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Abstract

With the rapid expansion of Internet in recent 
years, computer systems are facing increased number 
of security threats. Despite numerous technological 
innovations for information assurance, it is still very 
difficult to protect computer systems. Therefore, 
unwanted intrusions take place when the actual 
software systems are running. Different soft computing 
based approaches have been proposed to detect 
computer network attacks. This paper presents a 
genetic algorithm (GA) based approach to network 
intrusion detection, and the software implementation 
of the approach. The genetic algorithm is employed to 
derive a set of classification rules from network audit 
data, and the support-confidence framework is utilized 
as fitness function to judge the quality of each rule. 
The generated rules are then used to detect or classify 
network intrusions in a real-time environment. Unlike 
most existing GA-based approaches, because of the 
simple representation of rules and the effective fitness 
function, the proposed method is easier to implement 
while providing the flexibility to either generally detect 
network intrusions or precisely classify the types of 
attacks. Experimental results show the achievement of 
acceptable detection rates based on benchmark 
DARPA data sets on intrusions, while no other 
complementary techniques or relevant heuristics are 
applied. 

Keywords: Information assurance, misuse intrusion 
detection, genetic algorithms, support-confidence 
framework, software development. 

1. Introduction 

The Internet and local area networks are expanding 
at an amazing rate in recent years. While we are 
benefiting from the convenience that the new 

technology has brought us, computer systems are 
exposed to increasing security threats that originate 
externally or internally. Different but complementary 
technologies have been developed and deployed to 
protect organizations’ computer systems against 
network attacks, for example, anti-virus software, 
firewall, message encryption, secured network 
protocols, password protection, and so on. Despite 
different protection mechanisms, it is nearly 
impossible to have a completely secured system. 
Therefore, intrusion detection is becoming an 
increasingly important technology that monitors 
network traffic and identifies network intrusions such 
as anomalous network behaviors, unauthorized 
network access, and malicious attacks to computer 
systems [15].  

There are two general categories of intrusion 
detection systems (IDSs): misuse detection and 
anomaly detection [16]. Misuse detection systems 
detect intruders with known patterns, and anomaly 
detection systems identify deviations from normal 
network behaviors and alert for potential unknown 
attacks. Some IDSs integrate both misuse and anomaly 
detection and form hybrid detection systems. The IDSs 
can also be classified into two categories depending on 
where they look for intrusions. A host-based IDS 
monitors activities associated with a particular host, 
and a network-based IDS listens to network traffic.

A number of soft computing based approaches have 
been proposed for detecting network intrusions [1, 2, 
3, 4, 6, 10]. Soft computing refers to a group of 
techniques that exploit the tolerance for imprecision, 
uncertainty, partial truth, and approximation to achieve 
robustness and low solution cost. The principle 
constituents of soft computing are Fuzzy Logic (FL), 
Artificial Neural Networks (ANNs), Probabilistic 
Reasoning (PR), and Genetic Algorithms (GAs) [10]. 
When used for intrusion detection, soft computing 
techniques are often used in conjunction with rule-
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based expert systems acquiring expert knowledge [1, 
4, 5, 6], where the knowledge is represented as a set of 
if-then rules. Despite different soft computing based 
approaches having been proposed, the possibilities of 
using the techniques for intrusion detection are still 
under-utilized.

In this paper, we present a GA-based approach to 
network misuse detection. GA is chosen because of 
some of its nice properties, e.g., robust to noise, no 
gradient information is required to find a global 
optimal or sub-optimal solution, self-learning 
capabilities, etc. Using GAs for network intrusion 
detection has proven to be a cost-effective approach [1, 
2, 3, 7, 8, 9, 11]. In this work, we implement a 
software based on the presented approach. The 
software is experimented using DARPA data sets on 
intrusions, which has become the de facto standard for 
testing intrusion detection systems. The experimental 
results show that our approach is effective, and it has 
the flexibility to either generally detect network 
intrusions or precisely classify the types of misuses. 
This is due to the use of both categorical and 
quantitative features of network audit data for deriving 
the classification rules, and the use of the support-
confidence framework as the GA fitness function.  

Paper Organization. Thus far, we have discussed the 
motivation and a brief overview of the presented work. 
The rest of the paper is organized as follows. Section 2 
gives an overview of the genetic algorithm employed 
in this work. Section 3 reviews the work relevant to 
this research, while some of the more closely related 
work are discussed in the relevant parts of this paper. 
Sections 4 and 5 describe in detail the proposed 
method and its software implementation. Section 6 
presents the experimental results, and Section 7 
concludes the paper with some future 
recommendations. 

2. Genetic Algorithms 

Genetic algorithms [3, 12] employ metaphor from 
biology and genetics to iteratively evolve a population 
of initial individuals to a population of high quality 
individuals, where each individual represents a 
solution of the problem to be solved and is composed 
of a fixed number of genes. The number of possible 
values of each gene is called the cardinality of the 
gene. Figure 1 illustrates the operation of a general 
genetic algorithm. The operation starts from an initial 
population of randomly generated individuals. Then 
the population is evolved for a number of generations 

and the qualities of the individuals are gradually 
improved. During each generation, three basic genetic 
operators are sequentially applied to each individual 
with certain probabilities, i.e., selection, crossover, and 
mutation. First, a number of best-fit individuals are 
selected based on a user-defined fitness function. The 
remaining individuals are discarded. Next, a number of 
individuals are selected and paired with each other. 
Each individual pair produces one offspring by 
partially exchanging their genes around one or more 
randomly selected crossing points. At the end, a certain 
number of individuals are selected and the mutation 
operations are applied, i.e., a randomly selected gene 
of an individual abruptly changes its value. 

One extension of genetic algorithms, namely 
Genetic Programming (GP) [3, 8], is also commonly 
used. It differs from GAs in the way of encoding 
individuals. GAs use fixed length vectors to represent 
individuals. In contrast, GP encodes each individual 
with a parse tree, where leaf nodes are genes and non-
leaf nodes are primitive functions (e.g., AND, OR, 
etc.). GP has the flexibility to represent very complex 
individuals. In the context of rule based expert 
systems, GAs are often used to efficiently derive 
simple rules, and GP is used when more complex or 
accurate rules are required. 

Figure 1. The operation of a generic GA. 

When a GA is used for problem-solving, three 
factors will have impact on the effectiveness of the 
algorithm, they are: 1) the selection of fitness function; 
2) the representation of individuals; and 3) the values 
of the GA parameters. The determination of these 
factors often depends on applications. In our 
implementation for network intrusion detection, the 
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support-confidence framework was used as fitness 
function, a simple GA (rather than GP) was employed 
to represent and derive rules, and appropriate GA 
parameters, including selection rate, crossing over 
style, mutation rate, etc, were chosen based on a large 
number of experiments. 

3. Related Work 

This section briefly summarizes some of the 
applications of soft computing techniques for intrusion 
detection. However, a number of GA based IDSs are 
discussed in the later part of the paper in order to 
compare and contrast those work with our work.  

GAs and GP have been used for network intrusion 
detection in different ways. Some approaches directly 
use GAs to derive the classification rules [2, 7, 8, 11], 
while some others use different AI methods for 
acquisition of rules, where GAs are used to select 
appropriate features or to determine the optimal 
parameters of some functions [1, 5, 9].  

The early effort of using GAs for intrusion 
detection can be dated back to 1995, when Crosbie et
al. [3] applied the multiple agent technology and GP to 
detect network anomalies. Each agent monitors one 
parameter of the network audit data and GP is used to 
find the set of agents that collectively determine 
anomalous network behaviors. This method has the 
advantage of using many small autonomous agents, but 
the communication among them is still a problem. 
Also the training process can be time-consuming if the 
agents are not appropriately initialized. 

Bridges et al. [1] develop a method that integrates 
fuzzy data mining techniques and genetic algorithms to 
detect both network misuses and anomalies. In most of 
the existing GA based IDSs, the quantitative features 
of network audit data are either ignored or simply 
treated, though such features are often involved in 
intrusion detection. This is because of the large 
cardinalities of quantitative features. The authors 
propose a way to include quantitative features by 
introducing fuzzy numerical functions. Their 
preliminary experiments show that the inclusion of 
quantitative features and the fuzzy functions 
significantly improved the accuracy of the generated 
rules. In this approach, a GA is used to find the 
optimal parameters of the fuzzy functions as well as to 
select the most relevant network features.  

Lu et al. [8] present an approach that uses GP to 
directly derive a set of classification rules from 
historical network data. The approach employs the 
support-confidence framework as the fitness function 

and is able to generally detect or precisely classify 
network intrusions. However, the use of GP makes 
implementation more difficult and more data or time 
are required to train the system. 

Li [7] propose a GA-based method to detect 
anomalous network behaviors. Both quantitative and 
categorical features of network data are included when 
deriving classification rules using GA. The inclusion 
of quantitative features may lead to increased detection 
rates. However, no experimental results are available 
yet.

Xiao et al. [17] present an approach that uses 
information theory and GA to detect abnormal network 
behaviors. Based on the mutual information between 
network features and the types of network intrusions, a 
small number of network features are closely identified 
with network attacks. Then a linear structure rule is 
derived using the selected features and a GA. The use 
of mutual information reduces the complexity of GA, 
and the single resulting linear rule makes intrusion 
detection efficient in real-time environment. However, 
the approach considers only discrete features. 

4. A GA-Based IDS 

The proposed GA-based intrusion detection 
approach contains two modules where each works in a 
different stage. In the training stage, a set of 
classification rules are generated from network audit 
data using the GA in an offline environment. In the 
intrusion detection stage, the generated rules are used 
to classify incoming network connections in the real-
time environment. Once the rules are generated, the 
intrusion detection is simple and efficient. In the 
following sections, we focus our discussions on 
deriving the set of rules using GA. 

4.1. Data Representation 

Several network features have higher possibilities to 
be involved in network intrusions [7, 9]. In our 
approach, seven of those features are selected from the 
network audit data to compose a classification rule. 
Table 1 shows the features and their formats. The 
feature names are given in the first column, while the 
second and third columns indicate how each of the 
network features is encoded in a chromosome. The 
second column represents the feature format and the 
third column shows the number of genes used for the 
corresponding feature.

Note that different genes can be represented in 
different data types such as byte, integer, and float. 
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This is necessary because of different formats and data 
ranges for different features. For example, the feature 
“Duration” has three components (hours, minutes, and 
seconds), each of which is represented by one gene of 
type byte. Similarly, each of the features “Protocol”, 
“Source port”, “Destination port” and “Attack name” 
is encoded using one gene of type integer, and each of 
the features “Source IP” and “Destination IP” has four 
components (a, b, c, and d), each of which is 
represented by one gene of type byte. 

Table 1. Selected network features. 

Feature Name Format Number of Genes 
Duration h:m:s 3 
Protocol Int 1 
Source_port Int 1 
Destination_port Int 1 
Source_IP a.b.c.d 4 
Destination_IP a.b.c.d 4 
Attack_name Int 1 

Each rule is an if-then clause, which contains a 
“condition” and an “outcome”. The first six features in 
Table 1 are connected using the logical AND 
operations and compose the “condition” part of a rule. 
The feature “Attack name” is used in the “outcome” 
part, which indicates the classification of a network 
record (at training stage) or connection (at intrusion 
detection stage) when the “condition” part of a rule is 
matched. The following shows a rule example that 
classifies a network connection as the denial-of-service 
attack neptune.

if (duration=“0:0:1” and protocol=“finger” and 
source_port=18982 and destination_port=79 and 
source_ip=“9.9.9.9” and 
destination_ip=“172.16.112.50”) 
then (attack_name=“neptune”) 

The above rule expresses that if a network packet is 
originated from IP address 9.9.9.9 and port 18982, and 
sent to IP address 172.16.112.50 and port 79 using the 
protocol finger, and the connection duration is 1 
second, then most likely it is a network attack of type 
neptune that may eventually cause the destination host 
out of service. 

Each rule is encoded as a chromosome using a fixed 
length vector, where each network feature is encoded 
using one or more genes of different types (see the 
second and third column of Table 1). In the above 
example, the encoded form of the rule would look like 
as follows: 

{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 112, 50, 1} 

To make the rules more general, wildcards are 
allowed in several network features. In case of a 
wildcard, the corresponding gene is encoded as -1. For 
example, if the above rule was generalized to be 
applicable to all packets originated from network 
9.9.*.*, then the rule would be encoded as: 

{0, 0, 1, 2, 18982, 79, 9, 9, -1, -1, 172, 16, 112, 50, 1} 

4.2. Fitness Function 

To determine the fitness of a rule, the support-
confidence framework [8] is used. If a rule is 
represented as if A then B, then the fitness of the rule is 
determined using following equations: 

support = |A and B| / N 
confidence = |A and B| / |A| 
fitness = w1 * support + w2 * confidence 

Here, N is the total number of network connections in 
the audit data, |A| stands for the number of network 
connections matching the condition A, and |A and B| is 
the number of network connections that matches the 
rule if A then B. The weights w1 and w2 are used to 
control the balance between the two terms and have 
the default values of w1=0.2 and w2=0.8.

One of the nice properties of using this fitness 
function is that, by changing the weights w1 and w2,
the approach can be used for either simply identifying 
network intrusions or precisely classifying the types of 
intrusions. In the former case, w1 is set to 1 and w2 is 
set to 0. On the other hand, w1 = 0 and w2 = 1 for the 
latter case. Unlike other fitness functions used in the 
GA, the selection of w1 and w2 in this framework is 
not crucial to the performance of the approach. 

4.3. Detection Algorithm Overview 

Listing 1 shows the major steps of the employed 
detection algorithm as well as the training process. It 
first generates the initial population, sets the defaults 
parameters, and loads the network audit data. Then the 
initial population is evolved for a number of 
generations. In each generation, the qualities of the 
rules are firstly calculated, then a number of best-fit 
rules are selected, and finally the GA operators are 
applied to the selected rules. 

The training process starts by randomly generating 
an initial population of rules (line 1). The weights and 
fitness threshold values are initialized in line 2. Line 3 

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First  
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05) 

0-7695-2294-7/05 $20.00 © 2005 IEEE



calculates the total number of records in the audit data. 
Lines 4-18 calculate the fitness of each rule and select 
the best-fit rules into new population. Lines 19-22 
apply the crossover and mutation operators to each rule 
in the new population. Finally, line 23 checks and 
decides whether to terminate the training process or to 
enter the next generation to continue the evolution 
process.

Algorithm : Rule set generation using genetic algorithm. 
Input       : Network audit data, number of generations,

and population size. 
Output      : A set of classification rules. 

1. Initialize the population 
2. W1 = 0.2, W2 = 0.8, T = 0.5 
3. N = total number of records in the training set 
4. For each chromosome in the population 
5. A = 0, AB = 0 
6.     For each record in the training set 
7.         If the record matches the chromosome 
8. AB = AB + 1 
9.         End if 
10.       If the record matches only the “condition” part 
11. A = A + 1 
12.        End if 
13.    End for
14.    Fitness = W1 * AB / N + W2 * AB / A
15.    If Fitness > T
16.         Select the chromosome into new population 
17.    End if 
18. End for 
19. For each chromosome in the new population 
20.       Apply crossover operator to the chromosome 
21.       Apply mutation operator to the chromosome 
22. End for 
23. If number of generations is not reached, goto line 4 

Listing 1. Major steps of the detection algorithm. 

A similar technique of generating rules using a GA 
is used in Li’s approach [7]. However, the approach 
proposed in this study differs with Li’s method in two 
aspects: 1) the definition of fitness function; and 2) the 
representation of rules. First, Li’s method uses a 
simple form of weighted sum as fitness function, in 
which weights are used to indicate the significance of 
each network feature. The weight values are crucial to 
the final detection performance. For practical usage, 
additional techniques, for example artificial neural 
networks, are required to accurately determine those 
values. Second, Li’s approach encodes only the 
“condition” parts of the rules so the method is only 

suitable for detecting network anomalies. In contrast, 
our approach uses the support-confidence framework 
as fitness function and their values can be directly 
computed from historical data. Moreover, both 
“condition” and “outcome” of a rule are included in 
encoding in our approach. This has led the benefit of 
precisely detecting the types of network intrusions.

When comparing to Lu’s method [8], the same 
fitness function is used in both methods, however, our 
approach uses GA rather than GP to derive the 
classification rules. GP has the advantage of 
representing complex rules, but often more training 
data and longer training period are required.

5. IDS Implementation 

The proposed method is implemented using the 
Java language, and it is built on top of a third party 
software package ECJ [14]. ECJ is a comprehensive 
GA/GP Java toolkit developed and maintained by the 
ECLab of George Manson University. The package 
provides a rich set of GA foundation classes. When 
using ECJ to solve user problems, one of two ways can 
be used: using the full power of ECJ or only using the 
ECJ foundation classes. In the former case, minimal 
programming is required and configuration files are 
heavily used. In the latter case, more programming 
effort is involved but it allows more flexibilities and 
better user customizations. We adopted the second 
approach, mainly because the genes in our approach 
have different data types.

The implementation contains two systems: an 
offline training system for deriving rules from 
historical data, and an online detection system that uses 
the generated rules to classify incoming network 
connections in real-time environment. Figure 2 shows 
the high-level class diagram of the training system. 
Four types of classes are present in the diagram: 

A main class (Main) that integrates all 
components and records the generated rules. 
A class (DarpaReader)that interfaces with 
DARPA data. This class reads and preprocesses 
the DARPA data. 
Classes that interface with ECJ include 
Initializer, Individual, Evaluator,
Fitness, and Breeder. These classes are 
extended from the abstract counterparts of ECJ.
The classes below the thick horizontal line are 
base classes from the ECJ package [14]. An "ec" 
prefix is used in each of the class names to 
indicate that. 
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When the training process starts, the 
Initializer first initializes the population with a 
number of randomly generated individuals. Then the 
GA is executed for a number of generations, each 
generation contains following two steps: 

1) The classes Evaluator and Fitness are used 
to select a set of best-fit individuals from the 
population; and 

2) The class Breeder applies other genetic 
operators, i.e. crossover and mutation, to each 
individual with a certain probability. 

Figure 2. High-level class diagram of the training system. 

6. Experimental Results 

6.1. Training and Testing Data 

The DARPA data from MIT Lincoln Laboratory 
[13] is broadly used to evaluate IDSs. In this study, 
two subsets were extracted from the 1998 DARPA 
data and used as the training and testing datasets. Each 
record of the datasets consists of 9 network features 
and 1 manually assigned record type. Six network 
features were used in the GA [7, 9], which are 
connection duration, protocol, source port, destination
port, source IP address, and destination IP address.
The record type indicates whether a record is a normal 
network connection or a particular network intrusion. 
Table 2 shows the distributions of record types in 
training and testing datasets. The first row shows the 
numbers of normal network packets, while the second 
and third rows give the distributions of two network 
attacks.

As shown in Table 2, most network packets in the 
selected datasets are normal, and two kinds of network 
attacks are present: Portsweep and Pod. Portsweep is a 

kind of attack that sweeps through many ports to 
determine which services are supported on a single 
host. Pod is a denial of service attack that keeps 
pinging a host until the service is not available.

Table 2. The distributions of record types. 

Record Type Training Set Testing Set 
Normal 48886 27322 
Portsweep 1804 1009 
Pod 450 241 
Total 51144 28574 

6.2. Experiments 

Two experiments have been conducted. In the first 
experiment, the system was trained with the training 
dataset, and the default fitness function and the GA 
parameters were used, i.e., w1=0.2, w2=0.8, 5000 
generations, 500 initial rules in the population, 
crossover rate of 0.5, two-point crossover, and 
mutation rate of 0.02. When the training process was 
finished, the top 20 best quality rules were taken as the 
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final classification rules. The rules were then used to 
classify the training data and the testing data 
respectively. The results are presented in Table 3.

Table 3. Results (detection rates) of Experiment 1. 

Record Type Training Set Testing Set 
Normal 97.7% 94.2% 
Portsweep 91.8% 67.4% 
Pod 94.3% 78% 

The experimental results show that the proposed 
method yielded good detection rates when using the 
generated rules to classify the training data itself (the 
second column in the table). That is what we expected. 
The detection rates could be higher if the fitness 
function and the GA parameters were chosen more 
appropriately. When the resulting rules were used to 
classify the testing dataset, the detection rates of 
network attacks were decreased by around 20% (the 
third column in the table). The results have indicated 
that the generated rules were biased to the training 
data. This is a typical over-fitting problem inherent in 
major learning techniques, and this problem may be 
solved in the following two ways: 1) have less number 
of generations when training the system; or 2) use less 
number of best-fit rules when classifying new network 
data. In either approach, an appropriate number (i.e.,
number of generations or number of best-fit rules) has 
to be found. This is often done by trial and error. 

In the second experiment, the training data was 
employed to train the system, and the default GA 
parameters were used. The top 20 best-fit final rules 
were used to classify the training data. The experiment 
investigated how the two weights of the fitness 
function can be used to steer the system to simply 
detect general network intrusions or to precisely 
classify the types of intrusions. The experiment was 
repeated for two kinds of weight settings: 1) w1=0,
w2=1; and 2) w1=1, w2=0. Table 4 shows the 
experimental results. 

Table 4. Results (detection rates) of Experiment 2. 

Record Type w1=0, w2=1 w1=1, w2=0
Normal 97.9% 98.0% 
Portsweep 94.9% 35.4% 
Pod 96.1% 25.6% 
Anomaly 95.7% 96.3% 

An additional row (the last row) has been added to 
Table 4, which shows the percentages of network 
intrusions being correctly detected, without 

considering their attack types. When an intrusion of a 
specific type (Portsweep or Pod) is detected, it is also 
classified as an anomaly. As indicated in the table, 
when w2 was set to 1, the detection rates of network 
attacks Portsweep and Pod were fairly high (second 
column). On the other hand, when w1 was set to 1 and 
w2 was set to 0, the detection rates for particular 
attacks were poor, but the total detection rate of 
network intrusions remained high (third column).  

7. Conclusions and Recommendations 

In this paper, a method of applying genetic 
algorithms for network intrusion detection is 
presented. A software is implemented for the presented 
method, and its architecture and operations are 
described in detail using high level class diagram and 
pseudo-code. A number of experiments have been 
carried out using a benchmark data set in order to show 
the efficacy of the developed software. One of the 
major advantages of this technique is due to the fact 
that in the real world, the types of intrusions change 
and become complicated very rapidly. The proposed 
detection system can upload and update new rules to 
the systems as the new intrusions become known. 
Therefore, it is cost effective and adaptive. 

A GA is used to derive a set of classification rules 
from network audit data. Seven network features 
including both categorical and quantitative data fields 
were used when encoding and deriving the rules. A 
simple but efficient and flexible fitness function, i.e.
the support-confidence framework, is used to select the 
appropriate rules. Depending on the selection of fitness 
function weight values, the generated rules can be used 
to either generally detect network intrusions or 
precisely classify the types of intrusions.

The method has been implemented using Java and 
the third party package ECJ. The implementation was 
tested using selected subsets of the 1998 DARPA data. 
Experimental results showed that the proposed method 
worked effectively for the selected datasets and has the 
flexibility to be used in different ways to meet users’ 
special requirements.  

However, some limitations of the method are also 
observed. First, the generated rules were biased to the 
training dataset. This issue may be resolved by 
carefully selecting either the number of generations in 
the training phase or the number of top best-fit rules in 
the intrusion detection phase. The problem of low 
extrapolation power of the presented technique to a 
new dataset is primarily due to some inherent 
shortcomings associated with the most soft computing 
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techniques, and this paper is mainly an initial attempt 
towards overcoming those various shortcomings in the 
context of network intrusion detection. Nevertheless, 
the deployment of a number of complimentary 
techniques and some potential heuristics are being 
investigated to resolve this problem. Second, while the 
support-confidence framework is simple to implement 
and provides improved accuracy to final rules, it 
requires the whole training data to be loaded into 
memory before any computation. For large training 
datasets, it is neither efficient nor feasible. The use of 
some sorts of cache technologies may solve the 
problem.  
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