PROPOSITIONAL LOGIC

- Proposition - A declarative statement that is either true or false (but not both).
- Symbols in propositional logic:

Proposition symbols TRUE, FALSE, p, q, r, ...
Connectives $\quad \neg, \wedge, \vee, \rightarrow, \leftarrow \rightarrow$.

- Atom - a proposition symbol

Literal - an atom p or its negation $\neg \mathrm{p}$. An atom p is a positive literal and $\neg \mathrm{p}$ is a negative literal.

- Definition. (Well-Formed Formulas $(\mathbf{W F F})=$ sentences $)$.

The well-formed formulas (or formulas for short), are defined inductively as follows:
(1) An atom is a formula.
(2) If G is a formula, then $\neg \mathrm{G}$ is a formula.
(3) If G and H are formulas, then $(G \wedge H),(G \vee H),(G \rightarrow H)$ and $(G \longleftrightarrow \rightarrow H)$ are formulas.
(4) All formulas are generated by applying the above rules.

- A propositional theory Δ - a finite set of propositional formulas.
- Herbrand Base of Δ - the (finite) set of propositions (atoms) occurring in Δ, denoted as $\mathrm{HB}(\Delta)$.
- Truth value of a formula ϕ in terms of the truth values of atoms occurring in ϕ.

Let p and q be two propositions. The truth values of the formulas $\neg \mathrm{p}, \mathrm{p} \wedge \mathrm{q}, \mathrm{p} \vee \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{p} \longleftrightarrow \rightarrow$ q in terms of the truth values of p and q are given by the following table:

p	q	$\neg \mathrm{p}$	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{p} \leftarrow \rightarrow \mathrm{q}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}

- Interpretation - an assignment which assigns either \mathbf{T} or \mathbf{F} to each atom in $\mathrm{HB}(\Delta)$. Equivalently, an interpretation I for a propositional theory Δ is a subset of $\mathrm{HB}(\Delta)$ such that atoms in I are assigned \mathbf{T} and those not in I are assigned \mathbf{F}.
- Model of $\Delta \quad$ - \quad an interpretation M is a model of Δ if for each formula $\phi \in \Delta$, the truth value of ϕ under M is T. If the truth value of ϕ under I is \mathbf{T}, then we say ϕ is satisfied by I. Otherwise, we say ϕ is falsified by I.
- Example 1. (propositional theory, interpretation and model).

Consider the set of formulas $\Delta=\{\mathrm{p} \wedge \mathrm{q}, \mathrm{r} \vee \mathrm{s}, \neg \mathrm{a} \vee \mathrm{b}\}$. Clearly Δ is a propositional theory. Consider the following interpretations $I_{1}=\{\mathrm{p}, \mathrm{r}, \mathrm{b}\}, I_{2}=\{\mathrm{p}, \mathrm{q}\}$ and $I_{3}=\{\mathrm{p}, \mathrm{q}, \mathrm{s}\}$. We can verify that I_{1},
I_{2} are not models of Δ and I_{3} is a model from the following truth table:

Inter.	a	b	p	q	r	s	$\mathrm{p} \wedge \mathrm{q}$	$\mathrm{r} \vee \mathrm{s}$	$\neg \mathrm{a} \vee \mathrm{b}$
I_{1}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
I_{2}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
I_{3}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

- Valid formula - A formula ϕ is valid if it is true under all interpretations.

Unsatisfi able formula - A formula ϕ is unsatisfi able if it is false under all interpretations, i.e., it has no models.
Satisfi able formula - A formula ϕ is satisfi able if and only if ϕ has a model, i.e., if and only if is NOT unsatisfi able.

- Equivalent formulas - Two formulas ϕ and ψ are equivalent if they have the same models. In other words, ϕ and ψ are equivalent if they have the same truth value under every interpretation for ϕ and ψ.

For example, the formulas $\mathrm{p} \rightarrow \mathrm{q}$ and $\neg \mathrm{p} \vee \mathrm{q}$ are equivalent. The formulas $\mathrm{p} \rightarrow \mathrm{q}$ and $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$ are also equivalent.

Laws (Equivalent formulas) which can be used to perform formula transformation.

(1)	$\phi \leftarrow \rightarrow \psi=(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)$		
(2)	$\phi \rightarrow \psi=\neg \phi \vee \psi$		
(3a)	$\phi \vee \psi=\psi \vee \phi$	$(3 b)$	$\phi \wedge \psi=\psi \wedge \phi$
(4a)	$\phi \vee(\psi \vee \gamma)=(\phi \vee \psi) \vee \gamma$	$(4 b)$	$\phi \wedge(\psi \wedge \gamma)=(\phi \wedge \psi) \wedge \gamma$
(5a)	$\phi \vee(\psi \wedge \gamma)=(\phi \vee \psi) \wedge(\phi \vee \gamma)$	(5b)	$\phi \wedge(\psi \vee \gamma)=(\phi \wedge \psi) \vee(\phi \wedge \gamma)$
(6a)	$\phi \vee$ false $=\phi$	(6b)	$\phi \wedge$ true $=\phi$
(7a)	$\phi \vee$ true = true	(7b)	$\phi \wedge$ false $=$ false
(8a)	$\phi \vee \neg \phi=$ true	(8b)	$\phi \wedge \neg \phi=$ false
(9)	$\neg(\neg \phi)=\phi$		
(10a)	$\neg(\phi \vee \psi)=\neg \phi \wedge \neg \psi$	(10b)	$\neg(\phi \wedge \psi)=\neg \phi \vee \neg \psi$

- Clause - a disjunction of literals of the form $L_{1} \vee L_{2} \vee \ldots \vee L_{m}$.

Theorem. Each formula ϕ can be equivalently transformed to a formula ϕ^{\prime} such that ϕ^{\prime} is of the form $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$ where each C_{j} is a clause.

Such a form ϕ^{\prime} is called a conjunctive normal form of ϕ.

Conjunctive-Normal-Form Algorithm (outline).

Input:
A formula ϕ.
Output:
A formula $\phi^{\prime}=\phi$ such that ϕ^{\prime} is in conjunctive normal form.
(1) Use laws $\phi \leftarrow \rightarrow \psi=(\phi \rightarrow \psi) \wedge(\psi \rightarrow \phi)$ and $\phi \rightarrow \psi=\neg \phi \vee \psi$ to eliminate connectives " $\leftarrow \rightarrow$ " and " \rightarrow ".
(2) Repeatedly apply the law $\neg(\neg \phi)=\phi$ to bring the negation sign " \neg " immediately before atom.
(3) Repeatedly apply distributive law $\phi \vee(\psi \wedge \gamma)=(\phi \vee \psi) \wedge(\phi \vee \gamma)$ and other laws to obtain a conjunctive normal form.

For example, the formula $\phi=(p \longleftrightarrow \rightarrow q) \vee \neg(r \vee s)$ can be transformed to the formula $\phi^{\prime}=(\neg p \vee q \vee$ $\neg \mathrm{r}) \wedge(\neg \mathrm{p} \vee \mathrm{q} \vee \neg \mathrm{s}) \wedge(\mathrm{p} \vee \neg \mathrm{q} \vee \neg \mathrm{r}) \wedge(\mathrm{p} \vee \neg \mathrm{q} \vee \neg \mathrm{s})$.

LOGICAL ENTAILMENT (also called LOGICAL CONSEQUENCE)

Definition (Logical Entailment). Let $\Delta=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ be a set of formulas and ϕ be a formula. We say $\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{n}$ logically entails ϕ, if and only if any model of $\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{n}$ is a model of ϕ. When $\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{n}$ logically entails ϕ, we also say ϕ is a logical consequence of $\phi_{1}, \phi_{2}, \ldots$, and ϕ_{n} (or ϕ logically follows from $\left.\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$.

Example. Consider formulas $\{p \vee q \vee r, p \vee \neg r\}$. The formula $p \vee q$ is a logical consequence of $p \vee$ $q \vee r$ and $p \vee \neg r$.

Theorem. A formula ϕ is a logical consequence of formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ if and only if the formula $\left(\left(\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{n}\right) \rightarrow \phi\right)$ is valid.

Theorem. A formula ϕ is a logical consequence of formulas $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ if and only if the formula $\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{n} \wedge \neg \phi$ is unsatisfi able.

The above two theorems are very important because they tell us that the problem of showing ϕ being a logical consequence of a set of formulas can be reduced to the problem of showing a related formula to be unsatisfi able. The latter problem can be solved effi ciently using resolution which we will describe shortly.

THE RESOLUTION PRINCIPLE

We assume from now on that each propositional formula ϕ is represented in conjunctive normal form and thus we can equivalently represent ϕ as $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ where each C_{j} is a clause and $\phi=C_{1} \wedge C_{2} \wedge \ldots$ $\wedge C_{n}$.

- Complementary literals $-\quad$ an atom p and its negation $\neg \mathrm{p}$ are called complementary literals.

Definition.(resolvent). Let C_{1} and C_{2} be two clauses such that $C_{1}=C^{\prime}{ }_{1} \vee \mathrm{p}$ and $C_{2}=C^{\prime}{ }_{2} \vee \neg \mathrm{p}$. The clause $\mathrm{C}=C^{\prime}{ }_{1} \vee C^{\prime}{ }_{2}$ is called the resolvent of C_{1} and C_{2}, denoted as $\mathrm{C}=\operatorname{res}\left(C_{1}, C_{2}\right)$. Here the atom p is called the resolving literal.

For example, let $C_{1}=\mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{d}$ and $C_{2}=\mathrm{q} \vee \neg \mathrm{r} \vee \neg \mathrm{d}$. Then we have $\mathrm{C}=\operatorname{res}\left(C_{1}, C_{2}\right)=\mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{q}$ $\vee \neg$.

Theorem. Let $\mathrm{C}=\operatorname{res}\left(C_{1}, C_{2}\right)$ be the resolvent of clauses C_{1} and C_{2}. Then C is a logical consequence of C_{1} and C_{2}.

Definition. (resolution derivation). Let S be a set of clauses. A resolution derivation of a clause C from S is a sequence $\sigma=\left(C_{1}, C_{2}, \ldots C_{k}\right)$ of clauses such that
(1) Each C_{l}, either $C_{l} \in \mathrm{~S}$ or $C_{l}=\operatorname{res}\left(C_{i}, C_{j}\right)$ for $\mathrm{i}, \mathrm{j}<l$.
(2) $C_{k}=\mathrm{C}$.

A resolution derivation of the empty clause \square from S is called a refutation.

Theorem. If a clause C has a resolution derivation from a set S of clauses, then C is a logical consequence of S.

Theorem. (Soundness of the resolution principle). Let S be a set of clauses. If there is a resolution derivation of the empty clause \square from S, then S is unsatisfi able.

Theorem. (Completeness of the resolution principle). Let S be a set of clauses. If S is unsatisfi able, then there is a resolution derivation of the empty clause \square from S.

From the above theorems and the theorems about logical consequence, we can easily see the equivalence of the following statements: (assume $\mathrm{S}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is a set of clauses and G is a formula)

1. G is a logical consequence of S;
2. the formula ($\left.C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n} \wedge \neg \mathrm{G}\right)$ is unsatisfi able;
3. the set of clauses $\mathrm{S} \cup\left\{C_{n+1}, C_{n+2}, \ldots, C_{n+k}\right\}$ is unsatisfi able, where $C_{n+1} \wedge C_{n+2} \wedge \ldots \wedge C_{n+k}=\neg \mathrm{G}$.
4. there is a resolution derivation of the empty clause \square from $\mathrm{S} \cup\left\{C_{n+1}, C_{n+2}, \ldots, C_{n+k}\right\}$.

LOGICAL CONSEQUENCE ALGORITHM

Input:
A set S of clauses and a goal formula G.
Output:
a yes/no answer according to whether G is a logical consequence of S or not.
(1) Negate the goal G to get $\neg G$. Then transform $\neg G$ to a set of clauses S^{\prime}.
(2) If there is a resolution derivation of the empty clause \square from $S \cup S^{\prime}$, then answer "yes" and terminate. Otherwise answer "no" and terminate.

Example. Let $S=\{p \vee q, \neg p \vee \neg q, \neg p \vee r, \neg q \vee s, p \vee \neg w, q \vee u\}$ and let $G=(r \vee s) \wedge(u \vee \neg w)$. We want to show that G is a logical consequence of S.

We first transform $\neg \mathrm{G}$ into clausal form: $\neg \mathrm{G}=\neg[(\mathrm{r} \vee \mathrm{s}) \wedge(\mathrm{u} \vee \neg \mathrm{w})]=(\neg(\mathrm{r} \vee \mathrm{s}) \vee \neg(\mathrm{u} \vee \neg \mathrm{w}))=$ $((\neg \mathrm{r} \wedge \neg \mathrm{s}) \vee(\neg \mathrm{u} \wedge \mathrm{w}))=(\neg \mathrm{r} \vee \neg \mathrm{u}) \wedge(\neg \mathrm{r} \vee \mathrm{w}) \wedge(\neg \mathrm{s} \vee \neg \mathrm{u}) \wedge(\neg \mathrm{s} \vee \mathrm{w})$. Thus $\mathrm{S}^{\prime}=\{\neg \mathrm{r} \vee \neg \mathrm{u}, \neg \mathrm{r} \vee \mathrm{w}, \neg \mathrm{s}$ $\vee \neg \mathrm{u}, \neg \mathrm{s} \vee \mathrm{w}\}$.

We then search for a resolution derivation of the empty clause \square from $S \cup S^{\prime}$. One such derivation is given below.

Exercises.

1. Let $\Delta=\{(\mathrm{p} \vee \neg \mathrm{r}) \rightarrow \mathrm{q},(\mathrm{a} \leftrightarrow \mathrm{b}) \rightarrow \mathrm{c}\}$. Convert Δ into an equivalent set of clauses.
2. Let $S=\{p \vee q, p \vee \neg q, \neg p \vee q, \neg p \vee \neg q\}$. Indicate whether S is consistent or not. Support your conclusion by 2 ways: (i). Indicate whether S has a model; (ii). Indicate whether there is a resolution
derivation of the empty clause \square from S.
3. Let $S=\{a \vee \neg b \vee c, d \vee b, \neg a \vee d\}$. Show that the clause $c \vee d$ is a logical consequence of S by resolution.

References

1. Chang \& Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.
