
PROPOSITIONAL LOGIC

• Proposition - A declarative statement that is either true or false (but not both).

• Symbols in propositional logic:

Proposition symbols TRUE, FALSE, p, q, r, ...
Connectives ¬, ∧, ∨, →, ←→.

• Atom - a proposition symbol
Literal - an atom p or its negation ¬p. An atom p is a positive literal and ¬p is a neg ative literal.

• Definition. (Well-Formed Formulas (WFF) = sentences ).

The well-formed formulas (or formulas for short), are defined inductively as follows:

(1) An atom is a formula.

(2) If G is a formula, then ¬G is a formula.

(3) If G and H are formulas, then (G ∧ H), (G ∨ H), (G → H) and (G ←→ H) are formulas.

(4) All formulas are generated by applying the above rules.

• A propositional theory ∆ - a finite set of propositional formulas.

• Herbrand Base of ∆ - the (finite) set of propositions (atoms) occurring in ∆, denoted as HB(∆).

• Truth value of a formula φ in terms of the truth values of atoms occurring in φ.

Let p and q be two propositions. The truth values of the formulas ¬p, p ∧ q, p ∨ q, p → q and p ←→
q in terms of the truth values of p and q are given by the following table:

p q ¬p p ∧ q p ∨ q p → q p ←→ q

T T F T  T  T T
T F F  F T F  F
F T T F  T T F
F F T F  F  T T

• Interpretation - an assignment which assigns either T or F to each atom in HB(∆). Equivalently,
an interpretation I for a propositional theory ∆ is a subset of HB(∆) such that atoms in I are assigned
T and those not in I are assigned F.

• Model of ∆ - an interpretation M is a model of ∆ if for each formula φ ∈ ∆, the truth value of φ
under M is T. If the truth value of φ under I is T, then we say φ is satisfied by I. Otherwise, we say φ
is falsified by I.

• Example 1. (propositional theory, interpretation and model).
Consider the set of formulas ∆ = {p ∧ q, r ∨ s, ¬a ∨ b}. Clearly ∆ is a propositional theory. Con-
sider the following interpretations I1 = {p, r, b}, I2 = {p, q} and I3 = {p, q, s}. We can verify that I1,
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I2 are not models of ∆ and I3 is a model from the following truth table:

Inter. a  b p q r  s p ∧ q r ∨ s ¬a ∨ b

I1 F T T F  T F  F T T
I2 F F T T F  F  T F T
I3 F F T T F  T T T T

• Valid formula - A formula φ is valid if it is true under all interpretations.
Unsatisfiable formula - A formula φ is unsatisfiable if it is false under all interpretations, i.e., it
has no models.
Satisfiable formula - A formula φ is satisfiable if and only if φ has a model, i.e., if and only if is
NOT unsatisfiable.

• Equivalent formulas - Two formulas φ and ψ are equivalent if they hav e the same models. In
other words, φ and ψ are equivalent if they hav e the same truth value under every interpretation for φ
and ψ.

For example, the formulas p → q and ¬p ∨ q are equivalent. The formulas p → q and ¬q → ¬p are
also equivalent.

Laws (Equivalent formulas) which can be used to perform formula transformation.

(1) φ ←→ ψ = (φ → ψ) ∧ (ψ → φ)
(2) φ → ψ = ¬φ ∨ ψ
(3a) φ ∨ ψ = ψ ∨ φ (3b) φ ∧ ψ = ψ ∧ φ
(4a) φ ∨ (ψ ∨ γ) = (φ ∨ ψ) ∨ γ (4b) φ ∧ (ψ ∧ γ) = (φ ∧ ψ) ∧ γ
(5a) φ ∨ (ψ ∧ γ) = (φ ∨ ψ) ∧ (φ ∨ γ) (5b) φ ∧ (ψ ∨ γ) = (φ ∧ ψ) ∨ (φ ∧ γ)
(6a) φ ∨ false = φ (6b) φ ∧ true = φ
(7a) φ ∨ true = true (7b) φ ∧ false = false
(8a) φ ∨ ¬φ = true (8b) φ ∧ ¬φ = false
(9) ¬(¬φ) = φ
(10a) ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ (10b) ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ

• Clause - a disjunction of literals of the form L1 ∨ L2 ∨ ... ∨ Lm.

Theorem. Each formula φ can be equivalently transformed to a formula φ′ such that φ′ is of the form
C1 ∧ C2 ∧ ... ∧ Cn where each C j is a clause.

Such a form φ′ is called a conjunctive normal form of φ.
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Conjunctive-Normal-Form Algorithm (outline).

Input:
A formula φ.

Output:
A formula φ′ = φ such that φ′ is in conjunctive normal form.

(1) Use laws φ ←→ ψ = (φ → ψ) ∧ (ψ → φ) and φ → ψ = ¬φ ∨ ψ to eliminate connectives "←→" and
"→".

(2) Repeatedly apply the law ¬(¬φ) = φ to bring the negation sign "¬" immediately before atom.

(3) Repeatedly apply distributive law φ ∨ (ψ ∧ γ) = (φ ∨ ψ) ∧ (φ ∨ γ) and other laws to obtain a conjunc-
tive normal form.

For example, the formula φ = (p ←→ q) ∨ ¬(r ∨ s) can be transformed to the formula φ′ = (¬p ∨ q ∨
¬r) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬s).

LOGICAL ENTAILMENT (also called LOGICAL CONSEQUENCE)

Definition (Logical Entailment). Let ∆ = {φ1, φ2, ..., φ n} be a set of formulas and φ be a formula.
We say φ1 ∧ φ2 ∧ ... ∧ φ n logically entails φ, if and only if any model of φ1 ∧ φ2 ∧ ... ∧ φ n is a model of φ.
When φ1 ∧ φ2 ∧ ... ∧ φ n logically entails φ, we also say φ is a logical consequence of φ1, φ2, ..., and φ n (or φ
logically follows from φ1, φ2, ..., φ n).

Example. Consider formulas {p ∨ q ∨ r, p ∨ ¬r}. The formula p ∨ q is a logical consequence of p ∨
q ∨ r and p ∨ ¬r.

Theorem. A formula φ is a logical consequence of formulas φ1, φ2, ..., φ n if and only if the formula
((φ1 ∧ φ2 ∧ ... ∧ φ n) → φ) is valid.

Theorem. A formula φ is a logical consequence of formulas φ1, φ2, ..., φ n if and only if the formula
φ1 ∧ φ2 ∧ ... ∧ φ n ∧ ¬φ is unsatisfiable.

The above two theorems are very important because they tell us that the problem of showing φ being
a logical consequence of a set of formulas can be reduced to the problem of showing a related formula to be
unsatisfiable. The latter problem can be solved efficiently using resolution which we will describe shortly.
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THE RESOLUTION PRINCIPLE

We assume from now on that each propositional formula φ is represented in conjunctive normal form
and thus we can equivalently represent φ as {C1, C2, ..., Cn} where each C j is a clause and φ = C1 ∧ C2 ∧ ...
∧ Cn.

• Complementary literals - an atom p and its negation ¬p are called complementary literals.

Definition.(resolvent). Let C1 and C2 be two clauses such that C1 = C′1 ∨ p and C2 = C′2 ∨ ¬p.
The clause C = C′1 ∨ C′2 is called the resolvent of C1 and C2, denoted as C = res(C1, C2). Here the atom p
is called the resolving literal.

For example, let C1 = a ∨ ¬b ∨ d and C2 = q ∨ ¬r ∨ ¬d. Then we have C = res(C1, C2) = a ∨ ¬b ∨ q
∨ ¬r.

Theorem. Let C = res(C1, C2) be the resolvent of clauses C1 and C2. Then C is a logical conse-
quence of C1 and C2.

Definition. (resolution derivation). Let S be a set of clauses. A resolution derivation of a clause C
from S is a sequence σ = (C1, C2, ... Ck) of clauses such that

(1) Each Cl , either Cl ∈ S or Cl = res(Ci , C j) for i, j < l.

(2) Ck = C.

A resolution derivation of the empty clause from S is called a refutation.

Theorem. If a clause C has a resolution derivation from a set S of clauses, then C is a logical conse-
quence of S.

Theorem. (Soundness of the resolution principle). Let S be a set of clauses. If there is a resolution
derivation of the empty clause from S, then S is unsatisfiable.

Theorem. (Completeness of the resolution principle). Let S be a set of clauses. If S is unsatisfi-
able, then there is a resolution derivation of the empty clause from S.

From the above theorems and the theorems about logical consequence, we can easily see the equiv-
alence of the following statements: (assume S = {C1, C2, ..., Cn} is a set of clauses and G is a formula)

1. G is a logical consequence of S;

2. the formula (C1 ∧ C2 ∧ ... ∧ Cn ∧ ¬G) is unsatisfiable;

3. the set of clauses S ∪ {Cn+1, Cn+2, ..., Cn+k} is unsatisfiable, where Cn+1 ∧ Cn+2 ∧ ... ∧ Cn+k = ¬G.

4. there is a resolution derivation of the empty clause from S ∪ {Cn+1, Cn+2, ..., Cn+k}.
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LOGICAL CONSEQUENCE ALGORITHM

Input:
A set S of clauses and a goal formula G.

Output:
a yes/no answer according to whether G is a logical consequence of S or not.

(1) Negate the goal G to get ¬G. Then transform ¬G to a set of clauses S′.

(2) If there is a resolution derivation of the empty clause from S ∪ S′, then answer "yes" and ter-
minate. Otherwise answer "no" and terminate.

Example. Let S = {p ∨ q, ¬p ∨ ¬q, ¬p ∨ r, ¬q ∨ s, p ∨ ¬w, q ∨ u} and let G = (r ∨ s) ∧ (u ∨ ¬w).
We want to show that G is a logical consequence of S.

We first transform ¬G into clausal form: ¬G = ¬[(r ∨ s) ∧ (u ∨ ¬w)] = (¬(r ∨ s) ∨ ¬(u ∨ ¬w)) =
((¬r ∧ ¬s) ∨ (¬u ∧ w)) = (¬r ∨ ¬u) ∧ (¬r ∨ w) ∧ (¬s ∨ ¬u) ∧ (¬s ∨ w). Thus S′ = {¬r ∨ ¬u, ¬r ∨ w, ¬s
∨ ¬u, ¬s ∨ w}.

We then search for a resolution derivation of the empty clause from S ∪ S′. One such derivation is
given below.

¬r ∨ w ¬q ∨ s p∨ q ¬p ∨ r ¬r ∨ ¬u ¬s ∨ ¬u ¬p ∨ ¬q p ∨ ¬w

q ∨ r ¬q ∨ ¬w q ∨ u

¬s ∨ w r ∨ s ¬w ∨ u

s ∨ w s ∨ ¬u

w ¬u

¬w

Exercises.

1. Let ∆ = {(p ∨ ¬r) → q, (a ↔ b) → c}. Convert ∆ into an equivalent set of clauses.

2. Let S = {p ∨ q, p ∨ ¬q, ¬p∨ q, ¬p∨ ¬q}. Indicate whether S is consistent or not. Support your con-
clusion by 2 ways: (i). Indicate whether S has a model; (ii). Indicate whether there is a resolution
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derivation of the empty clause from S.

3. Let S = {a ∨ ¬b ∨ c, d ∨ b, ¬a ∨ d}. Show that the clause c ∨ d is a logical consequence of S by res-
olution.
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