
Chapter 3Chapter 3

Brute ForceBrute Force

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

3-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute ForceBrute Force

A straightforward approach, usually based directly on the A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involvedproblem’s statement and definitions of the concepts involved

Examples:Examples:

4.4. Computing Computing aan n ((a a > 0, > 0, nn a nonnegative integer) a nonnegative integer)

6.6. Computing Computing nn!!

8.8. Multiplying two matricesMultiplying two matrices

10.10. Searching for a key of a given value in a listSearching for a key of a given value in a list

3-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Sorting AlgorithmBrute-Force Sorting Algorithm

Selection SortSelection Sort Scan the array to find its smallest element and Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements. smallest among them and swap it with the second elements.

Generally, on pass Generally, on pass i i (0 (0 ≤≤ i i ≤≤ n-n-2), find the smallest element in 2), find the smallest element in
AA[[i..n-i..n-1] and swap it with 1] and swap it with AA[[ii]:]:

 AA[0] [0] ≤≤ ≤≤ AA[[ii-1] | -1] | AA[[ii], . . . ,], . . . , AA[[minmin], . . .,], . . ., AA[[nn-1] -1]

 in their final positionsin their final positions

Example: 7 3 2 5Example: 7 3 2 5

3-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Analysis of Selection SortAnalysis of Selection Sort

Time efficiency:Time efficiency:

Space efficiency:Space efficiency:

Stability:Stability:

3-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force String MatchingBrute-Force String Matching

 patternpattern: a string of : a string of mm characters to search for characters to search for
 texttext: a (longer) string of : a (longer) string of nn characters to search in characters to search in
 problem: find a substring in the text that matches the patternproblem: find a substring in the text that matches the pattern

Brute-force algorithmBrute-force algorithm

Step 1 Align pattern at beginning of textStep 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character ofStep 2 Moving from left to right, compare each character of
 pattern to the corresponding character in text until pattern to the corresponding character in text until

– all characters are found to match (successful search); orall characters are found to match (successful search); or

– a mismatch is detecteda mismatch is detected

Step 3 While pattern is not found and the text is not yetStep 3 While pattern is not found and the text is not yet
 exhausted, realign pattern one position to the right and exhausted, realign pattern one position to the right and
 repeat Step 2 repeat Step 2

3-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Examples of Brute-Force String MatchingExamples of Brute-Force String Matching

1.1. Pattern: Pattern: 001011 001011

 Text: Text: 10010101101001100101111010 10010101101001100101111010

5.5. Pattern: Pattern: happyhappy

 Text: Text: It is never too late to have a happy childhood.It is never too late to have a happy childhood.

3-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Pseudocode and Efficiency Pseudocode and Efficiency

Efficiency:Efficiency:

3-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Polynomial EvaluationBrute-Force Polynomial Evaluation

Problem: Find the value of polynomialProblem: Find the value of polynomial
 pp((xx) =) = aannxxnn + + aann-1-1xxnn-1 -1 +… ++… + a a11xx1 1 + + aa0 0

 at a point at a point xx = = xx00

Brute-force algorithmBrute-force algorithm

Efficiency:Efficiency:

pp ←← 0.00.0

forfor ii ←← nn downtodownto 0 0 dodo

 powerpower ←← 1 1

 forfor jj ←← 1 1 toto ii dodo //compute //compute xxii

 powerpower ←← powerpower ∗∗ xx

 pp ←← pp + + aa[[ii]] ∗∗ powerpowerreturnreturn pp

3-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Polynomial Evaluation: ImprovementPolynomial Evaluation: Improvement

We can do better by evaluating from right to left:We can do better by evaluating from right to left:

Better brute-force algorithmBetter brute-force algorithm

Efficiency:Efficiency:

pp ←← aa[0][0]

powerpower ←← 1 1

forfor ii ←← 1 1 toto nn dodo

 powerpower ←← powerpower ∗∗ x x

 pp ←← p p + + aa[[ii]] ∗∗ powerpower
returnreturn pp

3-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Closest-Pair ProblemClosest-Pair Problem

Find the two closest points in a set of Find the two closest points in a set of nn points (in the two- points (in the two-
dimensional Cartesian plane).dimensional Cartesian plane).

Brute-force algorithmBrute-force algorithm

 Compute the distance between every pair of distinct pointsCompute the distance between every pair of distinct points

 and return the indexes of the points for which the distance and return the indexes of the points for which the distance
is the smallest.is the smallest.

3-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Closest-Pair Brute-Force Algorithm (cont.)Closest-Pair Brute-Force Algorithm (cont.)

 Efficiency:Efficiency:

 How to make it faster?How to make it faster?

3-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Brute-Force Strengths and WeaknessesBrute-Force Strengths and Weaknesses

 StrengthsStrengths
• wide applicabilitywide applicability
• simplicitysimplicity
• yields reasonable algorithms for some important problemsyields reasonable algorithms for some important problems

(e.g., matrix multiplication, sorting, searching, string (e.g., matrix multiplication, sorting, searching, string
matching)matching)

 WeaknessesWeaknesses
• rarely yields efficient algorithms rarely yields efficient algorithms
• some brute-force algorithms are unacceptably slow some brute-force algorithms are unacceptably slow
• not as constructive as some other design techniquesnot as constructive as some other design techniques

3-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Exhaustive SearchExhaustive Search

A brute force solution to a problem involving search for an A brute force solution to a problem involving search for an
element with a special property, usually among combinatorial element with a special property, usually among combinatorial
objects such as permutations, combinations, or subsets of a objects such as permutations, combinations, or subsets of a
set.set.

Method:Method:
• generate a list of all potential solutions to the problem in a generate a list of all potential solutions to the problem in a

systematic manner (see algorithms in Sec. 5.4)systematic manner (see algorithms in Sec. 5.4)

• evaluate potential solutions one by one, disqualifying evaluate potential solutions one by one, disqualifying
infeasible ones and, for an optimization problem, keeping infeasible ones and, for an optimization problem, keeping
track of the best one found so fartrack of the best one found so far

• when search ends, announce the solution(s) foundwhen search ends, announce the solution(s) found

3-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 1: Traveling Salesman Problem Example 1: Traveling Salesman Problem

 Given Given nn cities with known distances between each pair, find cities with known distances between each pair, find
the shortest tour that passes through all the cities exactly the shortest tour that passes through all the cities exactly
once before returning to the starting cityonce before returning to the starting city

 Alternatively: Find shortest Alternatively: Find shortest Hamiltonian circuitHamiltonian circuit in a in a
weighted connected graphweighted connected graph

 Example:Example:

a b

c d

8

2

7

5 3
4

3-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

TSP by Exhaustive SearchTSP by Exhaustive Search

 Tour CostTour Cost

aa→→bb→→cc→→dd→→a 2+3+7+5 = 17a 2+3+7+5 = 17

aa→→bb→→dd→→cc→→a 2+4+7+8 = 21a 2+4+7+8 = 21

aa→→cc→→bb→→dd→→a 8+3+4+5 = 20a 8+3+4+5 = 20

aa→→cc→→dd→→bb→→a 8+7+4+2 = 21a 8+7+4+2 = 21

aa→→dd→→bb→→cc→→a 5+4+3+8 = 20a 5+4+3+8 = 20

aa→→dd→→cc→→bb→→a 5+7+3+2 = 17a 5+7+3+2 = 17

More tours?More tours?

Less tours?Less tours?

Efficiency:Efficiency:

3-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 2: Knapsack ProblemExample 2: Knapsack Problem

Given Given nn items: items:

• weights: weights: ww1 1 ww2 2 … w … wnn

• values: values: vv1 1 vv22 … v … vnn

• a knapsack of capacity a knapsack of capacity W W

Find most valuable subset of the items that fit into the knapsackFind most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16Example: Knapsack capacity W=16

item weight valueitem weight value

66 2 $202 $20

77 5 $305 $30

88 10 $5010 $50

99 5 $105 $10

3-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Knapsack Problem by Exhaustive SearchKnapsack Problem by Exhaustive Search

SubsetSubset Total weightTotal weight Total valueTotal value
 {1} 2 $20{1} 2 $20
 {2} 5 $30{2} 5 $30
 {3} 10 $50{3} 10 $50
 {4} 5 $10{4} 5 $10
 {1,2} 7 $50{1,2} 7 $50
 {1,3} 12 $70{1,3} 12 $70
 {1,4} 7 $30{1,4} 7 $30
 {2,3} 15 $80{2,3} 15 $80
 {2,4} 10 $40{2,4} 10 $40
 {3,4} 15 $60{3,4} 15 $60
 {1,2,3} 17 not feasible{1,2,3} 17 not feasible
 {1,2,4} 12 $60{1,2,4} 12 $60
 {1,3,4} 17 not feasible{1,3,4} 17 not feasible
 {2,3,4} 20 not feasible{2,3,4} 20 not feasible
{1,2,3,4} 22 not feasible{1,2,3,4} 22 not feasible Efficiency:Efficiency:

3-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Example 3: The Assignment ProblemExample 3: The Assignment Problem

There are There are n n people who need to be assigned to people who need to be assigned to nn jobs, one person jobs, one person
per job. The cost of assigning person per job. The cost of assigning person i i to job to job jj is C[is C[ii ,,jj]. Find an]. Find an
assignment that minimizes the total cost.assignment that minimizes the total cost.

 Job 0 Job 1 Job 2 Job 3Job 0 Job 1 Job 2 Job 3

Person 0 9Person 0 9 2 7 8 2 7 8

Person 1 6 4 3 7Person 1 6 4 3 7

Person 2 5 8 1 8Person 2 5 8 1 8

Person 3 7 6 9 4Person 3 7 6 9 4

Algorithmic Plan:Algorithmic Plan: Generate all legitimate assignments, computeGenerate all legitimate assignments, compute
 their costs, and select the cheapest one. their costs, and select the cheapest one.
How many assignments are there?How many assignments are there?

Pose the problem as the one about a cost matrix:Pose the problem as the one about a cost matrix:

3-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

 9 2 7 89 2 7 8

 6 4 3 76 4 3 7

 5 8 1 85 8 1 8

 7 6 9 4 7 6 9 4

 AssignmentAssignment (col.#s) (col.#s) Total CostTotal Cost

 1, 2, 3, 41, 2, 3, 4 9+4+1+4=189+4+1+4=18

 1, 2, 4, 31, 2, 4, 3 9+4+8+9=309+4+8+9=30

 1, 3, 2, 41, 3, 2, 4 9+3+8+4=249+3+8+4=24

 1, 3, 4, 21, 3, 4, 2 9+3+8+6=269+3+8+6=26

 1, 4, 2, 31, 4, 2, 3 9+7+8+9=339+7+8+9=33

 1, 4, 3, 21, 4, 3, 2 9+7+1+6=239+7+1+6=23

 etc.etc.

(For this particular instance, the optimal assignment can be found by (For this particular instance, the optimal assignment can be found by
exploiting the specific features of the number given. It is:)exploiting the specific features of the number given. It is:)

Assignment Problem by Exhaustive SearchAssignment Problem by Exhaustive Search

C = C =

3-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 3

Final Comments on Exhaustive SearchFinal Comments on Exhaustive Search

 Exhaustive-search algorithms run in a realistic amount of Exhaustive-search algorithms run in a realistic amount of
time time only on very small instancesonly on very small instances

 In some cases, there are much better alternatives! In some cases, there are much better alternatives!

• Euler circuitsEuler circuits

• shortest pathsshortest paths

• minimum spanning treeminimum spanning tree

• assignment problemassignment problem

 In many cases, exhaustive search or its variation is the only In many cases, exhaustive search or its variation is the only
known way to get exact solutionknown way to get exact solution

