Chapter 8

Dynamic Programming
Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems.

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS.

- “Programming” here means “planning”.

- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table
Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

\[F(n) = F(n-1) + F(n-2) \]
\[F(0) = 0 \]
\[F(1) = 1 \]

• Computing the \(n \)th Fibonacci number recursively (top-down):

\[F(n) \]
\[F(n-1) \quad + \quad F(n-2) \]
\[F(n-2) \quad + \quad F(n-3) \quad F(n-3) \quad + \quad F(n-4) \]
\[\ldots \]
Example: Fibonacci numbers (cont.)

Computing the \(n \)th Fibonacci number using bottom-up iteration and recording results:

\[
\begin{align*}
F(0) &= 0 \\
F(1) &= 1 \\
F(2) &= F(1) + F(0) = 1
\end{align*}
\]

\[
\ldots
\]

\[
F(n-2) = \\
F(n-1) = \\
F(n) = F(n-1) + F(n-2)
\]

Efficiency:
- time
- space
Examples of DP algorithms

- Computing a binomial coefficient
- Warshall’s algorithm for transitive closure
- Floyd’s algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 - traveling salesman
 - knapsack
Computing a binomial coefficient by DP

Binomial coefficients are coefficients of the binomial formula:

\[(a + b)^n = C(n,0)a^n b^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0 b^n\]

Recurrence: \[C(n,k) = C(n-1,k) + C(n-1,k-1) \text{ for } n > k > 0\]

\[C(n,0) = 1, \quad C(n,n) = 1 \text{ for } n \geq 0\]

Value of \(C(n,k)\) can be computed by filling a table:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>k-1</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-1</td>
<td>C(n-1,k-1)</td>
<td>C(n-1,k)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>C(n,k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing $C(n, k)$: pseudocode and analysis

ALGORITHM Binomial(n, k)

// Computes $C(n, k)$ by the dynamic programming algorithm
// Input: A pair of nonnegative integers $n \geq k \geq 0$
// Output: The value of $C(n, k)$
for $i \leftarrow 0$ to n do
 for $j \leftarrow 0$ to min(i, k) do
 if $j = 0$ or $j = i$
 $C[i, j] \leftarrow 1$
 else $C[i, j] \leftarrow C[i - 1, j - 1] + C[i - 1, j]$
 return $C[n, k]$

Time efficiency: $\Theta(nk)$

Space efficiency: $\Theta(nk)$
Knapsack Problem by DP

Given \(n \) items of

- integer weights: \(w_1 \ w_2 \ldots \ w_n \)
- values: \(v_1 \ v_2 \ldots \ v_n \)

a knapsack of integer capacity \(W \)

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first \(i \) items and capacity \(j \) \((j \leq W)\).

Let \(V[i,j] \) be optimal value of such instance. Then

\[
\max \{V[i-1,j], \ v_i + V[i-1,j-w_i]\} \quad \text{if } j - w_i \geq 0
\]

\[
V[i,j] = \begin{cases}
V[i-1,j] & \text{if } j - w_i < 0
\end{cases}
\]

Initial conditions: \(V[0,j] = 0 \) and \(V[i,0] = 0 \)
Knapsack Problem by DP (example)

Example: Knapsack of capacity $W = 5$

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$12</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$20</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>$15</td>
</tr>
</tbody>
</table>

Capacity j

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & & & & & \\
\end{array}
\]

$w_1 = 2, v_1 = 12$

$w_2 = 1, v_2 = 10$

$w_3 = 3, v_3 = 20$

$w_4 = 2, v_4 = 15$

?
Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

```
  0  0  1  0
  1  0  0  1
  0  0  0  0
  0  1  0  0
```

```
  0  0  1  0
  1  1  1  1
  0  0  0  0
  1  1  1  1
```
Warshall’s Algorithm

Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices $R^{(0)}$, \ldots, $R^{(k)}$, \ldots, $R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate.

Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure).
Warshall’s Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices $1, \ldots, k$ allowed as intermediate.

$$R^{(k)}[i,j] = \begin{cases} R^{(k-1)}[i,j] & \text{(path using just } 1, \ldots, k-1) \\ or & \\ R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j] & \text{(path from } i \text{ to } k \\ and from } k \text{ to } i \text{ using just } 1, \ldots, k-1) \end{cases}$$
Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j] \text{ or } (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j])$$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$.

Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1’s in $R^{(k-1)}$.
Warshall's Algorithm (example)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>R(0) =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>R(1) =</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
R^{(0)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
\]

\[
R^{(1)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
\]

\[
R^{(2)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}
\]

\[
R^{(3)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}
\]

\[
R^{(4)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}
\]
Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R^{(0)} ← A

for k ← 1 to n do
 for i ← 1 to n do
 for j ← 1 to n do
 R^{(k)}[i,j] ← R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] and R^{(k-1)}[k,j])

return R^{(n)}

Time efficiency: Θ(n^3)

Space efficiency: Matrices can be written over their predecessors
Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, \ldots, $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:
Floyd’s Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1,\ldots,k$ as intermediate.

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], \ D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$
Floyd’s Algorithm (example)

D^{(0)} =
\begin{bmatrix}
0 & \infty & 3 & \infty \\
2 & 0 & \infty & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \infty & 0
\end{bmatrix}

D^{(1)} =
\begin{bmatrix}
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & 9 & 0
\end{bmatrix}

D^{(2)} =
\begin{bmatrix}
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
9 & 7 & 0 & 1 \\
6 & \infty & 9 & 0
\end{bmatrix}

D^{(3)} =
\begin{bmatrix}
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
9 & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{bmatrix}

D^{(4)} =
\begin{bmatrix}
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
7 & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{bmatrix}
Floyd’s Algorithm (pseudocode and analysis)

```
ALGORITHM Floyd(W[1..n, 1..n])

    // Implements Floyd’s algorithm for the all-pairs shortest-paths problem
    // Input: The weight matrix W of a graph with no negative-length cycle
    // Output: The distance matrix of the shortest paths’ lengths
    D ← W // is not necessary if W can be overwritten
    for k ← 1 to n do
        for i ← 1 to n do
            for j ← 1 to n do
                D[i, j] ← min{D[i, j], D[i, k] + D[k, j]}
    return D
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too
Problem: Given n keys $a_1 < ... < a_n$ and probabilities $p_1 \leq ... \leq p_n$ searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by $C(2n,n)/(n+1)$, which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?
DP for Optimal BST Problem

Let $C[i,j]$ be minimum average number of comparisons made in $T[i,j]$, optimal BST for keys $a_i < ... < a_j$, where $1 \leq i \leq j \leq n$. Consider optimal BST among all BSTs with some a_k ($i \leq k \leq j$) as their root; $T[i,j]$ is the best among them.

$$C[i,j] = \min_{i \leq k \leq j} \{ p_k \cdot 1 + \sum_{s = i}^{k-1} p_s \text{ (level } a_s \text{ in } T[i,k-1] + 1) + \sum_{s = k+1}^{j} p_s \text{ (level } a_s \text{ in } T[k+1,j] + 1) \}$$
DP for Optimal BST Problem (cont.)

After simplifications, we obtain the recurrence for $C[i,j]$:

$$C[i,j] = \min_{i \leq k \leq j} \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{j} p_s \quad \text{for } 1 \leq i \leq j \leq n$$

$$C[i,i] = p_i \quad \text{for } 1 \leq i \leq j \leq n$$
The tables below are filled diagonal by diagonal: the left one is filled using the recurrence

\[C[i,j] = \min_{i \leq k \leq j} \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{j} p_s, \quad C[i,i] = p_i; \]

the right one, for trees' roots, records \(k \)'s values giving the minima.
ALGORITHM OptimalBST(P[1..n])

// Finds an optimal binary search tree by dynamic programming
// Input: An array P[1..n] of search probabilities for a sorted list of n keys
// Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees’ roots in the optimal BST

for i ← 1 to n do
 C[i, i − 1] ← 0
 C[i, i] ← P[i]
 R[i, i] ← i
C[n + 1, n] ← 0

for d ← 1 to n − 1 do // diagonal count
 for i ← 1 to n − d do
 j ← i + d
 minval ← ∞
 for k ← i to j do
 if C[i, k − 1] + C[k + 1, j] < minval
 minval ← C[i, k − 1] + C[k + 1, j]; kmin ← k
 R[i, j] ← kmin
 sum ← P[i]; for s ← i + 1 to j do sum ← sum + P[s]
 C[i, j] ← minval + sum

return C[1, n], R
Analysis DP for Optimal BST Problem

Time efficiency: \(\Theta(n^3) \) but can be reduced to \(\Theta(n^2) \) by taking advantage of monotonicity of entries in the root table, i.e., \(R[i,j] \) is always in the range between \(R[i,j-1] \) and \(R[i+1,j] \)

Space efficiency: \(\Theta(n^2) \)

Method can be expended to include unsuccessful searches