Chapter 3

introduction to The DESign &
200 mon Analysis of Algorithms
2 ND EDITION

e
i, d
i i
s

Brute Force

PEARSON
—

Addison
Wesley Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

™
\
U™
-y |
™
o

Brute Force
A straightforward approach, usually based directly on the
problem’s statement and definitions of the concepts involved

Examples:
Computing a” (@ > 0, n a nonnegative integer)

Computing n!
Multiplying two matrices

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

Searching for a key of a given value in a list

ved.

“ \|\|\l\ll\l\l\l\ll\l\l\l\ll-
R
Copyright © 2007 Pearson Addison-Wesley. All rights reser

M]mII\I\I\II\I\I\II\I\I\I\II\I!II_
i

3-2

™
\
U™
-y |
™
o

Brute-Eorce Sorting Algorithm

Selection Sort Scan the array to find its smallest element and
swap it with the first element. Then, starting with the second
element, scan the elements to the right of it to find the
smallest among them and swap it with the second elements.
Generally, on passz (0 = 7 = n-2), find'the smallest element in

Ali..n-1] and swap it with AJi]:
.« . Almin],. . ., Aln-1]

. < Aliqll] | Ali),

Af0] = .

in their final positions

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

Example: 7 3 2 5
“\I\I\I\II\I\I\I\II\I\I\I\II-

\I\I\IIIIIIIIIIII\II-
Copyright © 2007 Pearson Addison-Wesley. All rights reser

M]mII\I\I\II\I\I\II\I\I\I\II\I!II_
i

ved.

3-3

R gy

Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n — 1]
/ISorts a given array by selection sort
/[[Input: An array A[0..n — 1] of orderable elements
[0..n — 1] sorted in ascending order

//Output: Array
fori < 0Oton—2do

MIn <[

for j < i+1ton—1do
if Alj| < Almin] min < |

swap A[.i] and A|min]

Time efficiency:

Space effliciency:

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

I blllty

I\I\I\I\I\II\I\I\IMWIIIIII-
Copyright © 2007 Pearson Addison-Wesley. All rights reserved

|t

3-4

™
\
U™
-y |
™
o

Brute-Force String Matching

pattern: a string of m characters to search for
text: a (longer) string of n characters to search in
problem: find a substring in the text that matches the pattern

Brute-force algorithm
Step 1 Align pattern at beginning of text
Step 2 Moving from left to right, compare each character of

pattern to the corresponding character in text until
all characters are found to match (successful search); or

a mismatch is detected
Step 3 While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and
3-5

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

— T r epeat Step 2

\I\I\IIIIIIIIIIII\II-
Copyright © 2007 Pearson Addison-Wesley. All rights reser

M]mII\I\I\II\I\I\II\I\I\I\II\I!II_
i

Ty
-

Examples off Brute-Force String Viatching

Pattern: 007107
Text: 100707101707001 7001071771070

Pattern: happy.
Text: It Is never too late to, have a happy: childhood.

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

ved.

H|\|\|\|\||\|\|\|\||\|\|\|\||-
R T
Copyright © 2007 Pearson Addison-Wesley. All rights reser

MIHTIII\I\I\II\I\I\II\I\I\I\II\I’-
i

3-6

| ™
‘ iy
r gy

Pseudocode and Efficiency

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])
//Implements brute-force string matching
/Mnput: An array 7' [0..n — 1] of n characters representing a text and
an array P[0..m — 1] of m characters representing a pattern

Il
//Output: The index of the first character in the text that starts a
matching substring or —1 if the search is unsuccessful

/]
fori < Oton —mdo

J <0
while j <m and P[j]|=T/[i + j]|do

J<—j+1
if j =m return i

return —1

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

Efficiency:
I\II\I\I\I\II\II.II-

il
QT
Copyright © 2007 Pearson Addison-Wesley. All rights reser

|t

ved.

Ty
- |

Brute-FEorce Polynomial Evaluation

Problem: Eind the value of° polynomial
px)=ax’ta x" F... tax'+a

at a point x = X,

Brute-fi lgorith
I‘l}j e-force algorithm
tor 7 — n downto 0 do
//compute X

power: — |
for j — 1toido

power. — power: [dx
pi+ ali] Epower:

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

returnpp .

H|\|\|mmmmumnml-
T —

Ity i ¢

! m&mngy\wson-wwey. Allrights reserved.

3-8

Ty
-

Polynomial Evaluation: Improvement

We can do better by evaluating from right to left:

Better brute-force algorithm

p < al0]
power: — |
fori — 1tondo

power. — power: [l
pr— pi+ ali] Epower

return p

Efficiency:
A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

ved.

H|\|\|\|\||\|\|\|\||\|\|\|\||-
R T
Copyright © 2007 Pearson Addison-Wesley. All rights reser

MIHTIII\I\I\II\I\I\II\I\I\I\II\I’-
i

3-9

™
\
U™
-y |
™
o

Closest-Pair Problem
Eind the two closest points in a set of 7 points (in the two-

dimensional Cartesian plane).

Brute-force algorithm
and return the indexes of the points for which the distance

Compute the distance between every pair of distinct points

is the smallest.

3-10

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

ved.

“ \|\|\l\ll\l\l\l\ll\l\l\l\ll-
R
Copyright © 2007 Pearson Addison-Wesley. All rights reser

M]mII\I\I\II\I\I\II\I\I\I\II\I!II_
i

Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM BruteForceClosestPoints(P)
/Mnput: A list P of n (n > 2) points P; = (x1, ¥1)s - - - Po=(x:¥)

//Output: Indices index1 and index2 of the closest pair of points
dmin < o0
fori —<1ton—1do
for j i+ 1tondo
d < sqri((x; — .1'}-)2 +(y;—y j]z) /Isqrt 1s the square root function
ifd <dmin
dmin < d: index1 «—i; index2 « j

return index1, index?2

Efficiency:

How to make it faster?

i
— BN 117
T

SR —
wl Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

U™
]| ‘

™
o

Brute-Force Strengths and Weaknesses

Strengths
wide applicability

simplicity
yields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string

matching)

Weaknesses
rarely yields efficient algorithms

some brute-force algorithms are unacceptably slow
not as constructive as some other design techniques

3-12

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

- \I\I\I\II\I\I\I\II\I\I\I\II-
\I\I\IIIlIIIIIIII\II-
ved.

Mﬂﬂ I|\|\|\II\I\I\II\I\I\I\II\I!II_
Copyright © 2007 Pearson Addison-Wesley. All rights reser

|

i
il

Exhaustive Search

™
\
U™
—ealf] ‘
™
o

A brute force solution to a problem involving search for an
element with a special property, usually among combinatorial
objects such as permutations, combinations, or subsets ofi a
set.

Method:

generate a list of all potential solutions to the problem in a
systematic manner (see algorithms in Sec. 5.4)

evaluate potential solutions one by one, disqualifying
inteasible ones and, for an optimization problem, keeping
track of the best one found so far

S—— when search ends, announce the solution(s) found
\I\I\IIIIIIIIIIII\II-
T T— 3-13

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

c1
]

Example 1: Traveling Salesman Probl

o

Given n cities with known distances between each pair, fin
the shortest tour that passes through all the cities exactly

once before returning to the starting city
Alternatively: Eind shortest Hamilionian circuit in a

weighted connected graph

Example:
dI\I\I\I\II\I\I\I\II\I\I\I\II-
I ——
T -
e S Addison-Wesley. Allrights reserved. A. Levitin “Inroduction to the Design & Analysis of Aigorithms,” 27 ed., Ch. 3

3-14

"~

T'SP by Exhaustive Search

Tour
a—-b-c—->d—a
a—-b—-d-c—a
a—->c—ob—->d—a
a—-c—~>d—-b—a
a—-d-b-c—a
a—->d—-c—->b—a

More tours?

Less tours?

- ffiCiency:

MNIII\I\I\II\I\I\II\I\I\I\II\I’-

Copyright © 2007 Pearson Addison-Wesley. All rights reserve

d.

Cost
243545 =17
2H-A-+T4-8 =121
8+3+4+5 = 2()
8+74-4+2 =21
5+4+:3+8 =120
5+74-3+2= 17

A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3

Iy

L ||||||I.
1 ||||||“.
"I

3-15

™
\
U™
-y |
™
o

Example 2: Knapsack Problem

Given n items:
weights: w, w, ... W,
v1 v2 o 00 v

n

values:

a knapsack of capacity W
Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16
value

item weight
2 $20
5 $30
10 $50
$10
A. Levitin “Introduction o the Design & Analysis of Algoritims,” 2 ed., Ch. 3 3-16

\I\I\I\II\I\I\I\II\I\I\I\II-
ved.

LTI, R 11111
Mﬂﬂ ||\|\|\||\|\|\||\|\|\|\||\|V||_
Copyright © 2007 Pearson Addison-Wesley. All rights reser

Knapsack Problem by Exhaustive Sea

=

i
1 |||||:“.
"I

QT =5
(@)
=

Subset Total weight Total value

1} 2 $20
12} 5 $30
3} 10 $50
{4} 5 $10
$1.23 7 $50
1,35 12 $70
{1,4} 7 $30
£2,3} 15 $80
2,4} 10 $40
{3,4} 15 $60
11,2,5} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible .
m{112,3,4) 22 not feasible SHticiency:

MNIII\I\I\II\I\I\II\I\I\I\II\I’-

wl Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3 3-17

Example 3: The Assignment Problem

™
|
U™
-y |
™
o

There are n people who need to be assigned to n jobs, one person
per job. The cost of assigning person z to job,j is Cli,j]. Find an
assignment that minimizes the total cost.

Job 0 Job 1 Job 2 Job 3

Person 0 9 2 7/ 8

Person 1 6 4 3 7/
Person 2 5 8 | 8
Person 3 7/ 6 9 4

Algorithmic Plan: Generate all legitimate assignments, compute
their costs, and select the cheapest one.

How many assignments are there?
L ose the problem as the one about a cost matrix:

“\I\I\IIIIIIIIIIII\II-

M]]ﬂII\I\I\II\I\I\II\I\I\I\II\IIII_

wl Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3 3-18

Assignment Problem by Exhaustive Search

¥y .
9 2 7 8 s
6 4 3 7
C=5381 8
7 6 9 4
Assignment (col.#s) Total Cost
1 253, 4 9+4+1+4=18
1,2,4,3 9+4+8+9=3()
1,3,2,4 9+3+8+4=24
1,3,4,2 9+3+8+6=26
1,4,2,3 9+7+8+9=33
1,4,3,2 9+7+1+6=23
etc.
(For this particular instance, the optimal assignment can be found by
H:::::::::::::)gploiting the specific features of the number given. It is:)
T

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Leviin “Introduction fo the Design & Analysis of Algorithms,” 2 ed., Ch. 3 3-19

Final Comments on Exhaustive Search

iy
" iy

‘umumnm.

Iy
o »

Exhaustive-search algorithms run in a realistic amount of*
time only on very small instances

In some cases, there are much better alternatives!

Euler circuits
shortest paths

minimum spanning tree
assignment problem

In many cases, exhaustive search or its variation is the only

known way to get exact solution

\|\|\I\II\I\I\I\II\I\I\I\II-
“\l\l\lllllﬂlllll\ll-
M]m ||\|\|\||\|\|\||\|\|\|\||\|V||_
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levifin “Inroducton o the Design & Analysis of Algorithms,” 2™ ed., Ch. 3

3-20

