PROPOSITIONAL LOGIC

- Proposition A declarative statement that is either true or false (but not both).
- Symbols in propositional logic:

Proposition symbols**TRUE, FALSE**, p, q, r, ...Connectives \neg , \land , \lor , \rightarrow , \leftarrow \rightarrow .

Atom - a proposition symbol
 Literal - an atom p or its negation ¬p. An atom p is a positive literal and ¬p is a negative literal.

• Definition. (Well-Formed Formulas (WFF) = sentences).

The well-formed formulas (or formulas for short), are defined inductively as follows:

- (1) An atom is a formula.
- (2) If G is a formula, then \neg G is a formula.
- (3) If G and H are formulas, then $(G \land H)$, $(G \lor H)$, $(G \to H)$ and $(G \leftarrow \to H)$ are formulas.
- (4) All formulas are generated by applying the above rules.
- A propositional theory Δ a finite set of propositional formulas.
- Herbrand Base of Δ the (finite) set of propositions (atoms) occurring in Δ , denoted as HB(Δ).
- Truth value of a formula ϕ in terms of the truth values of atoms occurring in ϕ .

Let p and q be two propositions. The truth values of the formulas $\neg p$, $p \land q$, $p \lor q$, $p \rightarrow q$ and $p \leftarrow \rightarrow q$ in terms of the truth values of p and q are given by the following table:

р	q	¬p	$p \wedge q$	$p \lor q$	$p \mathop{\rightarrow} q$	$p \leftrightarrow \rightarrow q$
T	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

- Interpretation an assignment which assigns either **T** or **F** to each atom in HB(Δ). Equivalently, an interpretation I for a propositional theory Δ is a subset of HB(Δ) such that atoms in I are assigned **T** and those not in I are assigned **F**.
- Model of Δ an interpretation M is a model of Δ if for each formula $\phi \in \Delta$, the truth value of ϕ under M is **T**. If the truth value of ϕ under I is **T**, then we say ϕ is *satisfied* by I. Otherwise, we say ϕ is *falsified* by I.

• Example 1. (propositional theory, interpretation and model).

Consider the set of formulas $\Delta = \{p \land q, r \lor s, \neg a \lor b\}$. Clearly Δ is a propositional theory. Consider the following interpretations $I_1 = \{p, r, b\}$, $I_2 = \{p, q\}$ and $I_3 = \{p, q, s\}$. We can verify that I_1 ,

 I_2 are not models of Δ and I_3 is a model from the following truth table:

Inter.	а	b	р	q	r	S	$p \land q$	$r \lor s$	$\neg a \lor b$
$\overline{I_1}$	F	Т	Т	F	Т	F	F	Т	Т
I_2	r F	F	Т	Т	F	F	Т	F	Т
I_3	F	F	Т	Т	F	Т	Т	Т	Т

 Valid formula - A formula φ is *valid* if it is true under all interpretations. Unsatisfi able formula - A formula φ is *unsatisfi able* if it is false under all interpretations, i.e., it has no models. Satisfi able formula - A formula φ is satisfi able if and only if φ has a model, i.e., if and only if is NOT unsatisfi able.

• Equivalent formulas - Two formulas ϕ and ψ are equivalent if they have the same models. In other words, ϕ and ψ are equivalent if they have the same truth value under every interpretation for ϕ and ψ .

For example, the formulas $p \rightarrow q$ and $\neg p \lor q$ are equivalent. The formulas $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are also equivalent.

Laws (Equivalent formulas) which can be used to perform formula transformation.

(1)	$\phi \longleftrightarrow \psi = (\phi \to \psi) \land (\psi \to \phi)$		
(2)	$\phi ightarrow \psi = eg \phi \lor \psi$		
(3a)	$\phi \lor \psi = \psi \lor \phi$	(3b)	$\phi \land \psi = \psi \land \phi$
(4a)	$\phi \lor (\psi \lor \gamma) = (\phi \lor \psi) \lor \gamma$	(4b)	$\phi \land (\psi \land \gamma) = (\phi \land \psi) \land \gamma$
(5a)	$\phi \lor (\psi \land \gamma) = (\phi \lor \psi) \land (\phi \lor \gamma)$	(5b)	$\phi \land (\psi \lor \gamma) = (\phi \land \psi) \lor (\phi \land \gamma)$
(6a)	$\phi \lor \text{false} = \phi$	(6b)	$\phi \wedge \text{true} = \phi$
(7a)	$\phi \lor \text{true} = \text{true}$	(7b)	$\phi \wedge \text{false} = \text{false}$
(8a)	$\phi \lor \neg \phi = $ true	(8b)	$\phi \land \neg \phi = \text{false}$
(9)	$\neg(\neg\phi) = \phi$		
(10a)	$\neg(\phi \lor \psi) = \neg \phi \land \neg \psi$	(10b)	$\neg(\phi \land \psi) = \neg \phi \lor \neg \psi$

• Clause - a disjunction of literals of the form $L_1 \vee L_2 \vee ... \vee L_m$.

Theorem. Each formula ϕ can be equivalently transformed to a formula ϕ' such that ϕ' is of the form $C_1 \wedge C_2 \wedge ... \wedge C_n$ where each C_j is a clause.

Such a form ϕ' is called a *conjunctive normal form* of ϕ .

Conjunctive-Normal-Form Algorithm (outline).

Input:

A formula ϕ .

Output:

A formula $\phi' = \phi$ such that ϕ' is in conjunctive normal form.

- (1) Use laws $\phi \leftrightarrow \psi = (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$ and $\phi \rightarrow \psi = \neg \phi \lor \psi$ to eliminate connectives " $\leftarrow \rightarrow$ " and " \rightarrow ".
- (2) Repeatedly apply the law $\neg(\neg \phi) = \phi$ to bring the negation sign " \neg " immediately before atom.
- (3) Repeatedly apply distributive law $\phi \lor (\psi \land \gamma) = (\phi \lor \psi) \land (\phi \lor \gamma)$ and other laws to obtain a conjunctive normal form.

For example, the formula $\phi = (p \leftarrow \rightarrow q) \lor \neg (r \lor s)$ can be transformed to the formula $\phi' = (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor \neg s).$

LOGICAL ENTAILMENT (also called LOGICAL CONSEQUENCE)

Definition (Logical Entailment). Let $\Delta = \{\phi_1, \phi_2, ..., \phi_n\}$ be a set of formulas and ϕ be a formula. We say $\phi_1 \land \phi_2 \land ... \land \phi_n$ logically entails ϕ , if and only if any model of $\phi_1 \land \phi_2 \land ... \land \phi_n$ is a model of ϕ . When $\phi_1 \land \phi_2 \land ... \land \phi_n$ logically entails ϕ , we also say ϕ is a logical consequence of $\phi_1, \phi_2, ..., \phi_n$ (or ϕ logically follows from $\phi_1, \phi_2, ..., \phi_n$).

Example. Consider formulas $\{p \lor q \lor r, p \lor \neg r\}$. The formula $p \lor q$ is a logical consequence of $p \lor q \lor r$ and $p \lor \neg r$.

Theorem. A formula ϕ is a logical consequence of formulas $\phi_1, \phi_2, ..., \phi_n$ if and only if the formula $((\phi_1 \land \phi_2 \land ... \land \phi_n) \rightarrow \phi)$ is valid.

Theorem. A formula ϕ is a logical consequence of formulas $\phi_1, \phi_2, ..., \phi_n$ if and only if the formula $\phi_1 \wedge \phi_2 \wedge ... \wedge \phi_n \wedge \neg \phi$ is unsatisfiable.

The above two theorems are very important because they tell us that the problem of showing ϕ being a logical consequence of a set of formulas can be reduced to the problem of showing a related formula to be unsatisfi able. The latter problem can be solved efficiently using *resolution* which we will describe shortly.

THE RESOLUTION PRINCIPLE

We assume from now on that each propositional formula ϕ is represented in conjunctive normal form and thus we can equivalently represent ϕ as $\{C_1, C_2, ..., C_n\}$ where each C_j is a clause and $\phi = C_1 \wedge C_2 \wedge ... \wedge C_n$.

• Complementary literals - an atom p and its negation ¬p are called complementary literals.

Definition.(resolvent). Let C_1 and C_2 be two clauses such that $C_1 = C'_1 \lor p$ and $C_2 = C'_2 \lor \neg p$. The clause $C = C'_1 \lor C'_2$ is called the *resolvent* of C_1 and C_2 , denoted as $C = res(C_1, C_2)$. Here the atom p is called **the resolving literal**.

For example, let $C_1 = a \lor \neg b \lor d$ and $C_2 = q \lor \neg r \lor \neg d$. Then we have $C = \operatorname{res}(C_1, C_2) = a \lor \neg b \lor q$ $\lor \neg r$.

Theorem. Let $C = res(C_1, C_2)$ be the resolvent of clauses C_1 and C_2 . Then C is a logical consequence of C_1 and C_2 .

Definition. (resolution derivation). Let S be a set of clauses. A *resolution derivation* of a clause C from S is a sequence $\sigma = (C_1, C_2, \dots, C_k)$ of clauses such that

(1) Each C_l , either $C_l \in S$ or $C_l = \operatorname{res}(C_i, C_j)$ for i, j < l.

(2)
$$C_k = C$$

A resolution derivation of the empty clause \Box from S is called a *refutation*.

Theorem. If a clause C has a resolution derivation from a set S of clauses, then C is a logical consequence of S.

Theorem. (Soundness of the resolution principle). Let S be a set of clauses. If there is a resolution derivation of the empty clause \Box from S, then S is unsatisfiable.

Theorem. (Completeness of the resolution principle). Let S be a set of clauses. If S is unsatisfiable, then there is a resolution derivation of the empty clause \Box from S.

From the above theorems and the theorems about logical consequence, we can easily see the equivalence of the following statements: (assume $S = \{C_1, C_2, ..., C_n\}$ is a set of clauses and G is a formula)

- 1. G is a logical consequence of S;
- 2. the formula $(C_1 \land C_2 \land ... \land C_n \land \neg G)$ is unsatisfiable;
- 3. the set of clauses $S \cup \{C_{n+1}, C_{n+2}, ..., C_{n+k}\}$ is unsatisfiable, where $C_{n+1} \wedge C_{n+2} \wedge ... \wedge C_{n+k} = \neg G$.
- 4. there is a resolution derivation of the empty clause \Box from S \cup { $C_{n+1}, C_{n+2}, ..., C_{n+k}$ }.

LOGICAL CONSEQUENCE ALGORITHM

Input:

A set S of clauses and a goal formula G.

Output:

a yes/no answer according to whether G is a logical consequence of S or not.

- (1) Negate the goal G to get \neg G. Then transform \neg G to a set of clauses S'.
- (2) If there is a resolution derivation of the empty clause □ from S ∪ S', then answer "yes" and terminate.

Example. Let $S = \{p \lor q, \neg p \lor \neg q, \neg p \lor r, \neg q \lor s, p \lor \neg w, q \lor u\}$ and let $G = (r \lor s) \land (u \lor \neg w)$. We want to show that G is a logical consequence of S.

We first transform $\neg G$ into clausal form: $\neg G = \neg[(r \lor s) \land (u \lor \neg w)] = (\neg(r \lor s) \lor \neg(u \lor \neg w)) = ((\neg r \land \neg s) \lor (\neg u \land w)) = (\neg r \lor \neg u) \land (\neg r \lor w) \land (\neg s \lor \neg u) \land (\neg s \lor w)$. Thus $S' = \{\neg r \lor \neg u, \neg r \lor w, \neg s \lor \neg u, \neg s \lor w\}$.

We then search for a resolution derivation of the empty clause \Box from $S \cup S'$. One such derivation is given below.

$\neg r \lor w$	$\neg q \lor s$	$p \lor q$		$\neg p \lor r$	$\neg r \vee \neg u$	$\neg s \vee \neg u$	$\neg p \vee \neg q$		$p \vee \neg w$	
			$q \lor r$					$\neg q \lor \neg w$		$\mathbf{q} \lor \mathbf{u}$
$\neg s \lor w$		$r \lor s$							$\neg w \lor u$	
	6 \ / W									
	$\mathbf{S} \lor \mathbf{W}$		s∨¬u							
W				¬u						
						$\neg W$				

Exercises.

- 1. Let $\Delta = \{(p \lor \neg r) \rightarrow q, (a \leftrightarrow b) \rightarrow c\}$. Convert Δ into an equivalent set of clauses.
- 2. Let $S = \{p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q\}$. Indicate whether S is consistent or not. Support your conclusion by 2 ways: (i). Indicate whether S has a model; (ii). Indicate whether there is a resolution

derivation of the empty clause \Box from S.

3. Let $S = \{a \lor \neg b \lor c, d \lor b, \neg a \lor d\}$. Show that the clause $c \lor d$ is a logical consequence of S by resolution.

References

1. Chang & Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.