
Chapter 12Chapter 12

Coping with the Coping with the
Limitations of Limitations of
Algorithm PowerAlgorithm Power

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

12-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Tackling Difficult Combinatorial Tackling Difficult Combinatorial
ProblemsProblems

There are two principal approaches to tackling difficult There are two principal approaches to tackling difficult
combinatorial problems (NP-hard problems):combinatorial problems (NP-hard problems):

 Use a strategy that guarantees solving the problem exactly Use a strategy that guarantees solving the problem exactly
but doesn’t guarantee to find a solution in polynomial timebut doesn’t guarantee to find a solution in polynomial time

 Use an approximation algorithm that can find an Use an approximation algorithm that can find an
approximate (sub-optimal) solution in polynomial timeapproximate (sub-optimal) solution in polynomial time

12-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Exact Solution StrategiesExact Solution Strategies
 exhaustive searchexhaustive search (brute force) (brute force)

• useful only for small instancesuseful only for small instances

 dynamic programmingdynamic programming

• applicable to some problems (e.g., the knapsack problem)applicable to some problems (e.g., the knapsack problem)

 backtrackingbacktracking

• eliminates some unnecessary cases from considerationeliminates some unnecessary cases from consideration

• yields solutions in reasonable time for many instances but worst yields solutions in reasonable time for many instances but worst
case is still exponentialcase is still exponential

 branch-and-boundbranch-and-bound

• further refines the backtracking idea for optimization problemsfurther refines the backtracking idea for optimization problems

12-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

BacktrackingBacktracking

 Construct the Construct the state-space treestate-space tree

• nodes: partial solutionsnodes: partial solutions

• edges: choices in extending partial solutionsedges: choices in extending partial solutions

 Explore the state space tree using depth-first searchExplore the state space tree using depth-first search

 ““Prune” Prune” nonpromising nodesnonpromising nodes

• dfs stops exploring subtrees rooted at nodes that cannot dfs stops exploring subtrees rooted at nodes that cannot
lead to a solution and backtracks to such a node’s parent lead to a solution and backtracks to such a node’s parent
to continue the searchto continue the search

12-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example: Example: nn-Queens Problem-Queens Problem

Place Place n n queens on an queens on an n-n-byby-n-n chess board so that no two of them chess board so that no two of them
are in the same row, column, or diagonalare in the same row, column, or diagonal

1 2 3 4

1

2

3

4

queen 1

queen 2

queen 3

queen 4

12-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

State-Space Tree of the 4-Queens ProblemState-Space Tree of the 4-Queens Problem

12-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example: Hamiltonian Circuit ProblemExample: Hamiltonian Circuit Problem

d

a b

e

c f

0

0

05

11 5

3

38

3

with 3

with 5

with 6

w/o 3

w/ o 5

w/ o 6 with 6 w/ o 6

w/ o 5 with 5

X X X X

X

14+ 7> 15 3+7 <15 11 +7> 14 5+7<1 5

0+ 13<15
with 6

X
9+7>15

14 98

8

w/ o 7

w/ o 6

X
8< 15

solution

with 7

15

12-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Branch-and-BoundBranch-and-Bound

 An enhancement of backtrackingAn enhancement of backtracking

 Applicable to optimization problems Applicable to optimization problems

 For each node (partial solution) of a state-space tree, For each node (partial solution) of a state-space tree,
computes a bound on the value of the objective function for computes a bound on the value of the objective function for
all descendants of the node (extensions of the partial all descendants of the node (extensions of the partial
solution)solution)

 Uses the bound for:Uses the bound for:
• ruling out certain nodes as “nonpromising” to prune the ruling out certain nodes as “nonpromising” to prune the

tree – if a node’s bound is not better than the best tree – if a node’s bound is not better than the best
solution seen so farsolution seen so far

• guiding the search through state-spaceguiding the search through state-space

12-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Select one element in each row of the cost matrix Select one element in each row of the cost matrix CC so that: so that:
• no two selected elements are in the same columnno two selected elements are in the same column
• the sum is minimizedthe sum is minimized

ExampleExample
 Job 1 Job 2 Job 3 Job 4

 Person a 9 2 7 8
 Person b 6 4 3 7
 Person c 5 8 1 8
 Person d 7 6 9 4

Lower boundLower bound: Any solution to this problem will have total cost: Any solution to this problem will have total cost
 at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4) at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Example: Assignment ProblemExample: Assignment Problem

12-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example: First two levels of the state-space treeExample: First two levels of the state-space tree

12-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example (cont.)Example (cont.)

12-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example: Complete state-space treeExample: Complete state-space tree

12-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example: Traveling Salesman ProblemExample: Traveling Salesman Problem

12-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Approximation ApproachApproximation Approach

Apply a fast (i.e., a polynomial-time) approximation algorithm Apply a fast (i.e., a polynomial-time) approximation algorithm
to get a solution that is not necessarily optimal but hopefully to get a solution that is not necessarily optimal but hopefully
close to it close to it

Accuracy measures: Accuracy measures:
accuracy ratioaccuracy ratio of an approximate solution of an approximate solution ssaa

 rr((ssaa) = f() = f(ssaa) / f() / f(ss*) for minimization problems*) for minimization problems

 rr((ssaa) = f() = f(ss*) / f(*) / f(ssaa) for maximization problems) for maximization problems

where f(where f(ssaa) and f() and f(ss*) are values of the objective function f for *) are values of the objective function f for
the approximate solution the approximate solution ssaa and actual optimal solution and actual optimal solution ss**

performance ratioperformance ratio of the algorithm A of the algorithm A
 the lowest upper bound of the lowest upper bound of rr((ssaa) on all instances) on all instances

12-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Nearest-Neighbor Algorithm for TSPNearest-Neighbor Algorithm for TSP

Starting at some city, always go to the nearest unvisited city, Starting at some city, always go to the nearest unvisited city,
and, after visiting all the cities, return to the starting oneand, after visiting all the cities, return to the starting one

 AA BB

 DD CC

Note: Nearest-neighbor tour may depend on the starting cityNote: Nearest-neighbor tour may depend on the starting city

Accuracy: RAccuracy: RA A = = ∞∞ (un (unbounded above) – make the length of ADbounded above) – make the length of AD

 arbitrarily large in the above example arbitrarily large in the above example

1

6 2
3 3

1

ssa a : A – B – C – D – A of length 10: A – B – C – D – A of length 10

ss* * : A – B – D – C – A of length 8: A – B – D – C – A of length 8

12-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

 Multifragment-Heuristic AlgorithmMultifragment-Heuristic Algorithm

Stage 1: Sort the edges in nondecreasing order of weights. Stage 1: Sort the edges in nondecreasing order of weights.
Initialize the set of tour edges to be constructed to Initialize the set of tour edges to be constructed to
empty setempty set

Stage 2: Add next edge on the sorted list to the tour, skippingStage 2: Add next edge on the sorted list to the tour, skipping
those whose addition would’ve created a vertex ofthose whose addition would’ve created a vertex of
degree 3 or a cycle of length less than degree 3 or a cycle of length less than nn. Repeat. Repeat
this step until a tour of length this step until a tour of length n n is obtainedis obtained

Note: RNote: RA A = = ∞∞, but this algorithm tends to produce better tours , but this algorithm tends to produce better tours

 than the nearest-neighbor algorithm than the nearest-neighbor algorithm

12-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Twice-Around-the-Tree AlgorithmTwice-Around-the-Tree Algorithm

Stage 1: Construct a minimum spanning tree of the graph Stage 1: Construct a minimum spanning tree of the graph
 (e.g., by Prim’s or Kruskal’s algorithm) (e.g., by Prim’s or Kruskal’s algorithm)

Stage 2: Starting at an arbitrary vertex, create a path that goesStage 2: Starting at an arbitrary vertex, create a path that goes
 twice around the tree and returns to the same vertex twice around the tree and returns to the same vertex

Stage 3: Create a tour from the circuit constructed in Stage 2 byStage 3: Create a tour from the circuit constructed in Stage 2 by
 making shortcuts to avoid visiting intermediate vertices making shortcuts to avoid visiting intermediate vertices
 more than once more than once

Note: RNote: RA A = = ∞∞ for general instances, but this algorithm tends to for general instances, but this algorithm tends to

 produce better tours than the nearest-neighbor algorithm produce better tours than the nearest-neighbor algorithm

12-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

ExampleExample
a

db

e

4

12

7

8

9 9

c

6 10

8 11

a

db

e

c

Walk: a – b – c – b – d – e – d – b – a Tour: a – b – c – d – e – aWalk: a – b – c – b – d – e – d – b – a Tour: a – b – c – d – e – a

12-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Christofides AlgorithmChristofides Algorithm

Stage 1: Construct a minimum spanning tree of the graph Stage 1: Construct a minimum spanning tree of the graph

Stage 2: Add edges of a minimum-weight matching of all the oddStage 2: Add edges of a minimum-weight matching of all the odd
 vertices in the minimum spanning tree vertices in the minimum spanning tree

Stage 3: Find an Eulerian circuit of the multigraph obtained inStage 3: Find an Eulerian circuit of the multigraph obtained in
 Stage 2 Stage 2

Stage 3: Create a tour from the path constructed in Stage 2 byStage 3: Create a tour from the path constructed in Stage 2 by
 making shortcuts to avoid visiting intermediate vertices making shortcuts to avoid visiting intermediate vertices
 more than once more than once

RRA A = = ∞∞ for general instances, but it tends to produce better for general instances, but it tends to produce better
 tours than the twice-around-the-minimum-tree alg. tours than the twice-around-the-minimum-tree alg.

12-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example:Example: Christofides AlgorithmChristofides Algorithm
a

db

e

4

12

7

8

9 9

c

6 10

8 11

a

db

e

4 7

8

c

6

114 a

db

e

7

c

6

114 9

12-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Euclidean InstancesEuclidean Instances

TheoremTheorem If If P P ≠≠ NP, NP, there exists no approximation algorithmthere exists no approximation algorithm
 for TSP with a finite performance ratio.for TSP with a finite performance ratio.
DefinitionDefinition An instance of TSP is called An instance of TSP is called EuclideanEuclidean, if its , if its
 distances satisfy two conditions: distances satisfy two conditions:
1. 1. symmetrysymmetry d[d[ii, , jj] = d[] = d[jj, , ii] for any pair of cities] for any pair of cities ii and and jj
2. 2. triangle inequality triangle inequality d[d[ii, , jj]] ≤≤ d[d[ii, , kk] + d[] + d[kk, , jj] for any cities] for any cities ii, , jj, , kk

For Euclidean instancesFor Euclidean instances::
 approx. tour length / optimal tour length approx. tour length / optimal tour length ≤≤ 0.5(0.5(⌈⌈loglog22 nn⌉⌉ + 1) + 1)

for nearest neighbor and multifragment heuristic;for nearest neighbor and multifragment heuristic;
 approx. tour length / optimal tour length approx. tour length / optimal tour length ≤≤ 2 2
for twice-around-the-tree;for twice-around-the-tree;
 approx. tour length / optimal tour length approx. tour length / optimal tour length ≤≤ 1.5 1.5
 for Christofidesfor Christofides

12-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Local Search Heuristics for TSPLocal Search Heuristics for TSP

Start with some initial tour (e.g., nearest neighbor). On each Start with some initial tour (e.g., nearest neighbor). On each
iteration, explore the current tour’s neighborhood by exchanging iteration, explore the current tour’s neighborhood by exchanging
a few edges in it. If the new tour is shorter, make it the current a few edges in it. If the new tour is shorter, make it the current
tour; otherwise consider another edge change. If no change tour; otherwise consider another edge change. If no change
yields a shorter tour, the current tour is returned as the output.yields a shorter tour, the current tour is returned as the output.

Example of a 2-changeExample of a 2-change

C1 C2

C
4

C
3

C1 C2

C
4

C
3

12-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

 Example of a 3-changeExample of a 3-change

C1 C2

C5 C4

C
3

C
6

C1 C2

C5 C4

C3C6

C1 C2

C5 C4

C3C6

12-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Empirical Data forEmpirical Data for Euclidean InstancesEuclidean Instances

12-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Greedy Algorithm for Knapsack ProblemGreedy Algorithm for Knapsack Problem

Step 1: Order the items in decreasing order of relative values: Step 1: Order the items in decreasing order of relative values:
 vv11//ww11≥≥… … ≥≥ vvnn//wwnn

Step 2: Select the items in this order skipping those that don’t Step 2: Select the items in this order skipping those that don’t
 fit into the knapsackfit into the knapsack

Example: The knapsack’s capacity is 16Example: The knapsack’s capacity is 16
itemitem weightweight value v/w value v/w
 11 2 2 $40 $40 20 20
 22 5 5 $30 $30 6 6
 33 10 10 $50 5 $50 5
 44 5 5 $10 2 $10 2

AccuracyAccuracy
 RRAA is unbounded (e.g., is unbounded (e.g., nn = 2, = 2, CC = = mm, , ww11=1, =1, vv11=2, =2, ww22==mm, , vv22==mm))
 yields exact solutions for the continuous versionyields exact solutions for the continuous version

12-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Approximation Scheme for Knapsack ProblemApproximation Scheme for Knapsack Problem

Step 1: Order the items in decreasing order of relative values: Step 1: Order the items in decreasing order of relative values:
 vv11//ww11≥≥… … ≥≥ vvnn//wwnn

Step 2: For a given integer parameter Step 2: For a given integer parameter k, k, 0 0 ≤≤ k k ≤≤ n, n, generate allgenerate all
subsets of subsets of k k items or less and for each of those that fit theitems or less and for each of those that fit the
knapsack, add the remaining items in decreasingknapsack, add the remaining items in decreasing
order of their value to weight ratiosorder of their value to weight ratios

Step 3: Find the most valuable subset among the subsets Step 3: Find the most valuable subset among the subsets
generated in Step 2 and return it as the algorithm’s generated in Step 2 and return it as the algorithm’s
outputoutput

• Accuracy: f(Accuracy: f(ss*) / f(*) / f(ssaa)) ≤≤ 1 + 1/ 1 + 1/k k for any instance of size for any instance of size nn
• Time efficiency: O(Time efficiency: O(knknk+k+11))
• There are There are fully polynomial schemesfully polynomial schemes: algorithms with : algorithms with

polynomial running time as functions of both polynomial running time as functions of both n n and and kk

12-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Bin Packing Problem: First-Fit AlgorithmBin Packing Problem: First-Fit Algorithm

First-Fit First-Fit ((FFFF) Algorithm) Algorithm: Consider the items in the order : Consider the items in the order
given and place each item in the first available bin with enough given and place each item in the first available bin with enough
room for it; if there are no such bins, start a new oneroom for it; if there are no such bins, start a new one

Example: Example: n n = 4, = 4, ss11 = 0.4, = 0.4, ss22 = 0.2, = 0.2, ss33 = 0.6, = 0.6, ss44 = 0.7 = 0.7

AccuracyAccuracy
 Number of extra bins never exceeds optimal by more thanNumber of extra bins never exceeds optimal by more than
 70% (i.e., R 70% (i.e., RA A ≤≤ 1.7) 1.7)

 Empirical average-case behavior is much better. (In one Empirical average-case behavior is much better. (In one
 experiment with 128,000 bins, the relative error was found experiment with 128,000 bins, the relative error was found
 to be no more than 2%.) to be no more than 2%.)

12-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Bin Packing: First-Fit Decreasing AlgorithmBin Packing: First-Fit Decreasing Algorithm

First-Fit Decreasing First-Fit Decreasing ((FFDFFD)) AlgorithmAlgorithm: Sort the items in : Sort the items in
decreasing order (i.e., from the largest to the smallest). Then decreasing order (i.e., from the largest to the smallest). Then
proceed as above by placing an item in the first bin in which it proceed as above by placing an item in the first bin in which it
fits and starting a new bin if there are no such binsfits and starting a new bin if there are no such bins

Example: Example: n n = 4, = 4, ss11 = 0.4, = 0.4, ss22 = 0.2, = 0.2, ss33 = 0.6, = 0.6, ss44 = 0.7 = 0.7

AccuracyAccuracy
 Number of extra bins never exceeds optimal by more thanNumber of extra bins never exceeds optimal by more than
 50% (i.e., R 50% (i.e., RA A ≤≤ 1.5) 1.5)

 Empirical average-case behavior is much better, tooEmpirical average-case behavior is much better, too

12-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Numerical AlgorithmsNumerical Algorithms

Numerical algorithmsNumerical algorithms concern with solving mathematical concern with solving mathematical
problems such asproblems such as

 evaluating functions (e.g., evaluating functions (e.g., √√x, ex, exx, ln x, sin , ln x, sin xx))

 solving nonlinear equationssolving nonlinear equations
 finding extrema of functionsfinding extrema of functions
 computing definite integralscomputing definite integrals

Most such problems are of “continuous” nature and can be Most such problems are of “continuous” nature and can be
solved only approximatelysolved only approximately

12-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Principal Accuracy MetricsPrincipal Accuracy Metrics

 Absolute errorAbsolute error of approximation (of of approximation (of αα** by by αα))

 ||αα - - αα** ||

 Relative errorRelative error of approximation (of of approximation (of αα** by by αα))

 ||αα - - αα** | / || / |αα** ||

• undefined for undefined for αα** = 0 = 0

• often quoted in %often quoted in %

12-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Two Types of ErrorsTwo Types of Errors

 truncation errorstruncation errors
• Taylor’s polynomial approximationTaylor’s polynomial approximation

eexx ≈≈ 1 + 1 + xx + + xx22/2! + … + /2! + … + xxnn//nn!!

absolute error absolute error ≤≤ MM | |xx||nn+1+1/(/(nn+1)! where +1)! where M = M = max max eet t for 0for 0
≤≤ t t ≤≤ xx

• composite trapezoidal rulecomposite trapezoidal rule

∫∫ ff((xx))dx dx ≈≈ ((hh/2) [/2) [ff((aa) + 2) + 2ΣΣ11≤≤==i i ≤≤==n-n-11 ff((xxii) +) + ff((bb)],)], h = h = ((bb - - aa)/)/nn

absolute error absolute error ≤≤ ((b-a)hb-a)h22 M M22 / 12 where / 12 where MM22 = = max |max |ff′′′′((xx)| for)| for

a a ≤≤x x ≤≤ bb

 round-off errorsround-off errors

aa

bb

12-32Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Solving Quadratic EquationSolving Quadratic Equation

Quadratic equation Quadratic equation axax2 2 + + bx + c = bx + c = 0 (0 (aa≠≠ 0) 0)

xx1,2 1,2 = (- = (-bb ±± √√DD)/2)/2aa where where D = bD = b2 2 - 4- 4acac

Problems:Problems:
 computing square rootcomputing square root

 use Newton’s method: use Newton’s method: xxnn+1+1 = 0.5(= 0.5(xxn n + D+ D//xxnn))

 subtractive cancellationsubtractive cancellation

 use alternative formulas (see p. 411)use alternative formulas (see p. 411)

 use double precision for use double precision for D = bD = b2 2 - 4- 4acac

 other problems (overflow, etc.)other problems (overflow, etc.)

12-33Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Notes on Solving Nonlinear EquationsNotes on Solving Nonlinear Equations
 There exist no formulas with arithmetic ops. and root extractions for There exist no formulas with arithmetic ops. and root extractions for

roots of polynomialsroots of polynomials

 aannxxnn + + aan-n-11xxn-n-11 ... + a... + a00 = = 0 of degree 0 of degree nn≥≥ 5 5

 Although there exist special methods for approximating roots of Although there exist special methods for approximating roots of
polynomials, one can also use general methods forpolynomials, one can also use general methods for

 ff((xx) = 0) = 0

 Nonlinear equation Nonlinear equation ff((xx) = 0 can have one, many, infinitely many, and) = 0 can have one, many, infinitely many, and
no roots at allno roots at all

 Useful:Useful:
• sketch graph of sketch graph of ff((xx))
• separate rootsseparate roots

12-34Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Three Classic MethodsThree Classic Methods

Three classic methods for solving nonlinear equationThree classic methods for solving nonlinear equation

ff((xx) = 0) = 0

in one unknown:in one unknown:

 bisection methodbisection method

 method of false position (regula falsi)method of false position (regula falsi)

 Newton’s methodNewton’s method

12-35Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Bisection MethodBisection Method

Based onBased on

 Theorem: If Theorem: If ff((xx) is continuous on) is continuous on aa≤≤xx≤≤ bb and and ff((aa) and) and ff((bb))
have opposite signs, then have opposite signs, then ff((xx) = 0 has a root on) = 0 has a root on a a < < xx < < bb

 binary search idea binary search idea

Approximations Approximations xxnn are middle points of shrinking segmentsare middle points of shrinking segments

 ||xxnn - - xx** | | ≤≤ ((bb - - aa)/2)/2nn

 xxnn always converges to root always converges to root xx** but slower compared to others but slower compared to others

a b

f(x)

x
x 1

12-36Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Example of Bisection Method ApplicationExample of Bisection Method Application

Find the root of Find the root of

xx³ - ³ - xx - 1=0 - 1=0

with the absolute error not larger than 0.01with the absolute error not larger than 0.01

f(x) = x - x -1

x20

y

3

..

77

-0.018711-0.0187111.32031251.32031251.328125+1.328125+1.3125-1.3125-88

66

55

44

-0.296875-0.2968751.251.251.5+1.5+1.0-1.0-33

 0.8750.8751.51.52.0+2.0+1.0-1.0-22

-1.0-1.01.01.02.0+2.0+0.0-0.0-11

ff((xxnn)) xxnnbbnnaannnn

xx ≈≈ 1.3203125 1.3203125

12-37Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Method of False PositionMethod of False Position

Similar to bisection method but uses Similar to bisection method but uses xx-intercept of line through-intercept of line through

((aa, , ff((aa)) and ()) and (bb, , ff((bb)) instead of middle point of [)) instead of middle point of [aa,,bb]]

Approximations Approximations xxnn are computed by the formulaare computed by the formula

xxnn = [= [aannff((bbnn) -) - bbnnff((aann)] / [)] / [ff((bbnn) -) - ff((aann)])]

 Normally Normally xxnn converges faster than bisection method sequence converges faster than bisection method sequence
but slower than Newton’s method sequencebut slower than Newton’s method sequence

x.

.

.
f(x)

an xn bn

.

12-38Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Newton’s Method Newton’s Method

Very fast method in which Very fast method in which xxnn’s are ’s are xx-intercepts of tangent lines -intercepts of tangent lines

to the graph of to the graph of ff((xx))

Approximations Approximations xxnn are computed by the formulaare computed by the formula

xxnn+1 +1 = = xxnn - - ff((xxnn) /) / ff′′((xxnn))

x

.

.

f(x)

xnxn+1

.

n

12-39Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 12

Notes on Newton’s Method Notes on Newton’s Method

 Normally, approximations Normally, approximations xxnn converge to root very fast but converge to root very fast but

can diverge with a bad choice of initial approximation can diverge with a bad choice of initial approximation xx00

 Yields a very fast method for computing square rootsYields a very fast method for computing square roots

 xxnn+1+1 = 0.5(= 0.5(xxn n + D+ D//xxnn))

 Can be generalized to much more general equationsCan be generalized to much more general equations

