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Abstract

In this paper we have studied the application on the fuzzy-hybrid neural network for electrocardiogram (ECG) beat

classification. Instead of original ECG beat, we have used; autoregressive model coefficients, higher-order cumulant and

wavelet transform variances as features. Tested with MIT/BIH arrhytmia database, we observe significant performance

enhancement using proposed method.
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1. Introduction

The recognition of the ECG beats is a very
important task in the coronary intensive unit,

where the classification of the ECG beats is essen-

tial tool for the diagnosis. Up to now, many algo-

rithms have been developed for the recognition

and classification of ECG signal. Some of them

use either time or frequency domain representa-

tion, on the basis of which many specific attributes

are defined, allowing the recognition between the
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beats belonging to different pathological classes.

The ECG waveforms may differ for the same pa-

tient to such extent that they are unlike each other
and at the same time alike for different types of

beats (Osowski and Linh, 2001). Artificial neural

network and fuzzy-based techniques were also em-

ployed to exploit their natural ability in pattern

recognition task for successful classification of

ECG beats (Hu et al., 1997).

Analysis of the ECG signals is of the great

importance in the detection of cardiac anomalies.
One of the most important ECG components is

the QRS complex, which is associated with electri-

cal ventricular activation (Barro et al., 1998). ECG

pattern recognition can be divided into a sequence

of stages; starting with feature extraction from the
ed.
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occurring patterns, which is the conversion of the

patterns to features that are regarded as a con-

densed representation. In the next step, the feature

selection, smaller number of meaningful features,

that the best represents the given pattern without
redundancy, is defined. Finally, the classification

is carried out, i.e., specific pattern is assigned to

a specific class according to the characteristic fea-

tures selected for it (Dickhaus and Heinrich, 1996).

In this paper, we present the approach to ECG

beat classification that is based on using three dif-

ferent types of feature sets. Auto-regressive (AR)

model coefficients, third-order cumulant and
the variance of the Discrete Wavelet Transform

(DWT) of the related ECG beat, are used to con-

struct features vector. Wavelet transform have a

lot of potential for the representation of non-sta-

tionary signals. Thus, the ECG signal, being highly

non-stationary within each beat, lends itself quite

well to wavelet transform based features using.

On the other hand, it will be shown that the
higher-order statistics are less sensitive to the var-

iation of the morphology of the ECG (Osowski

and Linh, 2001). Non-Gaussian processes are not

completely characterized by their second-order

statistics; by using higher-order statistics, we are

exploiting more of the information contained in

the data. Specific features of the signal spectra

were used to differentiate between normal and
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Fig. 1. Block diagram of c
diseased patients. The application of parametric

methods to signal recognition problems, particu-

larly in the presence of high background noise is

important. AR model has been applied to many

fields including speech processing and biomedical
signal processing.

In the classification stage, we have used the so-

called fuzzy-hybrid neural network which is com-

posed of two sub-networks connected in cascade:

the fuzzy self-organizing layer performing the

pre-classification task and the following multilayer

perceptron working as the final classifier.

The numerical experiments including networks
training and testing concentrated on the recogni-

tion between fourth different types of signal class.

The results of experiments will be given and com-

pared with different networks, presented in the

literature.
2. Pre-processing of ECG signals

Arrhytmia detection algorithm consist of fol-

lowing parts: (a) R wave detection; (b) Features

extraction; (c) Classification.

Fig. 1 shows block diagram of the whole

algorithm.

After receiving signals from MIT/BIH arrhyt-

mia database (Physiobank, 2003), the ECG signals
ANNNormalization Fuzzy
Layer

lassification process.



Fig. 2. ECG signals belong to four classes: (a) Normal Sinus rhythm beats; (b) Non-Conducted P-Wave; (c) Premature Ventricular

contraction beats; (d) Right bundle branch block beats.
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were filtered with bandpass of 1–100 Hz by Butter-

worth filter. The ECG waveform contains, in addi-

tion to the QRS complex P and T waves, 60 Hz

noise from power line interferences, EMG from

muscles, motion artefacts from the electrode and
skin interface. Many clinical instruments such as

a cardiotachometer and an arrhytmia monitor re-

quire accurate real-time QRS detection. We can

summarize the relative power spectra of ECG,

QRS complexes, P and T waves, motion artefact,

and muscle noise based on previous research (Tha-

kor et al., 1993). As shown in this mentioned

study, the power spectrum of ECG extends to 40
Hz, effectively. But, we consider the limits of the

bandpass filtering as the range of 1–100 Hz. Also,

ECG signals were filtered with pass band of 1–100

Hz as given in the other study (Minami et al.,

1999). In order to detect R wave, peak detection

process is employed on ECG data. The Remez

algorithm (Lang, 1998) based differentiative filter,

squaring process and the thresholding process
are implemented, respectively. Centered on the de-

tected R-wave peak, the ECG beats are extracted

by applying a Hamming window with 160 samples
of length. After removing of mean value of ECG

segments, the obtained ECG set which consist of

15 ECG beats, applied to classification block. In

Fig. 2, ECG signals belong to four classes are

shown.
3. Feature extraction

Usually, automatic ECG beat recognition and

classification has been performed in the part either

by the neural network or by the other recognition

systems relying in various features, time domain
representation, extracted from the ECG beat (Hu

et al., 1997), or the measure of energy in a band

of frequencies in the spectrum (frequency domain

representation) (Minami et al., 1999). Since these

features are very susceptible to variations of

ECG morphology and the temporal characteristics

of ECG, it is difficult to distinguish one from the

other on the basis of the time waveform or fre-
quency representation. In our work, we have used

three different classes of feature set belonging to

the isolated ECG beats including; third-order
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cumulant, auto-regressive model parameters and

the variance of discrete wavelet transform detail

coefficients for the different scales (1–6 scales).

3.1. Wavelet transformation

Physiological used for diagnostic purposes are

frequently characterized by a non-stationary time

behaviour. For such patterns, time frequency rep-

resentations are desirable. The frequency charac-

teristics as well as the temporal behaviour can be

described with respect to uncertainty principle.

The wavelet transform is capable of representing
signals in different resolutions by dilating and com-

pressing its basis functions. While the dilated func-

tions adapt to slow wave activity, the compressed

functions captures fast activity and sharp spikes.

The optimum choice of types of wavelet functions

for pre-processing is problem dependent. In our

study, we used Daubechies wavelet function (db5)

which is called compactly supported orthonormal
wavelets (Daubechies, 1998). The DWT is obtained

by making discretization the scaling factor and

position factor. For orthonormal wavelet trans-

form, a discrete signal x(n) can be expanded in to

the scaling function at j level, as follows:

xðnÞ ¼ Dj;k½xðnÞ� þ Aj;k½xðnÞ�; n 2 Z ð1Þ

where Dj,k represents the detailed signal at j level.

Note that j controls the dilation or contraction
of the scale function U(t) and k denotes the posi-

tion of the wavelet function W(t), and n represents

the sample number of the x(n). Here n2Z repre-

sents the set of integers. In the wavelet decomposi-

tion, the frequency spectrum of the signal is

divided into high frequency and low frequency as

the band increases (j = 1, . . . , 6).
Wavelet transform is a two-dimensional time-

scale processing method for non-stationary signals

with adequate scale values and shifting in time

(Thakor, 1993; Clarek, 1995).

Multiresolution decomposition can effectively

provide simultaneous characteristics, in term of

the representation of the signal at multiple resolu-

tions corresponding to different time scales. The

normalized variances of detail coefficients of the
DWT belonging to related scales are used to con-

struct features vector.
3.2. Higher-order statistics and AR modelling

In automatic ECG beat recognition and classifi-

cation, the main problem is that related features

are very susceptible to variations of ECG mor-
phology and temporal characteristics of ECG. In

the study (Osowski and Linh, 2001), the set of

original QRS complexes typical for six types of

arrhytmia taken from the MIT/BIH arrhytmia

database, there is a great variations of signal

among the same type of beats belonging to

the same type of arrhytmia. Therefore, in order

to solve such problem, we will rely on the statis-
tical features of the ECG beats. In our work

for this aim, third-order cumulant has been taken

into account, which can be determined (for zero

mean signals) as follows (Osowski and Linh,

2001):

C2xðkÞ ¼ EfxðnÞxðnþ kÞg ð2Þ

C3xðk; lÞ ¼ EfxðnÞxðnþ kÞxðnþ lÞg ð3Þ

C4xðk; l;mÞ ¼ EfxðnÞxðnþ kÞxðnþ lÞxðnþ mÞg

 C2xðkÞC2xðm
 lÞ 
 C2xðlÞC2xðm
 kÞ

 C2xðmÞC2xðl
 kÞ ð4Þ

where E is the expectation operator, and k, l, and
m are the time lags. In our work, we have used

third-order cumulant of selected ECG beats. Nor-

malized ten points representing cumulant evenly

distributed with in the range of 25 lags.

Linear prediction models each successive sam-

ples of a signal as a linear combination of previous

samples, that is, as the output of an all-pole IIR fil-

ter. This process finds the coefficients of an nth-
order auto-regressive linear process that models

the time series x as

xðkÞ ¼ 
að2Þxðk 
 lÞ 
 að3Þxðk 
 2Þ

 � � � 
 aðnþ 1Þxðk 
 n
 1Þ ð5Þ

where x is the real input time series (a vector), and
n is the order of the denominator polynomial a(z).

In the block processing, one of the modelling

methods is autocorrelation method of all-pole

modelling to find the linear prediction coefficients.

This method is also called the maximum entropy

method (MEM) of spectral analysis. In this study,
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we have selected model order as 2, which is able to

represent many types of ECG classes.
4. Classification

The pattern recognition of the type of ECG

waveform, different solutions presented in the liter-

ature, such MLP approach (Hu and Tompkins,

1985), the self-organizing map (Hu et al., 1997)

are given. We will present the combination of the

fuzzy self-organizing layer and the MLP connected

in cascade, named the fuzzy-hybrid neural net-
work. Structure of such a network is shown in

Fig. 3.

Self-organizing layer is responsible for the clu-

sterization of the input data (i.e., feature vector).

Outputs of this block (membership values) form

the input vector to the second sub-network

(MLP). This block has an input layer (18 input

neurons), one hidden layer (14 neurons) and out-
put layer (2 terminals).

4.1. Fuzzy c-means algorithm

The fuzzy c-means algorithm searches for the

partition matrix and cluster centers such that the

following objective functions are minimized

(Wang, 1997):

JðU ; V Þ ¼
Xn

k¼1

Xc

i¼1

ðujkÞmkxk 
 mik2 ð6Þ

Here, U = [ujk] and V = (m1 � � � mc) represent the

partition matrix and the cluster center matrix,

respectively. The input vector xi will be partitioned

c clusters. The entries of the U is representing the

membership degrees of the data vector xk
y2

y1

x1

   : 
:

x18

1 Hidden Layer
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Fig. 3. The structural diagram of the fuzzy-hybrid neural

network.
(k = 1, 2, . . . , n). The parameter m control the fuz-

ziness of the clusters (typically m = 2). The dis-

tance between the data vector xk and the center

ci is defined as Euclidean distance.

4.2. MLP sub-network

The number of input nodes of MLP is equal to

the number of self-organizing neurons. On the

other hand, at the output of MLP, there are two

neurons so that four different pattern classes can

be coded. Learning of the MLP belongs to the

standards in neural network (Haykin, 1994).
Weights are adapted in the learning phase of the

network using the Gradient descent and Back-

propagation algorithm. In the gradient method

of learning, we adopt the weights from cycle to

cycle to minimize error function:

J ¼ ð1=2Þ �
X

ðT i 
 DiÞ2 ð7Þ

where Ti is target values and Di is actual result for

ith decision. In the experimental process, we have

implemented 20,000 iterations for fuzzy c-means
algorithm at the learning and the testing modes.

After completing the learning procedure of the

whole network, the clusters and weights of MLP

are frozen and ready for use in the testing mode.
5. The results of experimental studies

The input to the classifier is the set of vectors xi,

representing the ECG beats of different patients,

representing different types of arrhytmia. Four dif-

ferent types of ECG classes (Normal, Non-con-

ducted P wave, Premature ventricular contraction

beats, and Right bundle branch block beats) taken

from Physiobank, MIT/BIH arrhytmia database

(Physiobank, 2003) have been considered in the
numerical experiments (patient numbered 100,

102, 106, and 118). Each beat of the normal hu-

man heart originates in the SA node. Because

many parts of the heart possess an inherent rhyth-

micity (normal tissue, Purkinje fibers of the spe-

cialized conduction system, and atrial tissue, for

example), any part under abnormal conditions

can become the dominant cardiac pacemaker. This
can happen become when the activity of the SA
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node is depressed, or when the bundle of His is

interrupted or damaged, or in specialized conduc-

tion system tissue in the ventricles discharges at a

rate faster than the SA node. As shown in the

study of Hu et al. (1997), right bundle branch
block beats were used as a different pathological

type. The American Association of Medical

Instrumentation (AAMI) recommended practice

has provided a protocol which allows using this

type of beats (Hu et al., 1997).

I have limited the number of patients to provide

approximate proportions of different arrhytmia

cases taking part in experiments. Most beats be-
long to the normal sinus rhythm. The learning

set contained 800 beats. The testing set was formed

400 beats, corresponding to four classes. The num-

ber of different beat types used in the numerical

experiments, are given in Table 1.

In these experiments, Input vector containing

the features representing beats and destination

vector representing the code of class.
The parts of data vectors, not taking part in

learning process, have been used to test of the

given network. As shown in Table 2 the average

misclassification rate in learning and testing step

is limited. The efficiency for all testing data is

98% and is defined only based on testing mode:
Table 1

MIT/BIH Arrhytmia data base selected beats

Number

of class

Record

number

Description

0 100 Normal Sinus rhythm beats

1 102 Non-Conducted P-Wave

2 106 Premature Ventricular contraction beats

3 118 Right bundle branch block beats

Table 2

Data distributions of the experiment

Number of class Number

of rhythms

Misclassificatio

number

Learning Testing Learning

0 200 100 3

1 200 100 1

2 200 100 3

3 200 100 2

Total 800 400 9
%g¼ TotalRecogniziedBeats
TotalMisclassifiedBeats
TotalRecognizedBeats

ð8Þ
Observe that the performance of the proposed

classifier on the testing data is only slightly worse
than on the learning set. In all experiments, fuzzy

cluster number c is set to 18 by experimentally.

In the case of smaller of these parameter values,

the classification performance is being worse for

learning and testing mode. In Fig. 4, we have pro-

duced error curve for proposed classifier.

I have not numerical results belong to other

classifiers for same data classes. But we can pro-
vide some statistical parameters such as the sensi-

tivity, specificity, and accuracy rates for their

data classes of given classifiers (Hu et al., 1997)

to compare with results of proposed method. For

this aim, we have provided Table 3. Comparations
n Rate of

misclassification (%)

Code of classes

Testing Learning Testing

7 1.5 7 00

0 0.5 0 01

0 1.5 0 10

1 1 1 11

8 1.12 2 –

Fig. 4. The error curve of the proposed classifier.



Table 3

Comparation of performance for all classifiers

Records Sensitivity (%) Specificity (%) Accuracy (%)

GE LE ME NF GE LE ME NF GE LE ME NF

200 53.6 93.0 66.9 – 97.4 98.7 93.3 – 62.3 97 81 –

205 59.2 0 33.8 – 100 100 100 – 81.2 97.1 97.1 –

213 58.3 0 14.2 – 78.6 100 99.8 – 74.4 92.8 91.9 –

230 100 0 0 – 75.3 100 99.5 – 72.4 100 99.1 –

102 – – – 100 – – – 93 – – – 93.5

106 – – – 100 – – – 93 – – – 93.5

118 – – – 99 – – – 100 – – – 93.4

Avg. 67.8 23.3 28.7 99.6 87.8 99.7 98.2 95.3 75.6 96.7 92.3 93.5

NF: Proposed classifier.

Table 4

Comparative results of the ECG beat classifiers

Number of beat types Efficiency (%)

Proposed classifier 4 98

FHyb-HOSA 7 96.06

MLP1 13 84.5

SOM-LVD 4 92.2

MLP-LVQ 2 96.8

MLP2 12 92

MLP-Fourier 3 98
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were done for following classifiers: GE (Global

Expert), LE (Local Expert), ME (Mixture of Ex-

perts) and NF (Proposed classifier). In the first

three classifiers, 20 records coming from MIT–
BIH data base (numbered from 200–234) are used.

Records in this group include complex ventricular,

junctional, and supraventricular arrhytmias and

conduction abnormalities. As shown in Table 3,

the averaged sensitivity of NF is superior to that

of other classifiers. Specificity and accuracy values

are located in moderate ranges.

To compare obtained figures with the results
presented in the literature by using different tech-

niques of beat recognition; we have investigate re-

sults of following beat recognition systems

(Osowski and Linh, 2001): multistage systems

using MLP (MLP1), multistage systems using

MLP (MLP2), expert systems using Kohonen

and SVD (SOM-SVD), LVQ and autoregression

AR MLP (MLP-LVQ), Fourier and MLP (MLP-
Fourier) and FHyb-HOSA.

Table 4 represents the comparative figures of

the efficiency of beat recognition algorithms using

the other systems mentioned above.
As shown in Table 4, the comparison denotes

high recognition rate of the proposed method.

But, it is really difficult to compare the results re-

spect to same beat type and same beat numbers.
6. Conclusions

In this paper, a novel ECG beat classification

system proposed and applied to MIT/BIH, arrhyt-

mia data base. The algorithm consists of fuzzy c-

means classifier and MLP neural network.

The wavelet transforms variance, third-order
cumulant and AR model parameters have been

used for the features selection. The recognition re-

sults of class 2 and class 3 are better than others.

But, all recognition of normal and pathological

beats representing the different arrhytmias have

been done with a moderate accuracy. We hope that

the performance of the method will be better if the

number of the beats for the learning is increased.
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