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Abstract

This paper addresses the problem of transposition of large out-of-core arrays. Although

algorithms for out-of-core matrix transposition have been widely studied, previously proposed

algorithms have sought to minimize the number of I/O operations and the in-memory permu-

tation time. We propose an algorithm that directly targets the improvement of overall transpo-

sition time. The algorithm proposed decouples the algorithm from the matrix dimensions and

associates it with the I/O characteristics of the system. The I/O characteristics of the system

are used to determine the read and write block sizes. These I/O block sizes are chosen in order

to optimize the total execution time. Experimental results are provided that demonstrate the�
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better performance of the new algorithm compared to previous known transposition algorithms

in the literature.

1 Introduction

Consider an ����� matrix that is stored in disk in row-major order. The system has main memory,

which can hold � elements, where � 	
��� , � �������� . Each element of the matrix is too

small to read from disk and written back independently. The problem is to transpose the matrix

stored in disk, when only a portion of the matrix can be brought into memory at any time. Matrix

transpose is a key operation in various scientific applications. For example, the two-dimensional

Fourier transform [2, 3] can be implemented as a one-dimensional Fourier transform along the

rows, followed by a one-dimensional Fourier transform along the columns. For a matrix stored

in disk in row-major order that is too large to fit in memory, the most effective mechanism is to

transpose the matrix before the second pass.

Our primary motivation for addressing the parallel out-of-core matrix transposition problem

arises from the domain of electronic structure calculations using ab initio quantum chemistry mod-

els such as Coupled Cluster models. We are developing an automatic synthesis system called the

Tensor Contraction Engine (TCE), to generate efficient parallel programs from high level expres-

sions, for a class of computations expressible as tensor contractions [4, 6–8]. Often the tensors

(essentially multi-dimensional matrices) are too large to fit in memory and must be disk-resident.

Further, the desired layout of these tensors may be different for different programs that process

them - the most efficient representation for the producer of a tensor object may not be the same

as the layout for another program that consumes it. In such a case, the need to transpose the
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disk-resident tensor object arises.

We are developing this algorithm to be used as part of a computational chemistry project at the

Ohio State University . The project aims at developing a tool, TCE [13], for automatic synthesis of

efficient parallel programs for a computation specified in high-level form by the user. The input for

the tool is a set of tensor contractions and data on disk, obtained from another chemistry package,

NWChem [12]. For a given problem, the solution is obtained by first running NWChem, and then

TCE. For efficient execution TCE accesses the array in a certain fashion. This requires efficient

transformation of the data from NWChem to the required format. Transposition is one of the

possible transformations. Efficient transposition algorithms are critical in the improving overall

execution time. In addition, when TCE is used on different machines, different transformations are

required on the data from NWChem, which again requires efficient out-of-core matrix transpose

algorithms.

This problem has been widely studied in the literature. A simple in-place element-wise ap-

proach to transpose the matrix is prohibitively expensive as long as each element is not large

enough to be read (written) from (to) disk efficiently. The block transposition algorithm transposes

the array in a single pass in ������������� I/O operations, where a pass is defined as accessing each

element from disk exactlyonce. An in-place transposition algorithm requiring ���������! "��� disk

accesses was proposed by Eklundh [10]. This algorithm requires at least two rows to fit in mem-

ory. Extensions to the algorithm for rectangular matrices were presented in [1, 14, 16]. Kaushik

et al. [11] improved upon these algorithms by reducing the number of read operations. Suh and

Prasanna [15] reduced the in-memory permutation time by using collect buffers, instead of in-

memory permutation, in addition to reducing the number of I/O operations. All these studies use
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the number of I/O operations as the primary optimization metric.

Although the execution time of the solution provided has been improved by all these efforts, the

total execution time has not been used as the primary metric for optimization. A reduction in the

number of I/O operations, in most cases, translates to larger sizes of I/O blocks. The importance

given to reducing the number of I/O operations is due to the fact that the disk access time, seek

time plus latency, is very large (on the order of several milliseconds) compared to the per-byte

transfer time (on the order of microseconds or less). If the I/O blocks read/written are relatively

small, the total number of I/O operations is indeed a suitable optimization metric. However, when

the I/O blocks get large, the data transfer time becomes significant and can dominate the total

access time. In such a situation smaller block sizes can be read/written without any additional I/O

cost. But this might reduce the number of passes involved, thus improving performance. Since

previously proposed algorithms for out-of-core transposition have focused on reducing the number

of I/O operations, they can become sub-optimal when large block transfers are involved.

All the algorithms in the literature determine the fundamental unit of I/O based on the size

of the matrix, i.e., they are data-centric. The basic unit of I/O operation in these algorithms is

one row of the matrix or a multiple thereof. They do not adapt to the I/O characteristics of the

system. In contrast, the approach proposed here takes into account the empirically determined I/O

characteristics of the disk and file system. The parameters of the algorithm are determined based on

the empirically measured I/O characteristics. The basic unit of I/O is not a row, but is determined

by the I/O characteristics and the instance of the problem at hand. The execution time of the

algorithm on the system is estimated based on the experimentally observed I/O characteristics.

The parameters that minimize the execution time are chosen.
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The paper is organized as follows. In Section 2, some of the existing matrix transposition

algorithms for out-of-core matrices are discussed. The I/O characteristics of two systems are dis-

cussed in Section 3. In Section 4 the transposition problem is formulated using the matrix-vector

product notation. Section 5 formulates the algorithms detailed in Section 2 and infers their perfor-

mance, based on the I/O characteristics discussed in Section 3. The new algorithm is described in

Section 6. Experimental results are presented in Section 7 . Section 8 concludes the paper.

2 Matrix Transposition Algorithms

In this section, we discuss some of the out-of-core matrix transposition algorithms from the liter-

ature. The pseudo-code for the algorithms is given with focus on the I/O operations performed in

each algorithm. These algorithms are formalized in the next section.

Consider a square matrix of dimension �#%$'& . Let the number of elements that can be brought

into memory at any time be � ($') . The memory can hold *+($', rows, say, of the input matrix,

i.e., *#-�/.0� . Each algorithm runs in a certain number of passes. Each pass involves reading

the entire array from disk and writing it back. In each pass, the algorithm goes through a sequence

of steps, each of which involves three phases–reading data into memory, permuting the read data

and writing it back to disk. All algorithms proceed as a sequence of steps in each pass. A step is

defined as the operations performed between reading a portion of data into memory and writing

it back to disk, including the read and write operations. All algorithms in the literature work

on disjoint ranges of data in each step. Note that the algorithms discussed can be employed to

transpose matrices whose size is not a power of 2. We capture the basic idea of each algorithm and

provide a formulation for the out-of-core matrix transposition problem. This formulation is used
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to arrive at a better algorithm.

The block-transposition algorithm is a single-pass algorithm for matrix transposition. The

algorithm blocks the input matrix into smaller matrices and recursively transposes the embedded

matrices.

1 

23333333333333
4

165758165 � 9:9:9 165�;1 � 581 �7� 9:9:9 1 � ;
...

...
...1<;05�1<; � 9:9:9 1=;>;

?A@@@@@@@@@@@@@
B

1DC 

23333333333333
4

1 C 575 1 C � 5 9:9E9 1 C ;051 C 5 � 1 C �7� 9:9E9 1 C ; �
...

...
...1 C 5�; 1 C � ; 9:9E9 1 C ;

? @@@@@@@@@@@@@
B

The block transposition algorithm is shown below. Each step of the algorithm involves F �
read and write operations, each of F � elements. The algorithm reads and writes at different

locations in the matrix in any given step, thus requiring the destination array to be different from

the source array, i.e., the algorithm is out-of-place.
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Algorithm 1: Block Transposition Algorithm
(1) for GH�I to �J.KF � LNM
(2) for OPQI to �J. F � LNM
(3) Read data in region RSG�T F � UV�WG>X�MY�:T F �ZLJME[�R O\T F � U\��O]X�MY�:T F �ZLJME[ .
(4) Transpose in memory.

(5) Write data to region R OVT F � U\�^O_X`MY�aT F �bL�ME[�RSGcT F � U\��GAXJMd�aT F ��L�M0[ .
Eklundh’s algorithm [10] does the transposition in-place in ef.'g passes. This algorithm requires

that eihj�KkJg=lI . The algorithm is shown below. Each step of the algorithm involves �/.E� read

and write operations, each involving � elements.

Algorithm 2: Eklundh’s Algorithm
(1) for GH�I to ef.'gmL/M
(2) for OPQI to ���a.E� LNM
(3) Read �/.E� rows into memory starting with the �YnA��OK.'*�op��q�T�*rots 5 X

OKuP* o � th row at a stride of * o rows.

(4) Permute in memory.

(5) Write to the rows from which the data was read.

Kaushik et al. [11] improve upon Eklundh’s algorithm by combining the reads. The algorithm

is shown below. It is an out-of-place algorithm. In each step of the algorithm, one read of �
elements and �/.E� writes, each of � elements, are performed. In the most general case, � is

factorized into vYwxT 9E9:9 TyvEz|{ 5 such that for any v o , v o rows fit in memory. The algorithm runs in}
passes. Kaushik et al. provide a solution when only one row fits in memory, which cannot be

handled by Eklundh’s algorithm. They also provide a mechanism to use the maximum available

memory.
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Algorithm 3: Kaushik et al.’s Algorithm
Input: } , ~�vYwE� 9:9:9 ��vEz|{ 5��
Output: -

(1) for GH�I to } L/M
(2) for OPQI to ���a.E� LNM
(3) Read �/.E� contiguous rows starting at �^O6T��/.E��� th row.

(4) Permute in memory.

(5) for �j�I to ��.!v o L/M
(6) Write v o rows starting at ����T�v o � th row in memory to the array in disk

starting at the ��O6T�����.E����.!v o X���� th row at stride �J.!v o rows.

Suh and Prasanna’s algorithm improves further upon Kaushik’s algorithm in two ways. It

reduces the in-memory permutation time by replacing in-place permutation by a series of collect

operations, in which the data to be written is collected into a buffer. The algorithm also reduces

the number of I/O operations by ‘chunking’ the writes. The writes that would have been done at

different offsets are done contiguously. This increases the write size and reduces the number of

writes. Each write operation in the G th pass writes � o Tf� elements instead of the � element written

in Kaushik et al.. In the subsequent pass, the data that should have been written contiguously is

‘collected’ by performing a sequence of reads. Thus the number of reads is increased from one in

Kaushik et al.. This mechanism balances the number of reads and writes. The optimal value for

� o was determined to be F v o , at which point the number of writes equals the number of reads and

the total number of I/O operations is minimum. In the algorithms discussed so far, each element

is read into memory exactly once in each pass. On the other hand, each pass G in this algorithm

performs redundant reads to first collect the rows, that have been separated by � o { 5 rows by the
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previous write, into memory and then performs the permutation. Thus this algorithm reduces the

total number of I/O operations at the expense of a potential increase in the amount of data to read.

Algorithm 4: Suh and Prasanna’s Algorithm
Input: } , ~�vYwE� 9:9:9 ��vEz|{ 5�� , ~��:w:� 9:9:9 ���Ez|{ 5��
Output: -

(1) for GH�I to } L/M
(2) for OPQI to � � .E� LNM
(3) Collect �/.E� rows that have been separated by � o { 5 rows in the previous

pass.

(4) Permute in memory.

(5) Write the permuted data to disk with � o rows in each I/O operation.

3 I/O Characteristics

In this section, the I/O characteristics of two systems are discussed. The characteristics of the two

systems will be used to derive the parameters for our algorithm.

We studied the variation of read and write times with change in the size and stride of I/O. The

I/O characteristics of a Pentium II PC (henceforth referred to as PC) and an HP zx6000 workstation

were studied. Their configuration is shown in Table 1. The PC is an ordinary end-user system.

The HP zx6000 is a high-end system used as part of a cluster at the Ohio Supercomputer Center

(OSC) [5].

The read and write characteristics of the PC are shown in Fig. 1 and Fig. 2, respectively, and

those of the HP zx6000 system are shown in Fig. 3 and Fig. 4, respectively. A stride of one
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System Configuration
Processor Memory OS Compiler

Pentium II PC Pentium II(300 MHz) 128MB linux 2.4.18-3 gcc version 2.96
HP zx6000 Dual Itanium-2(900 MHz) 4GB linux 2.4.18 gcc version 2.96

Table 1: Configuration of the systems used for I/O characterization.

corresponds to sequential access.

For the PC, the figure shows that for reads of block size above 1MB and writes of block size

above 64KB, stride has little effect on the per-byte access time. Similar observations are made for

the HP zx6000, for read and write block sizes of 1MB.

We expect this observation to hold across a wide variety of systems. These block sizes, above

which the per-byte read and write times are not affected by the stride of access, will henceforth be

referred to as the read and write thresholds respectively.

An important consequence of this observation is that if the thresholds are smaller than � ,

fractions of a row can be read and written without any additional penalty. This reduction in the

read and write block size in turn decreases the amount of work involved in transposing an array and

will be explained later. In the extreme case, if each element is large enough to allow efficient I/O

of individual elements, a simple single-pass element-wise transposition would be possible. Thus

the unit of I/O depends on the system I/O characteristics and not on the matrix size.

This observation also shows that for I/O sizes above the threshold the number of I/O operations

does not reflect the actual performance of the algorithm. An algorithm might involve more I/O

operations but be faster than another algorithm with fewer I/O operations due to this effect.
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Figure 1: Strided read times for the Pentium II PC.
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Figure 2: Strided write times for the Pentium II PC.
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Figure 3: Strided read times for the HP zx6000 system.
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Figure 4: Strided write times for the HP zx6000 system.
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4 Matrix Vector Product Formulation of Transposition Algo-

rithms

In this section, matrix transposition algorithms are formulated using the matrix vector product

notation. The formulation is based on the matrix-vector notation used in [9]. This section provides

a generic formulation for transposition algorithms. The formulation for individual algorithms is

given in Section 5.

Transposition of a matrix can be viewed as an interchange of the indices of the matrix. This is

a particular case of a general class of index transformation algorithms.

Each element of the array has a linear address vector obtained by concatenating the column

index bits to the row index bits. Transposition corresponds to a transformation of this linear address

vector and can be represented by a transformation matrix.

The identity of the transformation is � ��& . Matrix transposition is defined as the transformation

of the address vector G
GH���=G

where T is the transformation matrix

2333
4 I � &
� & I

? @@@
B .

We use the following notation in the discussion. Given two matrices
1

and *
1�� *�

2333
4
1 I
I *

? @@@
B (1)

13



� � 1 ��*P��
2333
4 I *1 I

? @@@
B (2)

� ��� & �>� & � is the desired transformation. Since the entire array does not fit in memory,
� ��� & �c� & �

is factorized into a number of transformation matrices such that the transformation effected by each

of the matrices can be done with the memory available. The following discussion provides the

matrix vector formulation of various out-of-core matrix transposition algorithms in the literature.

Any out-of-core matrix transposition algorithm consists of three phases–read, permute and

write. Each phase is modeled by a transformation matrix. These phases are repeated on disjoint

sets of data in the different steps of each pass. The algorithm might involve many passes, each

operating on the entire array. Thus, out-of-core matrix transformation algorithms are of the form

� ��� & �c� & �" ot� w�
ot� z|{ 5�� oW��op�=o

where � o is the transformation matrix corresponding to write, ��o is the transformation matrix

corresponding to read and �Ho corresponds to in-memory permutation for the G th pass.
}

is the

number of passes. The algorithms under this formulation read some data, permute it in memory,

and write the data to disk before reading data for the next step in the same pass. Each algorithm is

defined by the parameters
}
, � o , ��o and �=o . Different algorithms define these parameters in terms

of other parameters which are specific to that algorithm.

Some restrictions apply to the possible values of � o , ��o and �=o . These restrictions are induced

by the memory constraint involved in the algorithm. Each transformation matrix must correspond

to a transformation of the given out-of-core matrix that can be done with the memory available.
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Thus, each step of the algorithm can operate on at most � elements. In particular, � o , ��o and �=o
must be expressed as

�=o  1 ����& { � � �a� ¡P¢N£
��o ¤� ����& { ) � * )
� o (¥ ����& { ¦ � �0¦ §¨¢N£

The restriction of �<o shows that the unit of read must be at least � (  $ � ) elements. The

transformation in read as modeled by
1

determines the pattern of reads. Similarly for writes.

The restriction for �Ho shows that in-memory permutation can transform only address elements

corresponding to the data elements in memory. Given these parameters for an algorithm it can be

implemented as

Algorithm 5: Generic Transposition Algorithm
(1) for GH�I to } L/M
(2) for OPQI to $'����& { ) L/M
(3) Read M elements at address � { 5o ��OK� /*Might involve multiple reads*/

(4) Permute data in memory according to �©o .
(5) Write M elements at address � o ��OK� /*Might involve multiple writes*/

5 Performance Analysis From Formulation

In this section, we analyze the performance of various algorithms in the literature based on their

formulation. The parameters �<o , ��o and � o of each algorithm are determined and are used to

analyze the performance of the algorithm.
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The running time of an algorithm depends on the read, write and in-memory permutation time.

The I/O time depends on the size and stride of I/O. ¡ and § determine the read and write block

size, respectively, and hence are important parameters. In addition, the stride of access plays an

important role, as demonstrated by the I/O characteristics. The strides of reads and writes are

determined by the
1

and ¥ sub-matrices, respectively. For some algorithms it might be possible

that
1

( ¥ ) could be written as ª � � ; , for some matrix D. In such cases the read (write) sizes can

be larger than $ � ( $ ¦ ) elements.

5.1 Block Transposition

The $�e bits are partitioned into four components

� ��& Q�:«¬ � �:«K® � �:¯]¬ � �E¯_®
such that � � X�¥ � ¤£ . The values of the parameters are

} lM
�=o ����:«¬ � � ���:«K®°�>�E¯]¬±� � �E¯_®_�
��o ����E«�¬ s ¯]¬ � � �W�:«®²�>�:¯_®���
� o +� � �W�:«�¬³�>�:¯]¬ � �:¯_®�� � �:«®_�

It is a single pass algorithm. The algorithm reads $ «® elements and writes $ ¯_® elements in

one I/O operation. Note that the above values for � o , ��o and �=o satisfy the requirements. The

algorithm reads (writes) $ «® ( $ ¯_® ) elements. Generally the components are chosen such that

� � Z¥ � producing square blocks. The I/O size is typically ��� F �%� elements. Even for large
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memory sizes, this algorithm would fall short of reaching the threshold. This leads to high I/O

cost, making this a very inefficient algorithm. Note that this algorithm is not inefficient due to the

large number of I/O operations involved ( �����������a� ), but because of the small I/O size. For systems

with memory large enough to make I/O sizes larger than the threshold this algorithm can be very

efficient.

But a more effective way of choosing � � and ¥ � would be to minimize the total I/O cost.

Thus the problem becomes

� � X´¥ � (£
Minimize cost(read)+cost(write)

A cost model for read and write can be derived from the I/O characteristics of the system.

These cost equations can be used to arrive at the best components for the algorithm.

5.2 Eklundh’s Algorithm

Eklundh’s algorithm [10] has the following formulation

g�¤£µL¶e
� ��& Q� & { , � � , � � &
} Qef.�g
�=o ���� & {]· o¸s 5�¹ � , � � �W� , �c� o � , � � � & �
��o ���� & { , � � ��� , � � ��� & {]· o¸s 5�¹ � , �>� , �c� � � o � , �
� o +��� & {]· ots 5�¹ � , � � ��� o � , �>� , � � � & �
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� {
5
o (= � Co as �=o is a permutation matrix) and � o are identical, indicating that the algorithm

can be executed in-place. Each phase (read, write and permute) of the algorithm depends on the

pass in which it occurs. This algorithm reads and writes � elements in each I/O operation. This is

independent of the I/O characteristic of the underlying system. Hence the algorithm might perform

well on some machines and poorly on others. Also, unless the matrix size ( � � ) is of the order of

terabytes, � is lower than the read threshold for the systems analyzed in Section 3.

5.3 Kaushik’s Algorithm

Kaushik’s algorithm discussed in Section 2 can be formulated in the following manner, given

v o (g , IP¢NG"	 } .
g�¤£µL¶e
� ��& Q� & { , � � , � � &
} Qef.�g
�=o ���� ��& �
��o ���� & { , � � ��� & �>� , �c�
� o +� � �W� & { , �c� , � � � & �

This is an out-of-place algorithm involving
}

identical passes. The algorithm reads � elements

in one I/O operation thus comfortably achieving the read threshold. Each write involves � ele-

ments. This algorithm improves on Eklundh’s by reducing the read costs by performing sequential
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reads of large size. This algorithm does not take advantage of the I/O characteristics of the sys-

tem, by writing smaller block sizes than a row, if little additional cost is incurred. The in-memory

permutation phase in every pass involves element-wise permutation, unlike Eklundh’s algorithm

which moves larger blocks with each pass. This could increase the in-memory permutation cost as

compared to Eklundh’s algorithm.

5.4 Suh and Prasanna’s Algorithm

This algorithm does not fit into the formulation discussed as it might involve redundant reads. This

algorithm improves upon Kaushik’s by reducing the number of I/O operations and increasing the

I/O size of writes. The chunking of writes distributes the rows that will have to be operated on

in one step. In the next pass, the data to be operated in one step is collected. When the rows to

be collected are too far apart to be brought into memory in one I/O operation redundant I/O is

involved. In trying to reduce the number of I/O operations, the algorithm does not take this into

account. The algorithm could have benefited uniformly from chunking if it avoided redundant I/O,

by taking the memory available into account. The algorithm does not choose the chunking factor

based on the I/O characteristics. Hence the performance of the algorithm can vary dramatically

depending on the parameters of the problem. The algorithm usually benefits from an increase in

memory, since an increase in memory reduces the redundant data movement involved.

6 Our Algorithm

Our algorithm tries to minimize the I/O time involved by choosing the parameters for the algorithm

appropriately. The observation that an increase in I/O size beyond the threshold does not influence
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the performance of the algorithm is exploited. There is a trade-off between the I/O size and the

number of passes the algorithm requires. The smaller the I/O size, the more the algorithms ap-

proach the block-transposition algorithm and hence run in a smaller number of passes. However,

reducing the I/O size below the threshold increases the I/O time above the minimum possible.

The formulation of all algorithms discussed so far requires £ and e to provide a concrete list

of operations to perform to transpose the input out-of-core matrix. Our algorithm requires two

additional parameters, namely, the read block size ( $ � ) and the write block size( $ ¦ ), which are

chosen close to the threshold. The exact value depends on the number of passes that would be

involved given some block sizes. Smaller block sizes incur more I/O time but might potentially

reduce the number of passes, thus significantly reducing the total time. The most common case in

which the I/O block size is chosen to be smaller than the threshold is when such a choice reduces

the number of passes and offsets the additional cost incurred due to the smaller I/O size.

The number of rows to be transformed in each pass is determined as the maximum possible.

The chunking factor, the factor which determines the extent of chunking similar to that in Suh’s

algorithm, is chosen so that no redundant reads are incurred. This provides the benefits of the

chunking factor such as increasing the I/O size without increasing the total I/O time.

In previous algorithms, the basic unit of I/O was a row. The I/O transformation matrices are

of the form
1�� � & , while the required transformation

� ��� & �>� & � involves exchanging the upper

and lower e address elements in the address vector. The nature of the I/O transformation matrices

prevents any effective tranformation from being done in the read and write phases. The I/O phases

‘gather’ data to be permuted and ‘scatter’ the result of the permutation. In our algorithm, the I/O

block size could be smaller than � , say * 8$ , , in which case the exchange ��g 9:9:9 eºL�MY��»
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��e�X%g 9E9:9 $�T6e¼L½Md� can be done in the read and/or write phases. This reduces the number of

address vector elements to be transformed in the in-memory permutation phase and might result in

a reduction in the number of passes.

Our algorithm is formulated as shown below. The unit of each read and write is at least $ �
and $ ¦ elements respectively. Except in the first pass, the algorithm reads � elements in each

read operation. In the first pass, the read and write phases transform the address vector elements

��§¨U�e¾LNMY� to their appropriate positions. The remaining address vector elements are transformed

in the in-memory permutation phase of all the passes and the I/O phases of the remaining passes.

Conditions to be satisfied

eÀ¿N§
£Á¿N¡�¿N§
£ÁÂ�§

Parameters

v:w±
ÃÄÄÄÅ ÄÄÄÆ hjÇ�ÈÉ�W£µLÊ¡d�>§y� if ¡P	´e
hjÇ�ÈÉ�W£µLÊeH�>§�� if ¡P¿Ne

} 
ÃÄÄÄÅ ÄÄÄÆ M if v:wx(§
M"X�Ë ¦\{Ì�Í) { ¦ÏÎ otherwise

v o 
ÃÄÄÄÅ ÄÄÄÆ �W§NL�vYw�� mod ��£ZL¶§�� if GH } L/M and ��§/L�vYw�� mod ��£-LÊ§��±Â/I
£-L¶§ otherwise

� o 
ÃÄÄÄÅ ÄÄÄÆ I if G© } LNM
£ZLQ��§ÐX´v ots 5 � otherwise
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First pass ��GH�I��
Case 1: ¡�¿Ne
� w±Ñ�W� ��& �
� wx���� & {Ì Í � � ���EÌ Í �c� & { ¦ � � ���0¦\{Ì Í �>�:Ì Í �c���
� wx+� � ��� & {Ì�Í0�>� & { ¦ s Ì�ÍA{KÒ�Í>� � �0¦ s Ò�Í��
Case 2: ¡�	�e
� w±Ñ�W� & {Ì�Í � � ���EÌ�Í:�>� & { ��� � �0���
� wx���� ��& {]·Ó� s Ì�Í ¹ � � �W�:Ì�ÍE�>�0�c{ ¦ � � ���a¦²{Ì�Í0�>�:Ì�Í��c�A�
� wx+� � ��� & {Ì Í �>� & { ¦ s Ì Í {KÒ Í � � �0¦ s Ò Í �

Remaining passes ( IP	/G�¢ } LNM )
vcÔ o  o {

5ÕÖ � w v Ö
�=o ���� ��& �
��o ���� ��& {]·×¦ s Ì�Ø s Ò�ØtÙ�Ú ¹]� � ���EÌ�Ø7�>�0Ò�Ø¸Ù'Ú � � ���a¦²{Ì�Û�ØÜ{Ì�Ø7�>�:Ì�Ø��c� � �:Ì^Û�Ø��
� o +��� & { ¦ � � �W�:Ì�ØtÙ�Ú7{KÒ�Ø¸Ù'Ú � � ��� & {Ì�Ø¸Ù'Ú7{Ì�Ø7�>�EÒ�ØtÙ�ÚA���>�:Ì�Øp{KÒ�Ø�� � �0¦ s Ò�Ø��

With increasing memory size, a modification of the I/O parameters provides diminishing im-

provements, unless it results in a reduction in the number of passes. Greater improvements can be

obtained if the additional memory available is used to improve permutation time. Kaushik does

an in-place in-memory transposition. Suh uses collect buffers to collect data to be written in each
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Parameters Data layout

eÝ%$ , ¡Þ¤§Q%$ , £ß(àvyl~ M!�EM � ��½~�I���I �} %$
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

pass=0 (Case 1)� w±(�0á� w±Q� 5�� � �W� 5 � � �W� 5 �>� 5 �c�� wx � �W� 5 �>� 5 � � � �
«Íâ 0 1 2 3

4 5 6 7
8 9 10 11

12 13 14 15

ã Íâ 0 4 2 6
1 5 3 7
8 12 10 14
9 13 11 15

ä Íâ 0 4 2 6
8 12 10 14
1 5 3 7
9 13 11 15

pass=1v>Ô 5 ½M� 5 Q�0á� 5 Q� 5f� � ��� 5 �>� 5 � � � 5� 5  � ��� 5 �>� 5 � � � �
« Úâ 0 4 2 6

8 12 10 14
1 5 3 7
9 13 11 15

ã Úâ 0 4 8 12
2 6 10 14
1 5 9 13
3 7 11 15

ä Úâ 0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Table 2: Illuatration of our algorithm.

write operation. The locality of the permutation operation can be improved by optimizations such

a blocking. We use collect operations to perform the permutation, as this was empirically found to

take less time than in-memory permutation. Unlike Kaushik et al.’s and Suh and Prasanna’s algo-

rithm, in-memory permutation moves larger blocks of data in each succeeding pass. This further

reduces the in-memory permutation cost.

The transposition of a å��Jå array by our algorithm is illustrated in Table 2. The parameters are

on the left hand side. The actual data layout after each transformation is shown on the right hand

side.

7 Experimental Results

In this section, we discuss the results obtained from implementing Kaushik’s, Suh’s and our al-

gorithm. The algorithms were compared on the systems whose configurations are shown in Table
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1. The tests involved transposition of a matrix of integers, each of size 4 bytes. The amount of

main memory allocated to the data was varied and the total execution time was measured. On

the PC platform, the algorithms were run for array sizes of 256MB and 1GB. On the HP zx6000

machine, the algorithms were run for a data size of 16GB. This corresponds to array dimension

� being 8192 and 16384 on the PC platform and 65536 on the HP zx6000 machine. Tests were

not performed for larger array sizes due to hard drive capacity limitations. For larger arrays, the

comparative performance of the algorithms would be same as when the memory available is small.

For the array sizes considered the read threshold is much higher than � . So only the write

threshold influenced the variation in the running time of our algorithm. The results are shown in

Table 4, Table 5 and Table 3.

Our algorithm consistently outperforms the other two algorithms. An important characteristic

is that our algorithm achieves a low execution time for a given data size for a wide range of memory

sizes. The I/O sizes are varied so that the resultant cost of reduced memory size on the overall

execution time is incremental at best. Other algorithms need larger memory for performance to

become comparable to our algorithm. Thus for larger array sizes, which would correspond to

relatively smaller memory sizes, our algorithm would perform much better than other algorithms.

Optimizations such as chunking and handling of larger blocks for in-memory permutation result in

better performance of our algorithm even for large memory sizes. This property of our algorithm

can be used to implement further optimizations, such as out-of-place in-memory permutations for

all passes, where we read data into half the available memory and permute the data into the other

half.

The performance of Kaushik et al.’s algorithm does not improve steadily with an increase in
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memory. This is due to in-place in-memory permutation and the fact that the algorithm does not

maximize read and write block sizes with change in memory size.

Suh’s algorithm has a longer execution time compared to the the our algorithm, but it improves

with an increase in memory. This is due to two reasons, both resulting from the inability of the

algorithm to take advantage of the I/O characteristics of the system. Firstly, the algorithm does not

modify the read and write block sizes to reduce the number of passes required. Secondly, chunking

of writes, introduced to balance the number of read and write operations, results in redundant I/O

operations and hence huge penalties for larger arrays. For larger memory sizes, chunking does

not result in redundant I/O operations and the algorithm’s performance approaches that of our

algorithm, but does not perform better than our algorithm.

Our algorithm makes efficient use of memory available by adjusting the I/O block sizes and the

chunk sizes. By conscientious use of chunking and management of I/O block sizes, our algorithm

performs much better than both Kaushik’s and Suh’s. For example, for memory size of 32MB in

Table 3, the number of passes increases to three from two for Kaushik’s and Suh’s algorithms. In

our algorithm the write block size is reduced to retain the number of passes, thus resulting in a

comparatively smaller increase in total execution time.

The number of I/O operations in Kaushik’s and Suh’s is proportional to �æ�a.:� . If number of

I/O operations was an indicator of performance, doubling � should half the execution time of the

algorithm. But the results do not exhibit such behavior, showing that number of I/O operations

does not truly model the total execution time of the out-of-core matrix transposition algorithms in

literature.
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Algorithm Memory Size
32MB 64MB 128MB 256MB 512MB 1GB

Our 2897 2378 2529 2298 2237 2007
Suh’s 14437 10811 9756 11464 2623 2516

Kaushik’s 7750 4423 3944 4138 4051 4057

Table 3: Execution time (in seconds) on the HP zx6000 for the three algorithms for data size of
16GB

Algorithm Memory Size
4MB 8MB 16MB 32MB 64MB

Our 124 117 119 116 122
Suh’s 318 171 128 134 132

Kaushik’s 208 226 223 207 214

Table 4: Execution time (in seconds) on the Pentium II PC for the three algorithms for data size of
256MB

Algorithm Memory Size
4MB 8MB 16MB 32MB 64MB

Our 621 510 479 465 480
Suh’s 1526 2004 927 738 533

Kaushik’s 1079 685 829 859 910

Table 5: Execution time (in seconds) on the Pentium II PC for the three algorithms for data size of
1GB
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8 Conclusions

In this paper, we addressed the efficient transposition of matrices that are too large to fit in main

memory. We addressed the drawbacks of previously proposed algorithms and used empirically

derived I/O characteristics of the system in guiding the algorithm. We formulated the out-of-core

matrix transposition problem as an index permutation on the addresses of matrix elements and

inferred the effect of various components of the formulation on the I/O time and in-memory per-

mutation time. We devised an algorithm by choosing the design parameters that minimize time

involved in the I/O and in-memory permutation phases of the algorithm. Thus we improved the

overall transposition time, rather than reducing the number of I/O operations, as previous algo-

rithms have done. Experimental measurements were provided, demonstrating the superiority of

the proposed approach to existing methods.
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