from the plane to the sphere is rel-
atively straightforward, involving basic trigonometry,
and such an approach is common. Notably, Clasen
and Hege adapt geometry clipmaps to the sphere[3],
but at signi�cant vertex shading expense. New prob-
lems arise, and achieving truly e�cient rendering of
terrain data on a planetary scale requires more care-
ful analysis.

2.8.1 Spherical projection

Geographic data are commonly laid out following the
familiar longitude/latitude grid known as a cylindri-
cal equal-areaprojection (Figure 2.19). Its equally-
sized rectangles map easily onto any of the rendering
algorithms discussed previously. When mapped onto

17

Figure 2.17: E�ects for enhanced realism: basic illumination (top), per-pixel illumination (center), atmo-
spheric scattering simulation (bottom).

18

(a) Google Earth (b) Mars Transporter

Figure 2.18: Polar distortion due to spherical projection: the stretched pixelscaused by non-uniform data
sampling in Antarctica (a) and at the north pole of Mars (b).

the sphere, the result resembles the common globe
(Figure 2.20).

Figure 2.19: Earth longitude and latitude

While simple, this projection leads to a very non-
uniform tessellation. All lines of longitude converge
at the poles, and the width of each rectangle reduces
to zero there. However, the width of each correspond-
ing rectangle of data is a constant. The result is an
over-sampling of data and geometry toward the top
and bottom of the data set. Near the poles, data
elements are squeezed longitudinally while retaining

their height latitudinally, and the triangles of a spher-
ical tessellation are compressed to zero area.

Figure 2.20: Spherical projection: parallel lines of
latitude and lines of longitude meeting at the poles.

This over-sampling wastes storage and I/O band-
width, and the visual impact of the anisotropic scal-
ing is di�cult to overlook. The e�ect is that of a ra-
dial blur. Note the distortion in Google Earth's [15]
depiction of Antarctica in Figure 2.18a. The out-
put fails to accurately represent the land-form, and
zooming the view only magni�es the error. This
aw
is nearly universal among planetary data rendering
applications. Mars Transporter also su�ers from it
(Figure 2.18b) and this
aw provided some impetus
to the pursuit of this research.

19

The solution to the problem is to generalize beyond
the spherical projection, both in the layout of the
data and tessellation of the sphere.

2.8.2 Stereographic polar projection

Spherically projected data are applicable in the re-
gion near the equator, and the majority of NASA and
USGS data are made available in this form. Notably,
the Shuttle Radar Topography Mission (SRTM) [8]
provides useful data of the Earth within 60 degrees
of the equator. The Mars Orbiter Laser Altimeter
(MOLA) [47] data set extends to 88 degrees above
and below the Martian equator, and �lls the remain-
ing gap using astereographic polar projection. This
projection, as depicted in Figure 2.21, is critical to
reliable data sampling at the poles.

Figure 2.21: Polar projection: a uniform grid applied
over the di�cult area at the poles.

A stereographic polar projection is de�ned as a
Cartesian coordinate system slicing the globe at a
speci�c latitude. Just as spherically projected data
are correctly scaled only at zero latitude (the equa-
tor), stereographic polar projected data are correctly
scaled only at the de�ning latitude. Just as spheri-
cal data become unusable near the poles, polar data
become unusable near the equator. Together the
two provide useful coverage of the entire globe. The
Landsat Image Mosaic of Antarctica (LIMA) [42] is
made available entirely in such a stereographic polar
projection.

2.8.3 Spherical tessellation

Where once we had uniform grids of data map-
ping onto uniform grids of geometry, we now have

a situation where both data and geometry are non-
uniformly sampled, and where their samplings do not
necessarily coincide. This gives us the opportunity to
choose a spherical tessellation more appropriate for
the problem at hand.

There exist many spherical tessellations of the
sphere that do not follow lines of longitude and lat-
titude. The most useful tessellations are inexpensive
to generate, re�nable to arbitrarily granularity, and
largely uniform.

The uniformity of a spherical tessellation can be
judged visually, but also quanti�ed. We want the
degree (the number of incident edges) of all vertices to
be similar, the inner angles of all faces to be similar,
and the lengths of all edges to be similar. A uniform
tessellation minimizes the variation in all of these.

Common practice in spherical tessellation uses sub-
division of regular polyhedra. Polyhedral subdivision
proceeds recursively. Each face of the polyhedron
is divided into similar sub-faces, and each vertex is
normalized to fall on the surface of the unit sphere.
This is recursively repeated for each sub-face, and
the depth of recursion determines the �nal granular-
ity. The nature of the initial polyhedron determines
the uniformity of the �nal tessellation.

Figure 2.22: A recursively subdivided cube, a rela-
tively poor tessellation of the sphere.

Figure 2.22 shows a recursively subdivided cube.
At each step, square faces are subdivided into square
quadrants. The original 8 vertices of the cube are still
visible as nodes in the �nal tessellation. The nodes
are the points where the tessellation is least consis-
tent. Much like the poles of the standard spherical
tessellation, this is where non-uniform sampling oc-
curs. In the case of the cube, the nodes have degree

20

3, while the all other vertices have degree 4. The in-
ternal angles of the faces at the nodes are 120� , but
tend toward 90� at the center of the original cube
faces. Edge lengths on the subdivided cube are quite
inconsistent.

Despite lackluster uniformity, the subdivided cube
does result in a tessellation consisting entirely of
quads, which is advantageous when considering pla-
nar terrain algorithms originally devised to work
with rectangles. Sean O'Neil used the subdivided
cube when adapting the ROAM algorithm to the
sphere [31]. Hwa et al [16] did the same, and used the
resulting quads to generate a tessellation of (nearly)
right triangles, the basis for a unique texture tiling
approach based upon 45-degree rotations.

Figure 2.23: Triangle subdivision: bisect the edges
and connect the vertices.

The next regular polyhedron is the octahedron,
consisting of 8 equilateral triangles. To subdivide a
triangular face, each edge is bisected and the result-
ing vertices connected, as in Figure2.23. The octa-
hedron and the result of three recursive subdivisions
are shown in Figure 2.24. The nodes have degree 4
and an angle of 90� . Away from the nodes, degree
is 6 and angles tend toward 60� . If the terrain level-
of-detail algorithm does not rely upon quads, then
better uniformity can be achieved using triangles in
this fashion. Microsoft Research's Hierarchical Tri-
angular Mesh uses this structure to index data on
the celestial sphere [38].

A perfect tessellation would have degree 6 and 60�

angles across its entire surface. Unfortunately, this is
impossible (given the requirement that a tessellation
be �nite). The best that can be done is to begin
with the most complex convex regular polyhedron,
the icosahedron, with 20 equilateral faces.

Recursive subdivision of the icosahedron is shown
in Figure 2.25. Vertex degree is 5 at the 12 nodes and
6 elsewhere. Angles vary from 72� to 60� . Edges are

Figure 2.24: A recursively subdivided octahedron, a
passable tessellation of the sphere.

Figure 2.25: A recursively subdivided icosahedron
giving a sphere with very uniform tessellation

nearly identical. This is excellent uniformity, and the
nodes of the tessellation can be di�cult to point out
without close scrutiny. This construction is familiar
to many 3D programmers, as it is the �rst non-trivial
example in Chapter 2 ofThe OpenGL Programming
Guide [46].

R. Buckminster Fuller based much of his work on
the icosahedron. His geodesic dome is a cap of a re-
cursively subdivided icosahedron. Fuller also set the
historical precedent for mapping the earth using the
icosahedron. In 1946 he proposed the DymaxionTM

Map as a method of cutting the planar projection of
the world in such a way that the edges of the map
fall over the oceans rather than the land. While his
original design was based on the cuboctahedron, a

21

1954 re�nement used the icosahedron, as seen in Fig-
ure 2.26 [11]. It is coincidence that Earth's conti-
nents fall within the faces of the icosahedron, but
the DymaxionTM Map is indicative of the uniformity
gains of a projection having 12 poles instead of only
two.

Figure 2.26: DymaxionTM Map, �tting the conti-
nents within the faces of the icosahedron.

2.9 Moving forward

It hopefully clear from the discussion in this chapter
that the history of terrain rendering is necessarily
tied to the capabilities of the hardware available at
the time. Terrain algorithms are often the �rst to
take full advantage of these capabilities as they arise.

In review, table 2.1 summarizes the literature dis-
cussed in this chapter. Check-marks indicate whether
each algorithm involves an extensive pre-process be-
fore rendering, a uniform triangulation, adaptive
level-of-detail, out-of-core data access, signi�cant
CPU load, and the programmable GPU pipeline.
Spherical adaptations are listed where they were
found in the literature, though it should be noted that
any algorithm can be mapped to the sphere given a
proper spherical tessellation, usually cubic subdivi-
sion.

This table does not enumerate the concepts un-
derlying terrain composition. As noted previously,
terrain literature focuses exclusively on the careful
tessellation of height maps and the basic application
of registered color maps. Flexible approaches to the
combination of disparate terrain data sets in a com-

mon visualization are not to be found. This is the
gap to be �lled by this research. It is a true opportu-
nity to address real concerns in geodata visualization
that have yet to be formalized.

This work will build upon everything that has been
presented in this chapter, taking full advantage of
the
exibility of modern hardware. We will see a
new approach to planetary-scale land-form data man-
agement, geometry generation, and real-time display
that has only recently been made possible by ad-
vances in hardware development.

22

Algorithm Pre-process Uniform LOD Out-of-core CPU-heavy GPU Sphere

Regular Grid X

TIN [12] X

ROAM [5] X X X [31]

Geomipmap [4] X X X

Chucked LOD [39] X X X

Geoclipmap [24] X X X X X [3]

Table 2.1: The terrain of terrain literature

23

Chapter 3

Composition Algorithm

This chapter describes in detail a GPU-centric real-
time approach to generating and rendering planetary
bodies composed of arbitrary quantities and types of
height-map data, textured and illuminated using ar-
bitrary quantities and types of surface-map data. An
implementation of this approach has demonstrated
all of the concepts presented here.

At the core of this approach lies the assertion that
modern graphics hardware need not draw a distinc-
tion between colors and vectors. As described in Sec-
tion 2.6.1, commodity GPUs support both reading
from and writing to 4-component 32-bit IEEE
oat-
ing point image bu�ers, as well as the application
of such image bu�ers as renderable geometry bu�ers.
With the distinction between color (r; g; b; a) and vec-
tor (x; y; z; w) blurred, a variety of highly e�cient im-
age processing operations become applicable to both
terrain geometry and terrain surface maps.

The algorithm itself is described here. A number of
composition operations enabled by it are examined in
Chapter 4. Finally, the performance characteristics
of it are measured and presented in Chapter5.

3.1 Overview

For each frame, the display of a planetary body pro-
ceeds in three major phases.

1. Visibility determination (Section 3.2)

2. Geometry generation (Section3.3)

3. Rendering (Section3.4)

These phases form the three stages of a pipeline, as
shown in Figure3.1. They are distinguished from one
another by the explicit data transfer of the output of
one to the input of the next. These data transfers
may be performed in parallel with other processing.
This leads to e�ciency gains when rendering multi-
ple bodies. For example, if both the Earth and the
Moon are composed within a scene, then the visibility
phase is executed for both, followed by the geometry
generation phase of both, and �nally the rendering of
both. Visibility determination of the Moon proceeds
while the the Earth's visibility solution is in transfer,
Earth's geometry is generated while the Moon's visi-
bility is in transfer, and so on. This reduces stalls in
both the CPU and GPU, giving increased through-
put.

The following sections describe each of these phases
in detail. You'll note a constant battle with issues of
numerical precision. Precision is among the focuses
of this work. At a number of points, both a naive ap-
proach and a more considered approach are presented
and contrasted.

3.2 Visibility

The visibility phase is executed by the CPU. The pri-
mary goal of this phase is to perform the initial sub-
division of the icosahedron (Section2.8.3) in order to
seed the geometry generation phase. This subdivi-
sion isnot the �nal spherical tessellation, it is merely
a gross determination of visibility and granularity.

24

Figure 3.1: The planet rendering pipeline, showing the interleaving of processing and data transfer when
displaying 2 planets

3.2.1 Patch enumeration

We begin with the basic icosahedron. Throughout
the run time, we maintain a frame-coherent hierar-
chy giving the current faces of a subdivision of that
icosahedron, referred to as surfacepatches. This hi-
erarchy is a tree structure with a constant number
of leaves. The management of this tree proceeds
similarly to the ROAM algorithm (Section 2.3), but
while ROAM is concerned with the maintenance of
a continuous triangulation free of T-intersections, we
are concerned only with a coarse patch triangulation.
Thus, we have the luxury of ignoring T-intersections
until after re�nement (Section 3.4), and our hierarchy
maintenance algorithm is simpli�ed accordingly.

As the view varies from frame to frame, those
patches that move into the view frustum are added
to the tree, and those that move out of the view are
pruned. We seek a set of visible patches number-
ing as near as possible to (though not larger than) a
constant np, and we maintain this set with a simple
priority algorithm. Patches are sorted by the solid
angle that each subtends from the current view. If
the set of patches is too small, the largest patch is
subdivided, as in Figure2.23. If the set of patches is
too large, the smallest set of four sibling patches is
collapsed. The result is a coarse set of approximately
np visible patches. These appear as in Figure3.4.

In the circumstance where the target display is
stereoscopic or tiled, the view volume may consist
of multiple overlapping or disjoint frusta. A patch
passes if it falls within any part of the view volume,
thus the visibility phase need be executed only once

regardless of the number of view points or view ports.
This process is equivalent to the visibility test of

the geomipmapping algorithm given in Section2.4.2.
In both cases, it is a coarse visibility test, select-
ing potentially visible geometry batches rather than
culling on a per-triangle basis.

3.2.2 Horizon

In addition to the culling planes de�ning the view vol-
ume, ahorizon plane enables additional patch culling
opportunities. This plane is independent of the struc-
ture and orientation of the view volume, depending
only on the view point and planet. Figure 3.2 shows
the cone of occlusion of the user's view, tangent to
the planet's surface. The horizon plane is computed
using the right triangle de�ned by the planet's radius
r and the viewer's distance from the center of the
planet d. The horizon plane normal is the normal-
ized vector from the planet center to the view point,
and the horizon plane distance from the center of
the planet is r 2=d. Any patch behind this plane falls
within the planet's occlusion cone. Asd approachesr
the horizon plane culls the majority of the sphere. In
practice, the horizon is the most e�ective, and thus
�rst-tested, culling plane.

3.2.3 Patch bounds

Testing a patch for visibility is more complex than
simply checking a triangle against culling planes. The
surface of the planet within the triangle's bounds is
not planar. Terrain data will eventually be mapped

25

Figure 3.2: The horizon plane. The viewer at dis-
tance d from the center of a planet of radiusr , cannot
see the dark area.

within that area, and we must determine whether the
geometry of this terrain is or is not visible.

As shown in Figure3.3, the three sides of a triangu-
lar area on a sphere are segments of geodesics (\great
circles" cutting the sphere into equal halves). Let
these geodesics de�ne three planes cutting through
the center of the sphere. These planes form a wedge-
shaped volume. The terrain within this volume has
some minimum and maximum altitude, which give
radius extrema. The three planes and two radii de�ne
a surfaceshell, a tight bound on the terrain within
the patch. We may determine the visibility of the ter-
rain within the patch by testing the patch's bounding
shell.

3.2.4 Output

The �nal result is a depth-�rst traversal of all of
the visible patches tessellating the sphere. Ren-
dered, they appear as Figure3.4. These patches
are uploaded to VRAM as the initial \seed" input
to the GPU process that generates land-form geom-
etry. The number of patches np will determine the
number of rendered batches, so its value may be set
around 300, as recommended in Section2.4.1.

This upload is performed by loading the three vec-
tors de�ning the corners of each patch into 2D
oat-
ing point texture maps, as suggested in Section2.6.2.
There are three such texture maps, one storing the
position of the corner, another storing its normal,

Figure 3.3: A triangular surface shell, a terrain
bounding volume de�ned by three planes and two
radii

and a third storing its spherical latitude and longi-
tude. The layout of these is shown in Figure 3.5.
These bu�ers are asynchronously transferred using
the OpenGL pixel bu�er object extension [19].

3.2.5 Caveat: precision

The mean radius of the Earth is 6,372,797 meters.
Unfortunately, a 32-bit IEEE
oating point value
provides only around 7 digits of precision [17]. A
modern GPU works with 32-bit
oats internally, so
the processing of Earth terrain occurs at or near the
limit of the computational precision of the GPU.

This means that surface features on the scale of a
meter cannot be reliably represented in a coordinate
system with its origin placed (quite reasonably) at
the center of the planet. To do so results in geom-
etry dominated by numerical precision artifacts on
one-meter scales. However, there is a clear motive
to enable the presentation of detail on the scale of a
meter and below, as this is the scale of human expe-
rience.

To resolve this problem, patches are generated
not in object space (the coordinate system of the
planet), but in eye space (the coordinate system of
the viewer). This coordinate system has its origin at
the user's eye, with the X axis pointing to his right

26

Figure 3.4: The output of the visibility/granularity
phase, a rough triangulation of the visible portion of
the sphere

Figure 3.5: The geometry generation seed ofnp

patches, each with 3 vertices [a; b; c], encoded as a
3 � np RGB texture

and the Y axis pointing up. As the user navigates
the universe, he remains motionless and the universe
moves and rotates about him.

The advantage of this follows from the nature of
an IEEE
oating point variable, and the distribution
of the possible values that it may take. Floats con-
centrate their e�ectiveness near zero, and the gran-
ularity of representable small values is high. A
oat
can represent very large values, but the gaps between
representable large values are wide.

So, by generating the geometry of planets in eye
space, we gain the ability to represent land-forms
with high precision near the user, relative to his
scale. Distant landforms are necessarily generated
with lower precision, but the quantization is too far
away to be visible as error.

Complicating this is the assumption that the user
is in constant motion due to his interaction with the
scene. Eye-space is always changing. Thus, gener-
ated planetary geometry must be regenerated at each
rendered frame.

It would seem ridiculous to ignore the advantages
of a frame-coherent tessellation, but experience has
shown that it is not. The geometry generation algo-
rithm presented in the next section has little impact
on run-time performance. Because geometry genera-
tion occurs in VRAM, and is performed entirely by
the GPU, the full potential of GPU stream process-
ing is brought to bear. Modern 3D hardware is more
than capable of discarding and regenerating the en-
tire scene with each new frame.

3.3 Geometry generation

The goal of the geometry generation phase is to pro-
duce a high-resolution triangular tessellation of the
sphere, accurately representing the terrain of the in-
put land-forms, with optimal level-of-detail.

The input, described in the previous section, gives
a low-resolution triangulation of the smooth sphere,
with each triangle of roughly the samevisual size in
eye space. So, the task of the geometry generation
phase is to perform a subdivision of the input mesh,
and a displacement of this subdivision's vertices using
height data.

Geometry generation is a GPGPU process, as de-
scribed in Section2.6.1. Floating point textures act
as vector data bu�ers, and GLSL shaders operate
upon these, writing their output to color render tar-
gets to be used in subsequent operations.

3.3.1 Subdivision

Triangle subdivision is generally a recursive process,
as described in Section2.8.3. To map this process
onto the GPU, we must formulate it iteratively. To
do this, �rst note that the number of vertices nv pro-
duced by the subdivision of a triangle to recursive
depth d is

nv (d) =
(2d + 1)(2 d + 2)

2

27

(a) Input (b) Depth 1 (c) Depth 2 (d) Output

Figure 3.6: Vertex indices and intermediate subdivision steps for a recursion ofdepth 2

Here are the vertex counts for several small values
of d, commonly used when doing real-time subdivi-
sion.

d nv (d)
0 3
1 6
2 15
3 45
4 153
5 561
6 2145
7 8385

For clarity, the �gures in this section show a subdi-
vision depth of 2, with 15 vertices per patch. In prac-
tice, the depth is usually 4 or 5. This value adjusts
the batch granularity as described in Section2.4.1.
A high value results in fewer patches emitted by the
visibility phase, larger batches, and less-e�ective view
culling. A small value places a greater load on the
CPU but results in precise visibility. This allows the
balance of the algorithm to be tuned to the hard-
ware. Older hardware, such as the NVIDIA GeForce
FX or ATI Radeon 8500 run smoothly at a depth of
3, while a GeForce 8800 can manage at 6. As we will
see,nv translates into a texture bu�er width, which
has a maximum of 4096 on recent hardware, and 8192
on current hardware, giving an upper bound on the
selection ofd.

With the exception of the three initial vertices
de�ning a triangle (v0; v1; v2), every vertex vi is the
combination of two other vertices vj and vk . A

breadth-�rst order enumeration of thenv vertices has
the property that i > j and i > k for any such re-
lated vertices vi , vj , and vk . Figure 3.6 depicts this
relationship graphically, with arrows indicating de-
pendence.

At start-up, the j and k indices for eachi are gen-
erated using such a breadth-�rst traversal and stored
in a constant look-up table, as in Figure3.7. This ta-
ble is stored in VRAM as a 2-channel 16-bit texture,
thus encoding the recursive subdivision relationship
in a form easily accessible by a GLSL shader.

Figure 3.7: Vertex index dependence look-up table,
encoding the relationship depicted in Figure3.6.

3.3.2 Iteration

Now begins the iterative process of subdivision. The
initial input is the texture bu�er depicted in Fig-
ure 3.5, with np rows, one row per patch. The out-
put is a similar texture bu�er, but with the number
of columns expanded from three to accommodate the
�nal vertex count nv .

Patches are processed in parallel. Each step of
the iteration computes one level of depthd, adding
nv (d) � nv (d � 1) vertices (columns) to the output
for each patch (row). The process is depicted in Fig-

28

ure 3.8. At step i the output texture is bound as
render target and a rectangle is drawn from pixel
[nv (i � 1); 0] to pixel [nv (i); np], causing the GLSL
fragment shader to execute for each of the new ver-
tices being generated.

Figure 3.8: The vertices calculated at each depth step
of the iterative parallel subdivision process

The fragment shader looks to its fragment coordi-
nate to know which vertex index it is generating. It
refers to the index dependence look-up table to de-
termine the indices of the vertices this depends upon,
and it uses these values as texture coordinates to look
up the input vertices themselves in the input texture.
It then performs its computation (described below)
and writes the resulting vertex to its fragment in the
output texture.

Note, iterative GPGPU processes must often uti-
lize a technique known as \ping-ponging". A GPU
cannot both read from and write to a single bu�er
simultaneously, as to do so would introduce data de-
pendencies that undermine parallelism. So in circum-
stances where the output of a computation should
overwrite its input, a pair of bu�ers A and B is used.
One iteration reads from bu�er A and writes to bu�er
B , the next iteration reads from B and writes to A,
and so on. The iterative subdivision process is an
example of this.

As noted, there three distinct subdivided at-
tributes: vertex position �p, normal �n, and spherical
coordinate (�; �). These attributes are computed as
follows.

3.3.3 Normal computation

Normal subdivision is performed as expected.

�ni =
�nj + �nk

jj �nj + �nk jj

However, a trick is introduced. The output image
is a 4-channel
oating point bu�er and the as-yet-
unused 4th channel is used to hold the angle sepa-
rating the input normals. This will be used during
position computation.

w = acos(�nj � �nk)

3.3.4 Lat/lon computation

Under ideal circumstances, it would not be necessary
to compute the latitude and longitude coordinates of
each vertex by recursive subdivision. Normally, one
would not even bother to store spherical coordinates,
preferring to simply compute them from the vertex
normal at render time:

� = asin(�ny)

� = atan2(� �nz ; �nx)

However, this method is imprecise and unstable.
Generating spherical coordinates in this fashion leads
to surface mapping errors on the order of hundreds of
meters on the scale of the Earth, with a total failure
of interpolation across the International Date Line.
We can do much better using the haversine geodesic
midpoint method to subdivide the coordinates of the
input triangles.

bx = cos� k � cos(� k � � j)

by = cos� k � sin (� k � � j)

� i = atan2
�

sin� j + sin� k ;
q

(cos� j + bx)2 + b2
y

�

� i = � j + atan2(by ; cos� j + bx)

While more expensive, this method produces reli-
able spherical coordinates even at sub-meter scales.
It also works correctly with coordinates outside of
the range � � , which greatly simpli�es mapping data
across the International Date Line.

29

3.3.5 Position computation

Position subdivision is particularly picky, as it is espe-
cially prone to numerical imprecision. The common
process is to scale the normal by the average of the
input radii, and o�set from the center of the planet
(as we are working in eye-space rather than object-
space). Unfortunately, multiplication by a large ra-
dius value may consume more precision than can be
represented by a 32-bit
oat. Once again, geometry
on the scale of a meter becomes dominated by nu-
merical precision artifacts. We need a method that
linearizes at small scales, and does not make explicit
reference to the radius of the planet.

Figure 3.9: Precise position subdivision without ref-
erence to radius

See Figure 3.9. We take the angle between the
input normal vectors (as found during normal com-
putation) and compute its tangent using a constant
look-up table stored as a 1D texture map. We com-
pute x, half the distance between �pj and �pk , and mul-
tiply it by the tangent giving y. From there we o�set
the midpoint of �pj and �pk along the current normal
�ni by the distance y.

As the input normals tend toward equality, the
computation of their angle reliably tends toward 0�

with little noise. Thus, the table look-up reliably
tends toward y = 0, and the position o�set reduces
to the midpoint of the input points. Each step pre-
serves its precision, and the stability of the operation
as a whole actually increases as the scale decreases.

We now have everything we need to begin applying
height map data to the tessellated sphere.

3.3.6 Displacement

Height maps are naturally images. Given that the
surface of the planet is now represented in VRAM

as an image, surface displacement is simple image
composition, an operation the GPU is most adapted
to perform e�ciently.

The newly-generated position, normal and spher-
ical coordinate bu�ers are bound for reading. An
nv � np position accumulation bu�er is bound as
render target. Height maps are loaded as textures,
usually formatted as 16-bit single-channel luminance.
They are bound one-by-one, and a render pass for
each is made. A rectangle covering the accumulation
bu�er is drawn, triggering the execution of a GLSL
shader for each fragment.

At each fragment, the height map texture coordi-
nate must �rst be determined. For spherically pro-
jected data, this is the value in the spherical coor-
dinate bu�er. For polar projected data, this is the
value in the normal bu�er, o�set and biased as per
the projection.

In addition to the texture coordinate, a texture
quality value may be computed comparing the ef-
fective resolution of the projected height map data
versus the resolution of the tessellation at the cur-
rent vertex. A signi�cant mismatch indicates badly
projected data, such as a vertex near the pole of a
spherical projection, or near the equator of a polar
projection. This gives a weighting factor used to pe-
nalize bad data. This will be discussed in greater
detail in Section 4.1.

Once the texture coordinate and quality are
known, the height map is sampled. The displaced po-
sition of the vertex is the base sphere position plus the
normal scaled by the height value. The quality factor
gives the weighted average of this displaced position
and the current accumulated position, resulting in a
re�ned accumulated position. As some GPUs are in-
capable of blending
oating point render targets, this
process ping-pongs a pair of accumulation bu�ers, as
described above.

The fundamental e�ect of this process is that the
input height map data, regardless of projection and
resolution, are naturally re-sampled to the optimal
tessellation mesh computed previously. Overlapping
height maps are blended. Under-sampled height
maps are interpolated by the GPU's linear mag-
ni�cation �ltering hardware. Over-sampled height
maps are down-sampled by the linear mini�cation

30

hardware. Any discontinuity between superimposed
height maps of di�erent resolution are obscured by
being re-sampled to a common mesh. And any low-
quality height data at the extremes of the projection
are automatically weighted away in deference to the
more appropriately projected height data composed
with it.

This per-frame resampling of height map data may
appear wasteful of GPU resources, but since it is ex-
pressed in terms of common texture mapping opera-
tions, it is no di�erent than the per-frame resampling
of texture data applied to an ordinary 3D mesh. As
such, the overhead of data resampling is minimal,
as demonstrated in the performance analysis of Sec-
tion 5.1.4.

This approach to height map accumulation a�ords
an opportunity to satisfy the last criterion for conti-
nuity. Lindstrom et al [23] enumerate three aspects of
continuity of terrain level-of-detail under view point
motion. In summary, they are (i) geometry morphs
between discrete levels of detail instead of popping,
(ii) adjacent blocks of geometry align without gaps,
and (iii) the number of triangles tessellating a given
area varies smoothly. In our method, (iii) is satis-
�ed during the visibility and granularity phase (Sec-
tion 3.2), and (ii) is satis�ed during rasterization
(Section 3.4), but (i) remains.

However with this approach, height geometry dis-
placement is expressed in terms of image composition
and performed by pixel processing hardware. Thus,
morphing between geometric levels of detail is equiv-
alent to blending between images. Just as height map
resampling is accomplished by the GPU's built-in bi-
linear texture �ltering capability, so too may level-of-
detail continuity be satis�ed using the GPU's trilin-
ear mipmapping capability. The mipmap bias is the
fractional part of the level-of-detail detail coe�cient,
as used in existing approaches to geomorphing [9]. At
the time of this writing, this advanced terrain sam-
pling operation is untested and the current implemen-
tation does reveal popping artifacts. Recognizing the
necessity of continuous LOD in any modern approach
to terrain rendering, we must place trilinear �ltered
geometry among the most important areas for future
work.

3.3.7 Output

Figure 3.10: The output of the geometry generation
phase, a �ne triangulation with height displacement

We now have the �nal vertices of the geometry rep-
resentation stored in a 32-bit
oating point texture.
In wire-frame, they appear as Figure3.10. Contrast
this with the input tessellation in Figure 3.4, showing
the planet from the same view point.

In the next phase, we will wind these into triangles
and rasterize them. Before we may do so, they must
be moved from their image bu�er to a vertex bu�er.
As before, this transfer is performed asynchronously
within VRAM using the OpenGL pixel bu�er object
extension. The spherical coordinate bu�er, normal
bu�er, and accumulated position bu�er are concate-
nated onto a single vertex bu�er suitable for render-
ing.

Note that the normal bu�er does not represent the
normals of the displaced vertices, but remains useful
to us when later computing polar-projected texture
coordinates.

3.3.8 Aliasing and Error

The height map displacement process does not en-
force a constraint that the vertices of the source data
fall upon the vertices of our triangulation. This
is a signi�cant departure from one of the basic as-
sumptions made in the �eld of terrain rendering. As
discussed in Chapter2, most terrain rendering ap-
proaches utilize a regular grid of data applied to a reg-

31

ular geometric grid of right triangles, but the goal of
supporting arbitrarily projected data precludes this.
This has a two-fold impact. First, it allows aliasing to
occur when data is resampled to our triangular mesh.
Second, it adds complexity to the analysis and miti-
gation of error.

The analysis of error is a key aspect of terrain ren-
dering research. Note that the re�nement processes
of both the triangulated irregular network approach
of Section2.2 and the ROAM approach of Section2.3
are de�ned in terms of error mitigation.

While existing planetary-scaleterrain rendering lit-
erature does discuss the mapping of spherically pro-
jected data onto subdivided polyhedra, little atten-
tion has been paid to the e�ects of the non-uniformity
of such mappings on aliasing and error. A thorough
analysis of the error that may arise here is necessary
before the technique can be embraced as a reliable
tool. This analysis is left for future work.

3.4 Rendering

The �rst step toward rendering the vertices generated
by the previous phase is to wind them into triangles.
We immediately face the same T-intersection chal-
lenge described in Sections2.3.3 and 2.4.3. In this
case, there exists a straightforward approach to the
elegant solution of Figure2.12.

3.4.1 Patch winding

As with ROAM, we mandate that adjacent patches
must be within one level in depth. So a patch of
depth d has neighbors only of depthd, d � 1, and
d+1. When considering a patch of depthd, the d+1
neighbor case may be ignored becausethis patch is
of depth d � 1 relative to that patch, thus only edges
adjoining d to d � 1 need special treatment.

If a patch of depth d lies adjacent to a patch of
depth d � 1 then the adjacent edge must be wound
at half resolution. A patch may lie adjacent to a
coarser patch along zero, one, two, or three sides.
The one and two-side cases have three possible ori-
entations, for a total of eight possible edge windings.

Figure 3.11 shows all necessary triangulations of a
patch of depth three.

Figure 3.11: All possible windings (modulo rotation)
of a patch of depth three adjacent to zero or more
patches of depth two

The eight cases are enumerated and stored in
VRAM using OpenGL element bu�er objects. Ele-
ment bu�ers are lists of indices referring to elements
within a vertex bu�er. Because the vertex bu�er is
bound independently from the element bu�er, these
eight element bu�ers may be used with allnp patches,
and the penalty for over-specifying elements is negli-
gible.

Patch neighborhoods are implicit. During render-
ing, a context-aware depth-�rst traversal of the set
of active patches is performed. The context of the
traversal is the neighborhood of the current patch.
As is common in tree traversal, if a patch's child ref-
erence is empty then that patch is a leaf to be ren-
dered. In the context-aware traversal, if a patch's
neighbor reference is empty then that patch is adja-
cent to a lower-resolution patch (the neighbor traver-
sal has \fallen o� the end" of the tree). The non-null
neighbors are counted and the appropriate element
bu�er is selected from the eight. The vertex bu�er
and element bu�er are bound and rendered.

3.4.2 Deferred texturing

As VRAM quantities have increased and o�-screen
rendering has become e�cient, the tactic of deferred
shading has become common. Originally developed
under the name \G-bu�ering," [34] a deferred shad-
ing renderer uses a pair of o�-screen render targets
in a rendering pre-pass which rasterizes objects with-
out illuminating them. One render target receives
the di�use color and the other receives the surface
normal at each pixel.

32

Illumination is performed on-screen. The volume
of in
uence of each light source is rendered, and a
fragment shader executes for each pixel of that vol-
ume. The shader references the color and normal
from the o�-screen bu�ers, and accumulates the illu-
minated surface in the frame bu�er.

The advantage of deferred shading is that the com-
plexity of the scene is isolated from the complexity
of the illumination. Given n objects and m light
sources, traditional rendering requires that each ob-
ject be rendered with each light source, which is
O(n � m). The deferred approach renders all objects
in the o�-screen pass, and all light sources in the on-
screen pass, which isO(n + m), an e�ciency gain for
large m.

When composing disparate surface maps, it is ad-
vantageous to generalize this concept. We do not
require many light sources per planet, we require
many image maps, and we do not want to re-render
our planet for each. So the initial deferred texturing
pass begins by rendering the triangulated geometry of
the planet and writing the texture coordinates them-
selves to an o�-screen 4-channel 32-bit
oating point
render target as (�; �; �nx ; �nz). See Figure3.12.

Note, this is the only time 3D geometry is drawn,
and all other rendering is performed in screen space.

Figure 3.12: The texture coordinate bu�er showing
� in red and � in green (scaled by 100 for visibility)
for each point on the surface of the planet.

3.4.3 Surface map accumulation

Just as height maps of arbitrary projection and type
are adaptively composed as images during geometry
displacement (Section3.3.6), so too are surface maps
composed during rendering.

The bounding volume of a given surface map is
rendered to an o�-screen bu�er, triggering a shader
at each fragment. For a given fragment, the texture
coordinate is taken from the bu�er produced in the
previous step. Spherically projected surface maps de-
rive their texture coordinate from � and � while po-
lar projected surface maps use �nx and �ny , computing
�ny =

p
1 � �n2

x � �n2
z if necessary.

In addition to these, the depth bu�er gives the
distance to the fragment, which may be combined
with the view projection matrix to determine its eye-
space 3D coordinate. This coordinate may be trans-
formed in a variety of ways enabling, for example,
a perspective-projected surface map such as a land-
scape photograph to be correctly and adaptively ap-
plied.

Texture quality is computed as before, and the sur-
face map is biased and blended with the accumulation
bu�er. Figure 3.13 shows the accumulated normal
maps of the scene shown in Figure3.10. Figure 3.14
shows the accumulated di�use color maps.

Figure 3.13: The normal accumulation bu�er

There is limitless potential in this phase. It is here
that color space transformations may be made, iso-
lated channels from unregistered data sets may be
combined, and time-varying data may be interpo-

33

Figure 3.14: The di�use color accumulation bu�er

lated. All of these may be done without regard to the
underlying geometric complexity of the scene. Be-
cause all composition is performed in a homogeneous
texture space at the native resolution of the output
device, no discontinuity will appear.

3.4.4 Output

Given accumulations of all relevant surface quanti-
ties mapped onto terrain geometry in screen space,
the production of the �nal on-screen image is triv-
ial. Figure 3.15 shows the composition of all data
processed thus far. Geometry is colored and illumi-
nated using the di�use and normal bu�ers, and at-
mospheric scattering is applied. Other e�ects may
be included here, such as high-dynamic-range tone
mapping, spherical correction for dome display, and
image interleaving for autostereo display.

Figure 3.16 reviews each of the steps described in
this section. All six images show the same �eld of
view, in the order of pipeline execution.

Figure 3.15: All bu�ers composed and illuminated
with atmosphere.

34

Figure 3.16: A review of the composition process. From the top-left: the CPU-generated patches, the GPU-
displaced tessellation, the deferred texture bu�er, the normal accumulation bu�er, the di� use accumulation
bu�er, and the �nal image.

35

Chapter 4

Composition Operations

The true value of this approach to the display of
height map and surface map data is that it provides
a number of opportunities for on-the-
y data manip-
ulation. Having established that arbitrary juxtapo-
sition, weighting, and blending of both height and
surface data are possible in real-time, a number of
useful techniques follow immediately. The following
sections describe some of these. In all cases, the dis-
played �gures were rendered by the implementation
of this approach.

In an e�ort to make the display of the e�ects this
method concrete and clear, this chapter employs the
false-data example planet shown in Figure4.1. All
of these �gures in this chapter were rendered using
the implementation of the approach. The false data
exaggerate the issues of sampling and scale that this
work focuses upon. This planet was generated us-
ing 3D simplex noise [33], giving a magni�ed height
�eld. As an entity independent of data sampling,
the simplex noise planet was \observed" using a va-
riety of projections and resolutions in order to model
the variance among data sets of real planets. A color
map with a high-contrast, low-resolution contour line
was generated from the sampled height maps, and
is drawn without linear �ltering so that non-uniform
data sampling is made apparent in the shape of the
rendered texels.

Figure 4.1: The 3D simplex noise planetary height
map with normal and di�use color maps, used for all
subsequent �gures.

4.1 Projection Quality Adapta-
tion

4.1.1 Background

Planetary data are most often presented using spheri-
cally projected images. Thex axis of the image maps
directly onto longitude, and the y axis maps directly
onto latitude. Image axes map onto the sphere as
in Figure 4.2a. The Shuttle Radar Topography Mis-
sion (SRTM) [8] data set, a 1-arc-second height map
of the Earth, is a common example of a spherical

36

data set. The Shuttle's orbit limits the extent of this
data set to approximately 60� above and below the
equator, and the spherical projection is optimal.

However, consider Blue Marble Next Genera-
tion (BMNG) [27], the familiar mosaic of color Earth
imagery. It too is spherically projected, but extends
all the way to the poles. Let us review Section 2.8.1:
Spherical projection su�ers at the poles, where all
lines of longitude, and thus all columns of image data,
converge. Pixels become compressed along thex axis,
while retaining their size along y. The visual e�ect
of this is a radial blur centered at the pole. This
anisotropic sampling also imposes a signi�cant data
access penalty, as large quantities of source data (the
entire width of the source image) must be accessed
when rendering the pole. This taxes VRAM utiliza-
tion and may cause data caches to thrash. Bad polar
sampling is extremely common in planetary data vi-
sualization.

(a) Spherical projec-
tion

(b) Polar projection

Figure 4.2: Common planetary projection types.

The correct solution for polar rendering is to use
polar-projected source data, as in Figure4.2b, where
the sampling of the source most closely matches the
sampling of the rendered image. The Landsat Im-
age Mosaic of Antarctica (LIMA) [42] is an exam-
ple of a high-resolution data set presented with po-
lar projection. In particular, geoscientists at the
Antarctic Geospatial Information Center (AGIC) at
the University of Minnesota have speci�c need for
the means to interactively compose large quantities of
high-resolution localized data near Earth's south pole
and to visualize these data in the context of Earth as
a whole.

To render an entire planet with uniform sampling,
both spherical and polar projections are required.
Planetary data sets providing both of these are rare,
but the Mars Orbiter Laser Altimeter (MOLA) [47]
data set is one example. It provides spherical projec-
tion of Mars height data up to 88� from the equator,
�lling the gap at each pole using data with polar pro-
jection.

Figure 4.3: The spherical projection of the di�use
color of the example planet. The marked region cor-
responds to Figure4.6.

Given both spherical and polar data, we can pro-
duce uniform sampling planet-wide using terrain
composition. To make this process concrete, let us
return to the example planet. Figure 4.3 shows the
spherical projection of its surface color map. While
the examples here show only the color map, the uni-
form handling of height and surface data enabled by
this method extend this discussion to terrain geom-
etry as well as any other surface mapped quantities,
including the normal maps used to produce these �g-
ures.

Figure 4.4a shows the south pole. The small con-
toured region there is stretched across the entire bot-
tom of Figure 4.3. We see the extremely non-uniform
sampling resulting from the direct mapping of that
image onto the sphere. Texels are compressed longi-
tudinally, but not latitudinally. Optimal output tex-
els should be square to properly represent the square
samples of the source data.

So, let us introduce the polar projection of the sur-
face color map, as shown in Figure4.5. Figure 4.4b
shows this image mapped onto the sphere. Contrast

37

(a) Spherical (b) Polar

Figure 4.4: The south pole of the example planet,
showing spherical (a) and polar (b) data mapped onto
the sphere, contrasting the data sampling uniformity
of each.

the uniformly-shaped pixels of Figure 4.4b with the
stretched pixels of Figure4.4a.

(a) North (b) South

Figure 4.5: Polar projection of the di�use color of the
example planet. The marked region corresponds to
Figure 4.4.

While polar data map cleanly at the pole, sam-
pling su�ers elsewhere. Contrast the uniformity of
the spherical data near the equator, shown in Fig-
ure 4.6a, with the non-uniform polar data at the same
location in Figure 4.6b.

(a) Spherical (b) Polar

Figure 4.6: A region near the equator, showing spher-
ical (a) and polar (b) data mapped onto the sphere,
contrasting the data sampling uniformity of each.

4.1.2 Implementation

To produce a uniform sampling across the entire
planet one must blend the spherical, north polar, and
south polar data sets. This blending follows imme-
diately from the accumulation mechanism described
in Section 3.4.3. The only open question is choos-
ing the weights of that blend. There are alternative
approaches here.

The �gures in this document use an extremely
straightforward approach: cubic interpolation over
distance. Figure4.7 shows each of the three weighted
terms separately, with their composition shown the
right. In general, the weights need not add up to
one. While (x; y; z) vector or (r; g; b) color data are
accumulated in the red, green, and blue channels of
the bu�er, the weights are accumulated in the alpha
channel. The sum of the weights is then used to nor-
malize the RGB value upon �nal rendering.

Figure 4.7: The cubic-weighted contributions of
spherical, north polar, and south polar projected
height and color data to the �nal planet.

38

The straightforward blending over distance in this
example depends upon the use of spherical and polar
projection. Arbitrary projections including orthog-
onal and perspective projection may also be accom-
modated using a more powerful weighting function
based upon screen-space derivatives.

Let (u; v) be the texture coordinate computed as
a function of the inputs (�; �; �nx ; �nz) taken from the
deferred texture bu�er (Section 3.4.2). GLSL de�nes
functions dF dx and dF dy giving the derivative of any
GLSL variable with respect to the x and y axes of the
target frame bu�er, computed using forward or back-
ward di�erencing. The sampling uniformity of a texel
k may be computed as the ratio of the magnitudes of
the gradients along each texture axis.

k =

s
dF dx(u)2 + dF dy(u)2

dF dx(v)2 + dF dy(v)2

The following function computes a weighting value
� in [0; 1] where texels mapping to squares in the
output give 1 and texels mapping anisotropically to
n � 1 or 1 � n in the output give 0.

� = 1 �

�
�
�
�
log k
log n

�
�
�
�

The n parameter is a con�gurable quality coe�-
cient. Setting n = 2 gives an extremely aggressive
isotropy bias that allows only square pixels to make
signi�cant contribution to the accumulation. De-
pending on the degree of source data over-lap, this
may or may not be desirable. It will favor data viewed
face-on and bias data mapped, for example, to the
side of a mountain. For this reason, a less aggressive
bias is usually preferable.

This weighting function is independent of the na-
ture of the projection, and thus it may be used to
blend arbitrarily projected data values on the basis
of the quality of their projection on a per-texel basis.
Applied during the surface accumulation phase (Sec-
tion 3.4.3) it produces e�ects such as that shown in
Figure 4.7 automatically.

Applied during the geometry displacement phase
(Section 3.3.6), it enables the adaptive composition
of height values, giving high quality geometry planet-
wide. However, a bit of extra work is required. The

layout of the geometry image bu�er is logical, rather
than spatial, so neighboring vertices are not adja-
cent in the bu�er, the GPU's automatic �nite di�er-
ence derivatives are not valid, and texture coordinate
derivatives must be explicitly computed during geom-
etry generation.

4.2 Data Overlay

4.2.1 Background

Terrain visualization frequently requires the overlay
of unregistered height and surface maps of di�ering
resolution and boundary. For example, one might
need to view a high-res LIDAR height map of a fault
in the context of the terrain where it lies.

My collaborators include astronomers at Chicago's
Adler Planetarium. As the Public Outreach and Ed-
ucation center for NASA's Lunar Reconnaissance Or-
biter Camera mission (LROC), the Adler will receive
62TB of half-meter lunar imagery, from launch in
early 2009 through the next year. Our goal is to bring
these data to the public via real-time 3D interactive
experiences using the Adler's \Moon Wall" tiled dis-
play and StarRider 55-foot digital dome theater. To
create a unique public interaction with these data,
Adler astronomers wish to provide it as fresh as is
possible. To form a coherent whole, gaps in coverage
must be sealed with pre-existing lunar data, such as
the Clementine and Lunar Orbiter data sets.

These examples follow straightforwardly from ter-
rain composition. To show this, we may generate a
projection of the sample planet similar to raw LROC
output. A narrow strip runs across the planet, as
though it followed the ground trace of a satellite in an
inclined orbit. The color map appears in Figure 4.8.
It is outlined in place in Figure 4.9a.

Figure 4.8: A strip of local high-resolution data, as
collected by a satellite in an inclined orbit.

39

(a) With boundary indicated (b) Composed normally

Figure 4.9: A strip of local high-resolution data com-
posed with global low-resolution data.

4.2.2 Implementation

Height and surface maps are accumulated normally,
but care is taken to clamp to the border of the over-
laid input. Source fragments falling outside of the
image are either discarded or masked away. Fig-
ure 4.10ashows a close-up view of the border of the
overlaid strip. Contrast the sampling of the contour
line, and note the discontinuity. If this abruptness is
undesirable, then a blend function may be produced
procedurally in the accumulation fragment shader, or
encoded in the alpha channel of the image, as shown
in Figure 4.10b. This masking is fully generalized,
and overlaid data need not have rectangular bound-
ary.

This technique may be optimized by con�ning ren-
dering to the boundary of the overlaid data in the
target bu�er. When accumulating surface maps,
one need draw only the screen-space shape �lling
the boundary. If this boundary is complex or ex-
pensive to compute, a screen-space rectangle or eye-
space bounding volume will su�ce. This results in
fewer fragment operations than a full-screen pass.
Similarly, when accumulating height maps, one need
render only to those scan-lines encoding the surface
patches touched by the overlay.

(a) Unblended (b) Blended

Figure 4.10: A close-up view of the border of the
high-resolution strip of local data. Pixel size indicates
sampling and resolution. The insets magnify the area
of interest.

4.3 Level-of-detail and Paging

Planetary-scale data sets continue to grow in extent
and increase in resolution. Most data sets in use to-
day far exceed the size of the available RAM or video
RAM of the hardware used to display them. To ac-
commodate out-of-core data in real time, a caching
mechanism must be used. Caching mechanisms han-
dle data in pages, where a page is an atomic accessible
subset of the data. A 2D data set such as a height
or surface map is divided along a uniform grid, giv-
ing square pages. The reassembly of these data pages
into a uniform on-screen whole follows immediately
from the height map and surface map composition
capability of the terrain composition algorithm.

4.3.1 Background

Data pages have a number of properties. The most
signi�cant characteristic of a page is its size. A given
data set may divided into a large number of small
pages, or a small number of large pages. Page size
selection reveals the same type of trade-o� as geome-
try batching (Section 2.4.1), and as such it is a choice
necessarily guided by performance testing.

Small pages (approaching a single pixel in the
limit) allow the application to access precisely the
data that it requires, with low latency. However, if

40

these pages are too small then the run-time overhead
of page acquisition becomes a bottleneck.

Large pages (approaching the size of the full data
set in the limit) utilize bandwidth e�ciently, but if
they are too large then latency is high and both band-
width and local storage go to waste, undermining the
e�ectiveness of the cache hierarchy.

Because data is displayed at a variety of scales, a
mipmapped approach (Section2.4.2) to paging is nec-
essary. If the planet is seen from afar then only low-
resolution sub-sampled pages need be accessed. Just
as with mipmapping, each level of the page \pyra-
mid" gives four times the resolution (two-by-two) of
the previous, with four times the total size, and thus
four times the number of pages.

Finally, pages must have information about their
neighbors. If the available data resolution does not
meet the application's required resolution, then pixel
values are interpolated by linear magni�cation �l-
tering. If interpolation beyond the edge of a page
should be required, then pixels of the adjacent page
are needed. Rather than mandate that page be
loaded, the edge pixels of all neighboring pages are
appended. So a 1000� 1000 pixel page has a true size
of 1002� 1002, as it includes one line of pixels from
each of the four pages adjacent to it.

Large NASA and USGS data such as SRTM [8]
and BMNG [27] are distributed in page form. SRTM
pages are 1� square, inclusive, giving 3601� 3601
pages for 1-arc-second US data and 1201� 1201
for 3-arc-second International data. BMNG pages
are 21600� 21600. Testing with current hardware
has shown an optimal page size around 500� 500.
OpenGL texturing prefers a power-of-two size, and
this gives a useful page size of 512� 512. Clearly,
both SRTM and BMNG pages are far too large for
real-time use, and they must be merged and re-sliced.
This process is straightforward, and can be performed
by a variety of o�-the-shelf tools, including Global
Mapper [14].

4.3.2 Implementation

The implementation of the data paging mecha-
nism uses a variant on the technique developed by
Lefohn et al [22] to reference very high-resolution

shadow maps. In this approach, texture coordinates
do not map directly onto texels, instead they map
onto a mipmap index texture which contains refer-
ences into a tilecache texture.

The cache texture behaves as a normal 2D image.
It is an n � m atlas of all currently-loaded data pages.
Given a page sizep, its size isp� n � p� m. The maxi-
mum texture size of the GPU places an upper bound
on n and m. Current hardware supports textures as
large as 8192 pixels square, and recent hardware sup-
ports 4096 pixels. In the case ofp = 512 we select
n = 16 and m = 8, for a total of 128 cache lines. The
parameters n and m serve to balance quality versus
performance, as needed.

The index texture behaves as a normal, un�ltered
2D mipmap. Rather than giving color (r; g; b), this
texture gives coordinates (r; c; l). These are the cache
texture row r in [0; n) and column c in [0; m) of the
page of data for the given texture coordinate, with
the level-of-detail l of that page. The l parameter is
used to recognize the presence of a lower-resolution
page to serve as proxy while the page of the desired
resolution is being loaded. This virtual texture look-
up process is performed by a GPU fragment shader,
which may implement any mipmap access policy. The
�gures and performance measures shown in this doc-
ument use a fragment shader implementation of tri-
linear mipmapping, which produces an optimal sam-
pling of referenced data based upon texture coordi-
nate derivatives.

The CPU maintains the state of both the index and
cache textures. Each data set in use is represented by
a quad-tree of page references. A rectangular data set
will result in a full quad-tree, but fullness is not nec-
essary. The National Elevation Database [41], which
depicts U.S. territories all over the world at a res-
olution of one arcsecond, is an example of a sparse
quad-tree.

Each page of this quad-tree has a rectangular shell
bounding volume similar to that shown in Figure 3.3.
The solid angle subtended by this shell at the cur-
rent view point, combined with the resolution and
solid angle of the display itself, allows the ratio of
texels per pixel to be computed for each page. If this
ratio meets a cuto�, then the corresponding page is
asynchronously uploaded to the cache texture using

41

a pixel bu�er object. The page's cache location is
uploaded to the index texture in both its correct po-
sition, and any applicable proxy positions.

When a data set is applied, it is rendered as a single
rectangle. During surface map rendering, a screen-
sized rectangle is drawn. In the case of height map
accumulation, the rendered rectangle covers the ge-
ometry accumulation bu�er as shown in Figure 3.8.

Figure 4.11 shows a view of the southwest United
States with NED overlaid atop BMNG and SRTM, a
total of 115GB of color, normal, and height data.
In Figure 4.12 we see the 16� 8-page RGB color
cache used to render the scene. Note that both dif-
fuse color and normal maps are 8-bit 3-component
images, and they share this cache. Figure4.13shows
the same view, with each page colored by its depth
in the mipmap hierarchy. The smooth gradiation in
color indicates the distance-appropriate transition in
data resolution resulting from tri-linear mipmapping
computed using screen-space derivatives. In the per-
formance analysis of Chapter5 we will take a detailed
look at this mechanism in action using this same
115GB of tri-linearly-mipmapped real-world data.

Figure 4.11: A view of the U.S. showing the NED,
BMNG, and SRTM data sets, totaling 115GB.

Figure 4.12: The 16� 8 page cache used to render
Figure 4.11 showing both di�use color and normal
map data pages.

Figure 4.13: Figure 4.11 with each page of data
colored by mipmap hierarchy depth, showing the
smooth output of tri-linear mipmapping.

42

Chapter 5

Implementation and Results

5.1 Performance Measurement

In an e�ort to quantify the performance of the terrain
composition algorithm and understand the variance
in performance with di�erent quality settings, let us
de�ne a benchmark. A scripted 4800-frame anima-
tion begins with a wide view of the Earth, moves in
to a close-up view of Mount Rainier, and the moves
back to the wide view along the same path. See Fig-
ure 5.1. Each execution of this benchmark begins
with an empty data cache, and data are loaded as
needed during the move in. On the move out, much
of the needed data remains in the cache. This allows
us to contrast the performance of the system under
both I/O intensive and non-intensive circumstances.
All frame time measurements are averaged over 10
frames, giving 480 data points per run.

The test con�guration involves multiple gigapixel-
scale data sets, paged and cached as described in
Section 4.3, using a data overlay composition as de-
scribed in Section4.2. The base layer is the Shuttle
Radar Topography Mission (SRTM) [8] data set cov-
ering the Earth at a resolution of 30 arcseconds, giv-
ing 3.5 gigapixels of 16-bit height data. The National
Elevation Database (NED) [41] is overlaid atop this.
NED covers all U.S. territory at a resolution of one
arcsecond, giving 17 gigapixels of 16-bit height data.
A 24-bit normal map is derived from each of these, en-
abling per-pixel illumination. Finally, the Blue Mar-
ble Next Generation (BMNG) [27] data set provides
24-bit RGB color covering the Earth at 30 arcseconds,
for another 3.5 gigapixels.

Figure 5.1: Frames 100 (a), 1600 (b), 2200 (c), and
2400 (d) of the 4800-frame benchmark animation.

In total, this is 115GB of raw data. Each of these
data sets was prepared using Global Mapper. The
raw data were received from AGIC in the form of
Global Mapper project �les, which were loaded and
exported as tiles. Some di�culty was encountered
when Microsoft Windows' �lesystem limitations were
exceeded. The maximum number of �les allowed in
a single directory was insu�cient. To resolve this,
Global Mapper was used to export 5100� 5100 tiles,
which were then further subdivided to 510� 510 by
a custom Linux command-line tool. Tile boarders
were then added to these, and the mipmap hierar-
chy was generated by another custom command-line

43

tool. In the event that the number of tiles does not
exceed Windows' limits, Global Mapper would gen-
erate the borders and mipmaps itself. This process
produced 189; 000 mipmapped tiles, each 512 pixels
square. These tiles were compressed to the PNG
form, consuming 38GB of disk space.

The input data types allowed by this process in-
clude 8, 16, and 32-bit signed and unsigned inte-
gers, as well as
oating point values. Images may
have between one and four channels. Any image
data type loaded and stored by Global Mapper is
straightforwardly adaptable to this implementation.
Global Mapper does allow a variety of vector data
types which the terrain composition algorithm does
not consider, though the implementation trivially al-
lows such data to be rendered with its output.

5.1.1 Baseline performance

The primary test hardware is a dual AMD Opteron
250 at 2.4GHz with 4GB of RAM and an NVIDIA
GeForce 8800 GTX. The baseline run of this con�g-
uration has a resolution of 1024� 768, a re�nement
depth d = 4, a patch seed count np = 256. Data
caches allow for 128 pages of 16-bit height data and
128 pages of 24-bit color and normal data. Results
are shown in Figure5.2.

As expected, we see many page faults on the move
in, and only a few on the move out. There is a clear
correlation between frame time and page fault count,
indicating the imperfect independence of the render
thread from data loader threads due to communica-
tion overhead. On the move out we see level perfor-
mance around 6ms per frame. This demonstrates the
algorithm's consistent throughput and performance
independent of proximity to the planet.

Note that all graphs presented here use the same
vertical scaling, where the top of the graph represents
a 30Hz refresh rate, and the middle of the graph rep-
resents a 60Hz refresh rate. Figure5.2 shows perfor-
mance comfortably better than 60Hz throughout the
run.

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01
&

(#
$&

2(
3"

&
'(+

45
0

'()'*) '+)',)

Figure 5.2: Baseline performance at 1024� 768 (d =
4, np = 256) measured over time. Frame time (ms) is
shown in black and page fault count in green. Marked
frames (a), (b), (c), and (d) refer to Figure 5.1. Note
the generally level trend, with disturbances correlat-
ing frame time with page faults.

5.1.2 Variance with resolution

Now let us vary the resolution of the display with-
out varying the complexity of the geometry. The re-
sults are shown in Figure5.3. Decreasing the display
resolution to 320 � 240 (shown in blue) greatly re-
duces both fragment processing overhead and data
demand. This reveals the combined overhead of the
visibility and granularity phase (Section 3.2) and ge-
ometry generation phase (Section3.3). We see per-
formance level at 5ms. This is the major fraction of
the 6ms performance at 1024� 768 (again in black),
but it is fortunately a constant dependant only upon
geometric complexity.

The primary impact of increasing the display res-
olution to 1920 � 1080 (Figure5.3 in red) is a higher
demand for data. In this case, we see rough perfor-
mance on the move out due to the reloading of low-
resolution overview pages ejected during the high-
resolution Mount Rainier close-up.

We can still see a consistent minimum frame time
of around 10ms in this circumstance, due to fragment
processing overhead. Given the assumption of 5ms of
geometry overhead inferred from the 320� 240 results,
we see the increasing fragment cost match the geom-

44

etry cost at this resolution. As resolution increases
from here, the balance tends toward fragment pro-
cessing.

The important case of stereoscopic rendering sees
a bene�t here. A stereo display entails the render-
ing of the scene once for each of the user's two eyes.
This e�ectively doubles the resolution of the display,
and we would see the frame time roughly double with
this added fragment load. However, because of the
proximity of the user's eyes, and the resulting overlap
between the two views, there is a great deal of data
coherence between the two renderings. The data de-
mand for two eyes would match that for a single eye,
and the increase in resolution due to stereoscopic ren-
dering would not incur the same I/O penalty as an
equivalent doubling in monoscopic resolution.

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01

'()'*) '+)',)

Figure 5.3: Frame time (ms) measured over time at
1024� 768 in black, at 320� 240 in blue, and 1920�
1080 in red. Frame time varies with pixel count, and
increased resolution incurs greater data demand.

5.1.3 Variance with geometry

Now let us vary the parameters that determine ge-
ometric complexity while holding the display resolu-
tion constant at 1024 � 768. First, double the num-
ber of seed patches fromnp = 256 to np = 512 while
holding the re�nement depth d constant. This has
the e�ect of doubling the number of rendered ver-
tices from 39; 168 to 78; 336 (Section 3.2). We see
this doubling borne out in Figure 5.4 with the frame

time graph translated upward.

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01

'()'*) '+)',)

Figure 5.4: Frame time (ms) measured over time at
1024� 768 with seed patch countnp = 256 in black
and np = 512 in orange. Doubling the geometry dou-
bles the frame time.

Orthogonally to this, increase the re�nement depth
from d = 4 to d = 5 while holding the seed patch
count np constant. This has the e�ect of increas-
ing the number of vertices 3:6 times, from 39; 168 to
143; 616 (Section3.3). Again, we see the impact of
this clearly in Figure 5.5. If we infer from Figure 5.3
that 1ms of the frame time may be attributed to the
overhead of rendering 1024� 768 pixels, then the re-
maining 17ms of d = 5 frame time is quite close to
3:6 times the 5ms ofd = 4 frame time.

It is worth noting that an increase in d quickly in-
creases the vertex count, but does so without CPU
cost. In contrast, when doubling np, we double the
CPU's geometry load in addition to doubling the ver-
tex count. This incurs twice the visibility processing
and twice the number of rendering batches. CPU
monitoring shows the load of the rendering thread to
be negligible. However, one can imagine a circum-
stance where careful manipulation ofnp and d may
tune the CPU-GPU balance and improve through-
put.

5.1.4 Variance with data

The data caching mechanism ensures that the total
size of a given data set does not impact general per-

45

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01

'()'*) '+)',)

Figure 5.5: Frame time (ms) measured over time at
1024� 768 with patch subdivision depth d = 4 in
black and d = 5 in pink. The 3 :6� increase in geom-
etry is seen in the frame time.

formance. However, data layering does incur over-
draw, so performance does vary with the total num-
ber of data sets composed. To quantify this, we run
the benchmark without the NED data set overlaid.
This removes both the NED height map contribution
from the terrain geometry and the NED normal map
contribution from the normal bu�er accumulation.

Figure 5.3 showed that fragment processing is not
a serious bottleneck at 1024� 768, so to see a distinc-
tion, we perform this test at 1920� 1080. Figure5.6
shows this result in blue. As expected, the SRTM-
only frame time is reduced and performance is more
consistent due to the lower data demand.

To see the impact of height map overdraw, apply
the NED height map atop the SRTM without the
NED normal map. This is shown in Figure 5.6 in
green. While these results are rougher due to data
demand, the overall trend is not signi�cantly slower
than the SRTM-only performance. This indicates
that the costs of height data resampling and geome-
try displacement are negligible.

Finally, to see the impact of surface map overdraw,
apply the NED normal map atop the SRTM without
the NED height map. This is shown in red. Surface
map overdraw incurs the rendering of another full-
screen rectangle, which results in an overall increase
in frame time of 2ms.

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01
&

'()'*) '+)',)

Figure 5.6: Frame time (ms) measured over time at
1920� 1080 with SRTM only in blue, SRTM+NED
height in green, and SRTM+NED normal in red. Ad-
ditional data incurs only minor penalty.

5.1.5 Performance Qualities

These results reveal a balanced pipeline at the base-
line con�guration. Frame time increases with either
an increase in geometry complexity or an increase
in display resolution. This balance is in contrast
with many of the approaches to terrain rendering
presented in the literature. Triangle-pinching CPU-
based algorithms in the style of ROAM [5] tend to-
ward a geometric bottleneck, and well-batched GPU-
based algorithms such as geomipmapping [4] lead to a
pixel bottleneck. By o�oading geometry processing
to the GPU, this approach provides a mechanism to
distribute the terrain processing cost more uniformly.

However, the situation becomes more complex
when we look to the practice of multi-GPU rendering.
PC motherboards with multiple PCI Express slots
accepting more than one video board are common,
as are single-slot video boards with multiple GPUs.
These con�gurations require special attention, as in-
dependent GPUs have separate local VRAMs. Inter-
mediate results, such as generated geometry bu�ers
and deferred shading bu�ers, may require synchro-
nization.

It would be careless to overlook these issues, so
Figure 5.7 displays the results of early testing of the
algorithm in a multi-GPU environment. The base-

46

line GeForce 8800 GTX is shown in black, as above.
Along side it we see the performance of an NVIDIA
GeForce 9800 GX2, which leaves a number of ques-
tions unanswered.

! "!! #!!! #"!! $!!! $"!! %!!! %"!! &!!! &"!!

"

#!

#"

$!

$"

%!

!"#$"%"$&'%()"&*+),"%

'%
()

"&
-.)

"&
/)

01

'()'*) '+)',)

Figure 5.7: Multi-GPU performance comparison:
single-GPU shown in black, multi-GPU in single
mode in red, alternate-frame in green, split-frame in
blue. The pathological response warrants further in-
vestigation.

The performance of the 9800 with its multi-GPU
capability disabled is shown in red. Frame time
is longer by a consistent amount, indicating simi-
lar I/O response but decreased rendering through-
put. Green shows the 9800 in alternate frame ren-
dering (AFR) mode. In AFR mode, one GPU ren-
ders odd-numbered frames, while the other renders
even-numbered frames. Despite the fact that the al-
gorithm introduces no inter-frame data dependencies,
the performance is radically altered. Blue shows the
9800 in split frame rendering (SFR) mode. In SFR
mode, one GPU renders the top half of each frame,
while the other renders the bottom half. Due to the
amount of intra-frame data dependency, one would
expect this mode to perform the worst, and it does.

However, both AFR and SRF modes su�er from
pathologically bad I/O response time. The results of
the �rst half of the benchmark are e�ectively unus-
able. Frame time eventually levels o� at 23ms per
frame late in the non-I/O-intensive second half of
the benchmark. This performance degradation could
be explained by the synchronization penalty, but we

would expect this to begin around frame 2500. Its
slow crawl from 23ms up to and beyond 30ms during
this period remains unexplained.

In the context of standard forward rendering, the
current hardware industry trend toward multi-GPU
con�gurations is clearly bene�cial. However, given
the tendency of modern GPU algorithms to uti-
lize render-to-texture and other data-dependent tech-
niques, the results shown here are troubling. With a
con
ict between the functionality that the software
uses, and the functionality that the hardware pro-
vides, an important area for future work is revealed.
Until such issues are resolved, we must utilize the
parallel rendering capability of the implementation
to treat multiple GPUs as wholly separate renderers,
each with an independant framebu�er.

5.2 Displays and installations

The parallel-rendering implementation of the scalable
terrain composer has been adapted to a variety of
displays and has seen use in a number of demonstra-
tions. Each of these uses the BMNG [27] surface map
atop the SRTM [8] height map, both at a resolution
of 86400� 43200.

Figure 5.8: The 60-panel VarrierTM at Calit2

The �rst installation, shown in Figure 5.8 used the
60-panel VarrierTM autostereoscopic virtual reality
display [35] at Calit2 on the campus of UCSD.

This display is driven by 15 rendering nodes, each
with a pair of NVIDIA GeForce 7900GTXs driving

47

four 1600� 1200 panels, giving a total resolution of
50 megapixels per eye.

This is a challenging system, as each render node
must handle eight distinct view frusta and 7 megapix-
els of sub-pixel autostereo interleaving [20].

Figure 5.9: The StarCAVE at Calit2

Also at Calit2 is the StarCAVE, a 15-screen cylin-
drical polarized passive stereo VR display, shown in
Figure 5.9. Driven by 15 render nodes, each with
an NVIDIA Quadro 5600 driving two projectors at
1920� 1080, this system has high pixel throughput,
and runs very well.

Figure 5.10: The Transporter prototype in the Space
Visualization Lab at the Adler Planetarium

The Space Visualization Lab at Chicago's Adler
Planetarium has also supported the development and

use of this software. The Mars Transporter is on ex-
hibit at the Adler Astronomy Museum, and as the
usability of the terrain composer improves it will act
as a drop-in replacement, signi�cantly expanding the
quality, scope, and
exibility of that experience. Un-
til that time, the implementation is on display on the
SVL's prototype Transporter, shown in Figure 5.10.

Figure 5.11: The DeFiniti theater at the Adler Plan-
etarium

A much more ambitious demonstration has also
been developmented at the Adler. SVL sta� have
installed a small cluster of 3 render nodes driving
the six inputs to the DeFiniti theater, a 55-foot dig-
ital dome seating around 200. Each node has a
pair of NVIDIA GeForce 8800GTXs each driving one
1600� 1200 projector.

The challenge lies in pre-distorting the rendered
image to map correctly onto the spherical surface of
the display, and blending adjacent images to obscure
the seams between projectors. A GPU-based solu-
tion to this problem has been developed and tested
in place, as shown in Figure5.11. The performance
penalty of spherical correction and blending is found
to be negligible.

Calit2's OptIPortable display has taken this soft-
ware on the road. 12 render nodes, each with
an NVIDIA GeForce 8600GT drive 15 panels at
1920 � 1080. This was demonstrated in the
SDSC/Calit2/EVL booth at Supercomputing '07, as
shown in Figure 5.12. It was also demonstrated in

48

Figure 5.12: The OptIPortable at Supercomputing
'07

the NSF booth at the 2008 meeting of the Ameri-
can Academy for the Advancement of Science, Fig-
ure 5.13.

Figure 5.13: The OptIPortable at AAAS '08

49

Chapter 6

Conclusions and Future Work

This work has demonstrated a mechanism for the
real-time manipulation and display of very large scale
terrain height and surface data. Beyond simply ren-
dering terrain, this mechanism a�ords opportunities
to combine data in powerful ways, bringing together
disparate planetary-scale data sets smoothly and e�-
ciently, and adapting to produce a uniform composite
visualization of them.

This discussion has detailed a number of areas
where future work is required. In particular, the
analysis of error and the e�ects of the non-uniform
sampling of height data are critical to the acceptence
of the algorithm as a reliable tool. In addition, while
the generality of terrain composition provides a path
to an elegant implementation of geomorphing, this
has yet to implemented. Finally, the adaptation of
this highly-data-dependent technique to multi-GPU
environments will be increasingly signi�cant as this
hardware trend continues.

Despite these remaining issues, the established
ability to perform arbitrary manipulation and blend-
ing of planetary data has unlimited application. A
number of further composition operations have been
proposed, and remain to be explored.

In particular, the e�ects of time-varying data will
be tested. The ability to apply alpha blending to
height and surface data provides a means of interpo-
lating between data sets representing di�erent points
in time, both in geometry and in imagery. In this way,
a smoothly-animated approximation of time-varying
data may be presented without popping from step to
step. The twelve monthly versions of Blue Marble
Next Generation are a prime example of a data set

that would bene�t from this. The challenge arrises
due to the doubling of data needed to represent both
the beginning and the end of the interpolation.

Also, layered data will be explored. This too is
primarily a data scalability issue, but with display
and user interface issues involved. A straightforward
presentation of layered data would have upper lay-
ers occlude lower layers, so informative and e�cient
mechanisms for presenting multiple simultaneous lay-
ers must be implemented. Meanwhile, an a�ordance
by which the user selects and peels away layered data
must be devised. Examples of such layered data sets
include the ice surface and land of Antarctica, and
the bathymetry beneath the surface of the oceans.

Our partnerships with the Antarctic Geospatial In-
formation Center (AGIC) and the Adler Planetarium
and Astronomy Museum will continue to drive the
investigation into these types of operations. Their
access to new large-scale data sets will raise new re-
quirements, leading to as-yet-unforeseen formulations
of terrain composition.

50

Bibliography

[1] Arul Asirvatham and Hughues Hoppe. Terrain
Rendering Using GPU-Based Geometry Clip-
maps, volume 2 of GPU Gems, chapter 2, pages
27{45. Addison-Wesley, 2005.

[2] James F. Blinn. Simulation of Wrinkled Sur-
faces. InSIGGRAPH '78: Proceedings of the 5th
annual conference on Computer graphics and in-
teractive techniques, pages 286{292, New York,
NY, USA, 1978. ACM.

[3] Malte Clasen and Hans-Christian Hege. Terrain
Rendering using Spherical Clipmaps. InProceed-
ings of Eurographics/IEEE-VGTC Symposium
on Visualization, 2006.

[4] Willem H. de Boer. Fast Terrain Rendering Us-
ing Geometrical MipMapping.
ipcode.com, Oc-
tober 2000.

[5] Mark Duchaineau, Murray Wolinsky, David E.
Sigeti, Mark C. Miller, Charles Aldrich, and
Mark B. Mineev-Weinstein. ROAMing Terrain:
Real-time Optimally Adapting Meshes. Techni-
cal Report UCRL-JC-127870, Lawrence Liver-
more National Laboratory, October 1997.

[6] George Eckel and Ken Jones. OpenGL Per-
former Programmer's Guide. Technical Report
007-1680-060, Silicon Graphics Inc., 1997.

[7] Cass Everitt and Mark J. Kilgard. Practi-
cal and Robust Stenciled Shadow Volumes for
Hardware-accelerated Rendering.Arxiv preprint
cs.GR/0301002, 2003.

[8] T.G. Farr and M. Kobrick. The Shuttle Radar
Topography Mission. Reviews of Geophysics,
45(2), 2005.

[9] R.L. Ferguson, R. Economy, W.A. Kelly, and
P.P. Ramos. Continuous Terrain Level of Detail
for Visual Simulation. Proceedings, IMAGE V
Conference, pages 144{151, 1990.

[10] R. Buckminster Fuller. Cartography, January
1946. US Patent #2,393,676.

[11] Eric Gaba. Fuller Projection, September 2006.
Creative Commons Attribution and Share Alike
license.

[12] Michael Garland and Paul S. Heckbert. Fast
Polygonal Approximation of Terrains and Height
Fields. Technical Report CMP CS 95 181,
Carnegie Mellon University, September 1995.

[13] Michael Garland and Paul S. Heckbert. Survey
of Surface Approximation Algorithms. Technical
Report CMP CS 95 194, Carnegie Mellon Uni-
versity, May 1997.

[14] Global Mapper Software. Global Mapper.
globalmapper.com.

[15] Google. Google Earth.earth.google.com.

[16] Lok M. Hwa, Mark A. Duchaineau, and Ken-
neth I. Joy. Adaptive 4-8 Texture Hierarchies.
Vis, 00:219{226, 2004.

[17] IEEE Task P754.ANSI/IEEE 754: Standard for
Binary Floating-Point Arithmetic . IEEE, New
York, August 1985.

[18] John Kessenich. The OpenGL Shading Lan-
guage version 1.20.opengl.org, September 2006.

[19] Mark J. Kilgard, Ralf Biermann, and Derek Cor-
nish. ARB pixel bu�er object. opengl.org, De-
cember 2004.

51

[20] Robert Kooima, Tom Peterka, Javier Girado,
Jinghua Ge, Dan Sandin, and Tom DeFanti.
A GPU Sub-pixel Algorithm for Autostereo-
scopic Virtual Reality. Virtual Reality Confer-
ence, 2007. VR'07. IEEE, pages 131{137, 2007.

[21] Stanford University Graphics Lab. BrookGPU.
graphics.stanford.edu.

[22] Aaron E. Lefohn, Shubhabrata Sengupta, and
John D. Owens. Resolution-matched Shadow
Maps. ACM Trans. Graph. , 26(4):20, 2007.

[23] P. Lindstrom, D. Koller, W. Ribarsky, L.F.
Hodges, N. Faust, and G.A. Turner. Real-time,
continuous level of detail rendering of height
�elds . ACM Press New York, NY, USA, 1996.

[24] Frank Losasso and Hugues Hoppe. Geometry
Clipmaps: Terrain Rendering Using Nested Reg-
ular Grids. In SIGGRAPH '04: ACM SIG-
GRAPH 2004 Papers, pages 769{776, New York,
NY, USA, 2004. ACM.

[25] William R. Mark, R. Steven Glanville, Kurt
Akeley, and Mark J. Kilgard. Cg: a system for
programming graphics hardware in a C-like lan-
guage. In SIGGRAPH '03: ACM SIGGRAPH
2003 Papers, pages 896{907, New York, NY,
USA, 2003. ACM.

[26] Microsoft. DirectX. microsoft.com.

[27] NASA. Blue Marble Next Generation. nasa.gov,
2005.

[28] NVIDIA. GeForce3: The In�nite E�ects GPU.
nvidia.com, February 2001.

[29] NVIDIA. GeForce 8800 Ultra. nvidia.com,
November 2006.

[30] NVIDIA. Compute Uni�ed Device Architecture.
nvidia.com, February 2007.

[31] Sean O'Neil. A Real-Time Procedural Uni-
verse, Part Two: Rendering Planetary Bodies.
gamasutra.com, August 2001.

[32] Sean O'Neil. Accurate Atmospheric Scattering,
volume 2 of GPU Gems, chapter 16. Addison-
Wesley, 2005.

[33] Kenneth Perlin. Standard for Perlin Noise,
March 2005. US Patent #6,867,776.

[34] Takafumi Saito and Tokiichiro Takahashi. Com-
prehensible rendering of 3-D shapes. SIG-
GRAPH Comput. Graph., 24(4):197{206, 1990.

[35] Dan Sandin, Todd Margolis, Jinghua Ge, Javier
Girado, Tom Peterka, and Tom DeFanti. The
Varrier TM Autostereoscopic Virtual Reality Dis-
play. Proceedings of ACM SIGGRAPH 2005,
24(3):894{903, 2005.

[36] Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Speci�cation. opengl.org.

[37] Irwin Sobel. An Isotropic 3 � 3 Image Gra-
dient Operator. Machine Vision for Three-
Dimensional Scenes, pages 376{379, 1990.

[38] Alexander S. Szalay, Jim Gray, George Fekete,
Peter Z. Kunszt, Peter Kukol, and Ani Thakar.
The Hierarchical Triangular Mesh. Mining the
Sky: Proc. of the MPA/ESO/MPE workshop ,
pages 631{637, August 2005.

[39] Thatcher Ulrich. Rendering Massive Terrains us-
ing Chunked Level of Detail Control. In SIG-
GRAPH 2002 Course Notes, July 2002.

[40] NASA/Arizona State University. Lunar Recon-
naissance Orbiter Camera.lroc.sese.asu.edu.

[41] U.S. Geological Survey (USGS). National Ele-
vation Database. ned.usgs.gov, 1999.

[42] U.S. Geological Survey (USGS). Landsat Image
Mosaic of Antarctica. lima.usgs.gov, 2007.

[43] Lance Williams. Casting Curved Shadows on
Curved Surfaces. Proceedings of the 5th annual
conference on Computer graphics and interactive
techniques, pages 270{274, 1978.

[44] Lance Williams. Pyramidal Parametrics. SIG-
GRAPH Comput. Graph., 17(3):1{11, 1983.

52

[45] Matthias Wloka. Batch, Batch, Batch: What
Does It Really Mean? In Game Developer's
Conference, 2003.

[46] Mason Woo, Jackie Neider, and Tom Davis.
The OpenGL Programming Guide: The O�cial
Guide to Learning OpenGL. Addison-Wesley,
1997.

[47] M. T. Zuber, D. E. Smith, S. C. Solomon, D. O.
Muhleman, J. W. Head, J. B. Garvin, J. B. Ab-
shire, and J. L. Bufton. The Mars Observer
Laser Altimeter Investigation. Journal of Geo-
physical Research, 97:7781{7797, May 1992.

53

	Introduction
	Motivation
	Moving forward

	Terrain rendering and hardware evolution
	Regular grids
	Motivation
	Grid rendering

	Triangulated irregular networks
	Motivation
	Algorithm
	Impact

	ROAM
	Motivation
	Algorithm
	Caveat: T-intersections
	Impact

	Geomipmapping
	Motivation
	Algorithm
	Caveat: seams and skirts

	Geometry clipmaps
	Motivation
	Algorithm

	Current hardware
	GPGPU
	Geometry generation

	Realism
	Normal mapping
	Atmosphere rendering

	Terrain on the sphere
	Spherical projection
	Stereographic polar projection
	Spherical tessellation

	Moving forward

	Composition Algorithm
	Overview
	Visibility
	Patch enumeration
	Horizon
	Patch bounds
	Output
	Caveat: precision

	Geometry generation
	Subdivision
	Iteration
	Normal computation
	Lat/lon computation
	Position computation
	Displacement
	Output
	Aliasing and Error

	Rendering
	Patch winding
	Deferred texturing
	Surface map accumulation
	Output

	Composition Operations
	Projection Quality Adaptation
	Background
	Implementation

	Data Overlay
	Background
	Implementation

	Level-of-detail and Paging
	Background
	Implementation

	Implementation and Results
	Performance Measurement
	Baseline performance
	Variance with resolution
	Variance with geometry
	Variance with data
	Performance Qualities

	Displays and installations

