Chapter 3

Brute Force
Brute Force

A straightforward approach, usually based directly on the problem’s statement and definitions of the concepts involved.

Examples:

4. Computing a^n ($a > 0$, n a nonnegative integer)

6. Computing $n!$

8. Multiplying two matrices

10. Searching for a key of a given value in a list
Brute-Force Sorting Algorithm

Selection Sort Scan the array to find its smallest element and swap it with the first element. Then, starting with the second element, scan the elements to the right of it to find the smallest among them and swap it with the second elements. Generally, on pass i ($0 \leq i \leq n-2$), find the smallest element in $A[i..n-1]$ and swap it with $A[i]$:

$$A[0] \leq \ldots \leq A[i-1] \mid A[i], \ldots, A[min], \ldots, A[n-1]$$

in their final positions

Example: 7 3 2 5
Analysis of Selection Sort

ALGORITHM SelectionSort(A[0..n−1])
//Sorts a given array by selection sort
//Input: An array A[0..n−1] of orderable elements
//Output: Array A[0..n−1] sorted in ascending order
for i ← 0 to n−2 do
 min ← i
 for j ← i + 1 to n−1 do
 min ← j
 swap A[i] and A[min]

Time efficiency:

Space efficiency:

Stability:
Brute-Force String Matching

- **pattern**: a string of \(m \) characters to search for
- **text**: a (longer) string of \(n \) characters to search in
- **problem**: find a substring in the text that matches the pattern

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until
- all characters are found to match (successful search); or
- a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2
Examples of Brute-Force String Matching

1. Pattern: 001011
 Text: 10010101101001100101111010

5. Pattern: happy
 Text: It is never too late to have a happy childhood.
ALGORITHM \(\text{BruteForceStringMatch}(T[0..n - 1], P[0..m - 1]) \)

//Implements brute-force string matching
//Input: An array \(T[0..n - 1] \) of \(n \) characters representing a text and
//an array \(P[0..m - 1] \) of \(m \) characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or \(-1\) if the search is unsuccessful

for \(i \leftarrow 0 \) to \(n - m \) do
 \(j \leftarrow 0 \)
 \(\text{while } j < m \text{ and } P[j] = T[i + j] \text{ do} \)
 \(j \leftarrow j + 1 \)
 \(\text{if } j = m \text{ return } i \)
return \(-1\)

Efficiency:
Brute-Force Polynomial Evaluation

Problem: Find the value of polynomial

\[p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0 \]

at a point \(x = x_0 \)

Brute-force algorithm

\[p \leftarrow 0.0 \]

for \(i \leftarrow n \) downto 0 do

\[power \leftarrow 1 \]

for \(j \leftarrow 1 \) to \(i \) do //compute \(x^i \)

\[power \leftarrow power \ast x \]

return \[p \leftarrow p + a[i] \ast power \]

Efficiency:
Polynomial Evaluation: Improvement

We can do better by evaluating from right to left:

Better brute-force algorithm

\[p \leftarrow a[0] \]
\[power \leftarrow 1 \]
\[\text{for } i \leftarrow 1 \text{ to } n \text{ do} \]
\[\quad power \leftarrow power \times x \]
\[\quad p \leftarrow p + a[i] \times power \]
\[\text{return } p \]

Efficiency:
Closest-Pair Problem

Find the two closest points in a set of n points (in the two-dimensional Cartesian plane).

Brute-force algorithm

Compute the distance between every pair of distinct points and return the indexes of the points for which the distance is the smallest.
Closest-Pair Brute-Force Algorithm (cont.)

ALGORITHM \textit{BruteForceClosestPoints}(P)

//Input: A list P of n ($n \geq 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$
//Output: Indices \textit{index1} and \textit{index2} of the closest pair of points
\begin{algorithmic}
 \State $d_{\text{min}} \leftarrow \infty$
 \For{$i \leftarrow 1$ \textbf{to} $n - 1$}
 \For{$j \leftarrow i + 1$ \textbf{to} n}
 \State $d \leftarrow \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ \Comment{$\sqrt{}$ is the square root function}
 \If{$d < d_{\text{min}}$}
 \State $d_{\text{min}} \leftarrow d$; \textit{index1} \leftarrow i; \textit{index2} \leftarrow j
 \EndIf
 \EndFor
 \EndFor
\end{algorithmic}

\textbf{Efficiency:}

\textbf{How to make it faster?}
Brute-Force Strengths and Weaknesses

Strengths
- wide applicability
- simplicity
- yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)

Weaknesses
- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as constructive as some other design techniques
Exhaustive Search

A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

• generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 5.4)

• evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far

• when search ends, announce the solution(s) found
Example 1: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city.
- Alternatively: Find shortest *Hamiltonian circuit* in a weighted connected graph.
- Example:

```
a --- 2 --- b
|     |
|     |
8     5 3     7

3
```

4

```
c --- 3 --- d
```
TSP by Exhaustive Search

<table>
<thead>
<tr>
<th>Tour</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a → b → c → d → a</td>
<td>2+3+7+5 = 17</td>
</tr>
<tr>
<td>a → b → d → c → a</td>
<td>2+4+7+8 = 21</td>
</tr>
<tr>
<td>a → c → b → d → a</td>
<td>8+3+4+5 = 20</td>
</tr>
<tr>
<td>a → c → d → b → a</td>
<td>8+7+4+2 = 21</td>
</tr>
<tr>
<td>a → d → b → c → a</td>
<td>5+4+3+8 = 20</td>
</tr>
<tr>
<td>a → d → c → b → a</td>
<td>5+7+3+2 = 17</td>
</tr>
</tbody>
</table>

More tours?

Less tours?

Efficiency:
Example 2: Knapsack Problem

Given n items:

- weights: w_1, w_2, \ldots, w_n
- values: v_1, v_2, \ldots, v_n
- a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity $W=16$

<table>
<thead>
<tr>
<th>item</th>
<th>weight</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>$10</td>
</tr>
</tbody>
</table>
Knapsack Problem by Exhaustive Search

<table>
<thead>
<tr>
<th>Subset</th>
<th>Total weight</th>
<th>Total value</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
<td>$20</td>
</tr>
<tr>
<td>{2}</td>
<td>5</td>
<td>$30</td>
</tr>
<tr>
<td>{3}</td>
<td>10</td>
<td>$50</td>
</tr>
<tr>
<td>{4}</td>
<td>5</td>
<td>$10</td>
</tr>
<tr>
<td>{1,2}</td>
<td>7</td>
<td>$50</td>
</tr>
<tr>
<td>{1,3}</td>
<td>12</td>
<td>$70</td>
</tr>
<tr>
<td>{1,4}</td>
<td>7</td>
<td>$30</td>
</tr>
<tr>
<td>{2,3}</td>
<td>15</td>
<td>$80</td>
</tr>
<tr>
<td>{2,4}</td>
<td>10</td>
<td>$40</td>
</tr>
<tr>
<td>{3,4}</td>
<td>15</td>
<td>$60</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>17</td>
<td>not feasible</td>
</tr>
<tr>
<td>{1,2,4}</td>
<td>12</td>
<td>$60</td>
</tr>
<tr>
<td>{1,3,4}</td>
<td>17</td>
<td>not feasible</td>
</tr>
<tr>
<td>{2,3,4}</td>
<td>20</td>
<td>not feasible</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>22</td>
<td>not feasible</td>
</tr>
</tbody>
</table>

Efficiency:
Example 3: The Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to job j is $C[i,j]$. Find an assignment that minimizes the total cost.

<table>
<thead>
<tr>
<th></th>
<th>Job 0</th>
<th>Job 1</th>
<th>Job 2</th>
<th>Job 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 0</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Person 1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Person 2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Person 3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

How many assignments are there?

Pose the problem as the one about a cost matrix:
Assignment Problem by Exhaustive Search

\[
C = \begin{bmatrix}
9 & 2 & 7 & 8 \\
6 & 4 & 3 & 7 \\
5 & 8 & 1 & 8 \\
7 & 6 & 9 & 4 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Assignment (col.#s)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4</td>
<td>9+4+1+4=18</td>
</tr>
<tr>
<td>1, 2, 4, 3</td>
<td>9+4+8+9=30</td>
</tr>
<tr>
<td>1, 3, 2, 4</td>
<td>9+3+8+4=24</td>
</tr>
<tr>
<td>1, 3, 4, 2</td>
<td>9+3+8+6=26</td>
</tr>
<tr>
<td>1, 4, 2, 3</td>
<td>9+7+8+9=33</td>
</tr>
<tr>
<td>1, 4, 3, 2</td>
<td>9+7+1+6=23</td>
</tr>
</tbody>
</table>

etc.

(For this particular instance, the optimal assignment can be found by exploiting the specific features of the number given. It is:)
Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances.

- In some cases, there are much better alternatives!
 - Euler circuits
 - Shortest paths
 - Minimum spanning tree
 - Assignment problem

- In many cases, exhaustive search or its variation is the only known way to get exact solution.