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Abstract. Adaptive Benford’s Law [1] is a digital analysis technique that speci-
fies the probabilistic distribution of digits for many commonly occurring
phenomena, even for incomplete data records. We combine this digital analy-
sis technique with a reinforcement learning technique to create a new fraud dis-
covery approach. When applied to records of naturally occurring phenomena, our
adaptive fraud detection method uses deviations from the expected Benford’s Law
distributions as an indicators of anomalous behaviour that are strong indicators of
fraud. Through the exploration component of our reinforcement learning method
we search for the underlying attributes producing the anomalous behaviour. In a
blind test of our approach, using real health and auto insurance data, our Adap-
tive Fraud Detection method successfully identified actual fraudsters among the
test data.

1 Introduction

In this paper we illustrate the implementation of a fraud discovery system which uses a
new approach for discovering fraud that combines a reinforcement learning (RL) tech-
nique with a digital analysis method. The idea behind this approach is to use the digital
analysis to uncover data anomalies and then utilize the reinforcement learning compo-
nent to reveal the attributes contributing to the anomaly, thereby uncovering underlying
fraudulent behaviour.

As Bolton and Hand [2] noted, fraud detection methods may be divided into both
supervised and unsupervised methods. For supervised methods, both fraudulent and
non-fraudulent records are used to train a system, which then searches and classifies
new records according to the trained patterns. The limitation to supervised methods is
that one must have both classes of records identified for the system to train on. Thus,
this approach is limited to only previously known methods of committing fraud.

Unsupervised methods, in contrast, typically identify records that do not fit expected
norms. The advantage of this approach is that one may identify new instances of fraud.
The common approach to this method is to use forms of outlier detection. The main
limit to this approach is that we are essentially identifying anomalies that may or may
not be fraudulent behaviour. Just because a behaviour is anomalous does not neces-
sarily mean that the behaviour is fraudulent. Instead they can be used as indicators of
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possible fraud, whereby the strength of the anomalous behaviour (how much it devi-
ates from expected norms), may be used as a measure of ones confidence in how likely
the behaviour may be fraudulent. Investigators may then be employed to analyze these
anomalies. However, given the often enormous numbers of records involved in typical
fraud application areas such as credit card, cellular phone and healthcare records, even
with identified anomalies, investigating the anomalies can be a considerable burden to
resources. The novelty of our approach is that we extend the typical outlier detection
methods with a reinforcement learning component.

The reinforcement learning component of our algorithm builds on identified out-
liers by associating with our outliers, underlying attributes that may be linked together
to build a case for fraud. Reinforcement learning has typically been used in the past
to find the best choice of actions when trying to perform some physical task requir-
ing a sequence of actions to accomplish a desirable goal such as navigating through a
maze. The core idea which makes reinforcement learning useful to fraud discovery is
its ability to link together states through a pattern of state-action pairs in a policy. In our
algorithm we will link together anomalies according to their underlying attributes using
the magnitude of the anomalous behaviour as a measure of its desireablity within the
reinforcement learning context (in other words anomalies are equivalent to the rewards
in an RL environment).

To identify our outliers, we use a digital analysis technique known as adaptive Ben-
ford’s Law [1]. Benford’s Law specifies the distribution of the digits for naturally oc-
curring phenomena. For a long time this technique, commonly used in areas of taxation
and accounting, was considered mostly a mathematical curiosity as it described the
frequency with which individual and sets of digits for naturally growing phenomena
such as population measures should appear [3]. Such naturally growing phenomena,
however, has been shown to include practical areas such as spending records and stock
market values [4]. One of the limits to the use of classic Benford’s Law in fraud detec-
tion has been its requirement that analyzed records have no artificial cutoffs. In other
words, records must be complete. However, in many practical application areas, one
only has information for a subset, such as a single year, of financial records. Recent
work by Lu and Boritz [1] has removed this limitation with an adaptive Benford’s Law,
making it more practically useful.

In our paper we will explain the algorithm for our technique and test our new fraud
discovery technique against outlier detection methods using real healthcare and auto
insurance records, demonstrating improvements in classifying fraudsters.

1.1 Complications in Practical Fraud Detection Research

Two major complications for fraud detection researchers are:

1. Secrecy with regards to details on fraud detection techniques.
2. Limits on available real fraud records.

Both of these complications stem from the nature of the application area. It is quite nat-
ural that in order to stay ahead of fraudsters, those employing fraud detection methods
tend to keep secret their algorithm details in order to avoid fraudsters from knowing
these details and developing methods to circumnavigate them. This secrecy makes it
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difficult to compare new fraud detection techniques with previous methods. The sec-
ond complication is due to the fact that companies do not generally like to reveal the
amounts of fraud within their field as it tends to have a detrimental impact on share-
holder confidence as well as consumer confidence. In addition, laws in Canada as well
as many other countries do not require the explicit reporting of fraud losses. Without
available real fraud records, many researchers use artificially created synthetic fraud
records to test their methods. However, synthetic records for testing are only as useful
as they are truly representative of actual fraudulent and non-fraudulent records.

We deal with the first complication by developing a general technique that is not
meant to be application area specific but is meant as an improvement over the gen-
eral Benford’s Law outlier detection approach. Many fraud detection techniques are
ad hoc and use specific details about their application area for detection. For instance,
cellular phone detection uses the fact that one can uncover phone usage stealing by
identifying that the same phone is calling from two different locations at the same time,
which would imply at least one of the calls is from an illegitimate user. Since our fraud
discovery technique is meant as an improvement over previous Benford’s Law out-
lier detection methods, we compare our method specifically with that outlier detection
approach.

We deal with the second complication by testing our method on real auto insurance
records that have been audited and classified for actual fraud. In order to demonstrate
robustness, we also apply our method to real healthcare insurance records. However,
these records have yet to be audited for fraud and thus we use it only to demonstrate
the technique’s operation on a differing application area and to illustrate the adaptive
Benford’s Law component of our fraud detection method on a real fraud application.

2 Background

2.1 Benford’s Law

Benford’s Law is a probability distribution with strong relevance to accounting fraud.
Much of the research on Benford’s Law has been in areas of statistics [5, 6] as well as
auditing [7, 8].

Benford’s Law is a mathematical formula that specifies the probability of leading
digit sequences appearing in a set of data. What we mean by leading digit sequences is
best illustrated through an example. Consider the set of data

S = {231, 432, 1, 23, 634, 23, 1, 634, 2, 23, 34, 1232}.

There are twelve data entries in set S. The digit sequence ‘23’ appears as a leading digit
sequence (i.e. in the first and second position) 4 times. Therefore, the probability of the
first two digits being ‘23’ is 4

9 ≈ 0.44. The probability is computed out of 9 because
only 9 entries have at least 2 digit positions. Entries with less than the number of digits
being analyzed are not included in the probability computation.

The actual mathematical formula of Benford’s law is:

P (D = d) = log10(1 +
1
d
), (1)
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where P (D = d) is the probability of observing the digit sequence d in the first ‘y’
digits and where d is a sequence of ‘y’ digits. For instance, Benford’s Law would state
that the probability that the first digit in a data set is ‘3’ would be log10(1+ 1

3 ). Similarly,
the probability that the first 3 digits of the data set are ‘238’, would be log10(1 + 1

238 ).
The numbers ‘238’ and ‘23885’ would be instances of the first three digits being ‘238’.
However this probability would not include the occurrence ‘3238’, as ‘238’ is not the
first three digits in this instance.

2.2 Benford’s Law Requirements

In order to apply equation 1 as a test for a data set’s digit frequencies, Benford’s Law
requires that:

1. The entries in a data set should record values of similar phenomena. In other words,
the recorded data cannot include entries from two different phenomena such as both
census population records and dental measurements.

2. There should be no built-in minimum or maximum values in the data set. In other
words, the records for the phenomena must be complete, with no artificial start
value or ending cutoff value.

3. The data set should not be made up of assigned numbers, such as phone numbers.
4. The data set should have more small value entries than large value entries.

Further details on these rules may be found in [3]. Under these conditions, Benford
noted that the data for such sets, when placed in ascending order, often follows a geo-
metric growth pattern.1 Under such a situation, equation 1 specifies the probability of
observing specific leading digit sequences for such a data set.

The intuitive reasoning behind the geometric growth of Benford’s Law is based on
the notion that for low values it takes more time for some event to increase by 100%
from ‘1’ to ‘2’ than it does to increase by 50% from ‘2’ to ‘3’. Thus, when recording
numerical information at regular intervals, one often observes low digits much more
frequently than higher digits, usually decreasing geometrically.

Adaptive Benford’s Law modifies classic Benford’s Law by removing the second
requirement of ‘no built-in minimum or maximum values’, thus allowing for the tech-
nique to be more generally applicable to a wider array of real records which often are
incomplete. For more details on the Adaptive Benford method see [1].

2.3 Reinforcement Learning

In reinforcement learning, an environment is modelled as a network of states, {s ∈ S}.
Each state is associated with a set of possible actions, as ∈ As and a reward for entering
that state {rs ∈ Rs}. We can transition from one state s(i) to another s(j) by choosing
an action as and with a certain probability P (sj |si, asi) we transition to another state.
A policy is a mapping of states to action. The objective is to find an optimal policy that
maximizies the long-term rewards one may obtain as one navigates through the net-
work. In order to find an optimal policy, we perform a task known as policy evaluation

1 Note: The actual data does not have to be recorded in ascending order. This ordering is merely
an illustrative tool to understand the intuitive reasoning for Benford’s law.
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which determines value estimates for states given a fixed policy, π. The value estimate
for a state represents the sum of the discounted future rewards for a state following a
policy π. A variety of methods for policy evaluation have developed over time such as
the maximum likelihood approach[9], the temporal differencing method [10] and the
monte carlo matrix inversion method [11].

One property of the reinforcement learning approach is that it is designed to handle
intractably large state spaces. This trait makes it well suited to an environment such as
fraud detection where there are usually extremely large numbers of records to process in
order to find the relatively small number of occurences of fraud among the total amount
of data available. Reinforcement learning also incorporates an exploration component
that allows it to search for better actions leading to higher long-term reward values. Such
an exploration component is key also for finding new instances of previously unknown
fraud cases as we wish our fraud discovery method to be able to do. These two traits
are the main components motivating our use of a reinforcement learning approach for
fraud detection.

3 Algorithm

As we noted in the introduction, our fraud detection method’s objective is to improve
over outlier detection methods for finding instances of fraud. Outlier detection meth-
ods, as we stated previously, actually only indicate anomalous instances. In order to
determine whether an anomalous instance is actually a result of a fraudulent occurence
typically requires the careful analysis of an auditor. Therefore, we need to consider how
an auditor actually determines fraud. Without domain specific knowledge, such as the
cell phone example we gave in the introduction, one typically builds a case for fraud
by linking together suspicious occurences. Even with domain specific knowledge, such
as our cellular phone example, one may still need to link suspicious (anomalous) cases
together. For example, even in the cellular phone example where we know that the same
cell phone cannot be calling from two different locations at the same time, we do not
necessarily know which of the two calls is the fraudulent one and indeed both may be
from illegal users. Thus, what is needed is to build a case of fraud by linking together
anomalous instances that are related by some set of traits.

Reinforcement learning is well suited to linking together states through its state-
action policy mapping. For reinforcement learning to be used as a fraud detection
method, we need to be able to relate rewards with anomalies. We do so by setting
the reward values as the magnitude that our anomalous instances deviate from ex-
pected values. In turn, the states of our RL environment relate to individual records
of our application environment and the actions are the attributes of a record. In such a
way, two records, with the same attributes are linked together by a common attribute
just as an action can relate two states of a classic reinforcement learning environment
network.

The best way to illustrate our fraud detection algorithm is through an example.
Figure 1 is an example of purchase records for some consumer. Included in the record
are the purchased item, the store it was purchased in, the location of the store, the
form of payment used to buy the item and the amount of the purchase under ‘Digit
Sequences’. We apply our fraud detection algorithm by first determining if there are
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Fig. 1. Sample Application: Purchase Records

Fig. 2. Sample Application: Analysing Digits with Rewards

any sets of digit sequences that conform to a Benford distribution. In our example there
is only one set of numbers, the purchase values that can be compared with a Benford
distribution. We compute the frequency with which each digit sequence from 1 to 999
appears in our purchase value records.2 We then compare these actual digit frequen-
cies with Benford’s Law’s expected frequencies. If they fall within a certain confidence
interval, we will accept that the numerical data follows a Benford’s Law distribution.

Assuming the purchase records are a Benford distribution, then we compute a mea-
sure of how much any given purchase value deviates from expected Benford value by:

Reward(i) =
f1i

b1i
+

f2i

b2i
+

f3i

b3i
, (2)

where fji is the frequency that a digit sequence of length j for state i appears in the
dataset and bji is the expected Benford’s Law distribution frequency that the digit se-
quence of length j for state i should appear.

As an example, consider figure 2 where state 2 has a purchase value of $38. In our
algorithm we consider only leading digit sequences.3 Therefore there are two leading
digit sequences, the sequence of just ‘3’ as well as ‘38’. If 3 appears 22 times in our
record, while 38 appears 5 times, then f12 = 22 and f22 = 5. Assuming that Benford’s
Law states that the sequence ‘3’ should appear 10 times and ‘38’ should appear 5 times,
then b12 = 10 and b22 = 5. Note since there are not three digits in our purchase value
f33 = 0 and does not contribute to the reward function of equation 2. We thus produce a
Reward value for state 2 of Reward(2) = 22

10 + 5
5 = 3.2. We thus can compute reward

values associated with each state. Figure 2 illustrates our records with their associated
computed rewards.

2 Benford’s Law works with digit sequences of any length. For most practical purposes, the
frequencies of sequences of three digits or less are evaluated. For longer digit lengths, the
probabilities become so small that they are of little practical value.

3 See [1] for a justification for this choice.
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Fig. 3. Sample Application: Choosing a Record/State

Once the reward values have been computed, we can now explore our environment
as a reinforcement learning network. We do so by first choosing a start state. In fig-
ure 3 we chose state 2. This results in a reward value of 3.2. We then need to choose
an action. Our actions are any unused attributes of our record. In this case we have
four possible actions. There are numerous methods for choosing an action. See [9] for
various techniques.

Fig. 4. Sample Application: State to Action to Next State Transition

If we choose action/attribute ‘Store’. The specific instance of this action in state
2 is ‘storeB’. We therefore search the store column for any other states/records with
‘storeB’ as an entry. Every possible record with such an entry is a possible next state.
In our example state 4 is a possible next state which, as figure 4 illustrates will be our
next state. We use a uniform random distribution to choose which of our possible next
state candidates will be selected.

Now that we have a method of exploring our environment, we can apply a reinforce-
ment learning algorithm such as temporal differencing or maximum likelihood to find
an optimal policy to our system. Any such policy will link together records with the
greatest anomalies forming a pattern that builds a case of fraudulent activity just as an
auditor may do.

Once you have an optimal policy, the states/records that the auditor wishes to build a
case for fraud for, may be used as the start state and then the auditor simply executes the
optimal policy choices to find all states that are most strongly linked to that given start
state. In this way, the auditor finds all underlying attributes/actions that are in common
with the high reward returning states. This requires only a single trace through the
system since the optimal policy has already done the exploration that an auditor would
have traditionally had to do saving time and man-hours.

A few details which we have not gone into due to space constraints include how to
choose when to stop your explorations, handling records that contain multiple columns
with digits conforming to a Benford distribution as well as dealing with exploring non-
optimal policies. An important reason to obtain less than optimal policies is that less
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than optimal policies may still also contain fraudulent patterns. One method to obtain
such less than optimal policies is by iteratively removing the optimal policy and then
rerunning the algorithm.

In addition, two points for those unfamiliar with Benford’s Law and auditing in gen-
eral may question are that the reward structure of equation 2 does not give higher re-
wards for digits that appear less frequently than the Benford’s Law predicts and that
numbers with more digits will possibly have a bias to higher rewards since there are
more digits that can contribute to the reward value. Regarding the first point, one could
use an alternative formula to equation 2 such as:

Reward(i) = q1i + q2i + q3i, (3)

where

qji =

{
fji

bji
for fji > bji

bji

jji
otherwise

. (4)

We use equation 2 in our implementation due to our application area of insurance where
generally, auditors are most interested in over-charges rather than under-charges. Natu-
rally, this may not be the case in other application areas such as tax filings where one
may be concerned with under reporting of figures. In regards to the second point about
numbers with more digits having higher rewards, this situation is a Benford’s Law phe-
nomenon. Certainly more digits provide more information to the auditor, but this bias
is generally not of concern in practical auditing terms as successive digits have geomet-
rically (10 times less for ever digit position to the left you move) less influence on the
over all reward relative to the higher leading digits. Further discussions on the influence
of successive significant digits may be found in [3]. The authors will gladly provide
further details on any of these points on request.

4 Experiments

As stated in section 3 our application analyzes the first, the first two and the first three
digit sequences of a dataset, comparing them to expect Benford frequencies. Therefore,
for each data set analyzed, we are comparing it to three different Benford’s Law digit
frequency distributions, one of only length 1 digit, another of length 2 digits and a
third of length 3 digits. For conciseness we have reported our digit frequency analyzes
through graphs whereby we include the first digit frequencies 1 to 9 on the x-axis values
from 1 to 9, the first two digit sequences composed of 10, 11,...,99 on the x-axis from
10 to 99 and the first three digit sequences on the x-axis from 100,...999. When looking
at the numerical results, one should keep in mind a single graph is actually three sets
of different distributions. The expected Benford curve will contain disjunction points at
the points between 9 to 10, and 99 to 100 because they are the points at which a new
Benford probability distribution starts and ends.

As stated in section 1.1, we have two databases with which to test our fraud detection
method on, a record of healthcare insurance claims provided by Manulife Financial as
well as records of auto insurance claims. However, the healthcare insurance claims have
yet to be audited and therefore we use it only to illustrate both the robustness of how
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Fig. 5. Healthcare Digit Frequencies compared with their Benford Distributions

our system is generalized enough to operate on differing application areas as well as
the operation of identifying anomalous data in conjunction with the attributes related
to those anomalies. The second database composed of auto insurance has been audited
with identified fraudulent and non-fraudulent records with associated attributes. We
therefore use the second database as a test of the utility of our system for identifying
real fraud cases.

The healthcare data consisted of 94 columns/attributes with 31,804 rows/records. We
therefore had 94 candidate data sets to test to see if they conform to a Benford distri-
bution. 83 of the columns were eliminated due to one of the three Adaptive Benford’s
Law requirements not being satisfied. Of the remaining 11 data sets, 5 were elimi-
nated using a 90% confidence interval based on training data provided by Manulife.
Figure 5 illustrates the frequencies of the digit sequences for the remaining six data sets
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Fig. 6. Auto Insurance Digit Frequencies

that do conform to the Benford distributions. Included on the graphs are the 90% lower
and upper bound confidence intervals as well as the the expected Benford frequencies.4

The six graphs from a to e of figure 5 resulted in 23, 31, 8,21, 14 and 18 respectively
of total suspicious attributes, which are currently being investigated for by auditors for
fraud.

For our auto insurance database, Ernst and Young provided data which was already
audited for fraud. The researchers conducted a test of the system as a blind test where
we were unaware of which, if any, of the records and attributes were fraudulent. In this
case, only one column of the database conformed to a Benford distribution satisfying
the three requirements of Adaptive Benford. Figure 6 illustrates the digit frequencies of
the auto insurance data. There were 30 remaining non-Benford attribute columns which
may be used as actions to match on in our Reinforcement Learning environment. The
database consisted of 17,640 records.

Figure 7 illustrates corresponding rewards resulting from our most optimal policy to
our fourth most optimal policy. We obtained the most optimal, second most optimal, etc.
polices by successively eliminating the optimal policy currently found and rerunning the
optimal policy search. The thirty columns of our graphs represent the thirty attributes
that are possible to be chosen from. The height of the bars is the sum of the reward
values that would be obtained following the respective policy for each type of attribute
the policy chooses. As one can see, the heights for the successively worsening policies
result in, not surprisingly, worsening reward values.

Our optimal policy successfully identified the one company that was producing sev-
eral fraudulent insurance claims. This single fraud generating company corresponds
to two of the large spikes appearing in figure 6. However, an important note on our

4 Confidence intervals were computed based on variance values of training data provided by
Manulife and used 2 standard deviations from the expected Benford frequencies for the upper
and lower bounds.
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Fig. 7. The attributes of successively worsening policies and the reward values they correspond
to across all records

method is that standard Benford outlier methods would have not identified this com-
pany because although there was a ‘company name’ attribute field, this company was
not listed consistently in the same way in that field. Instead, they used variations on the
name such as abbreviations and reorderings of the words that the name consisted of. Our
policy was able to identify the company instead by linking together agents who submit-
ted fraudulent claims on behalf of the company with their locations and in turn to the
company. This linking is exactly the kind of fraud case building that the reinforcement
learning component is designed to build.

5 Conclusions

In this paper we have presented a new fraud detection method which expands on the
current simpler outlier detection approaches. We specifically used a Benford distribu-
tion as a benchmark for our unsupervised learning method to discover new fraud cases.
We enhanced the method with a reinforcement learning model of our environment in
order to link together anomalous outliers to build a case for fraud. In so doing, we are
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essentially simulating the behaviour of human auditors. We tested our system with a
blind test on auto insurance data successfully identifying instances of fraud perpetrated
by several people but linked to one underlying company.

In terms of future research, we plan to incorporate other outlier detection methods
with our current Benford method as well as apply our method to greater amounts of
audited data from a variety of different application areas.
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