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Abstract. Compile-time optimizations involve a number of transformations such
as loop permutation, fusion, tiling, array contraction, etc. Determinatiothef
choice of these transformations that minimizes the execution time is a challeng
ing task. We address this problem in the context of tensor contractiorssipns
involving arrays too large to fit in main memory. Domain-specific featofete
computation are exploited to develop an integrated framework that facilitates
exploration of the entire search space of optimizations. In this paperjseass

the exploration of the space of loop fusion and tiling transformations inrdcde
minimize the disk 1/O cost. These two transformations are integrated anéhgru
strategies are presented that significantly reduce the number of loofusésito be
evaluated for subsequent transformations. The evaluation of thewirark using
representative contraction expressions from quantum chemistrysshoramatic
reduction in the size of the search space using the strategies presented.

1 Introduction

Optimizing compilers incorporate a number of loop transfations such as permutation,
tiling, fusion, etc. Considerable work has addressed ldimg tfor enhancement of data
locality [4,8,12,17, 21, 22, 25-28]. Much work has also béeme on improving locality
and/or parallelism by loop fusion [10,11, 13, 14, 24]. Fus@jten creates imperfectly
nested loops, which are more complex to tile effectivelyntiperfectly nested loops.
Several works have addressed the tiling of imperfectlyatestops [2, 25]. Although
there has been much progress in developing unified frameworknodeling a variety
of loop transformations [1, 2, 19, 28], their use has so fanbestricted to optimization
of indirect performance metrics such as reuse distanceedag parallelism, etc.

The development of model-driven optimization strateghest target direct perfor-
mance metrics, remains a difficult task. In this paper, weregkithe problem in the
specific domain of tensor contractions (generalized mardducts) involving tensors
too large to fit into physical memory. We use special propsrtf the computations in
this domain to integrate the various transformations awestigate pruning strategies to
reduce the search space to be explored.

The large sizes of the tensors involved require the devetopiof out-of-core imple-
mentations that orchestrate the movement of data betwes&radd main memory. We



have developed an integrated approach to determine themjie combination of loop
permutation, fusion, and tiling, and the position and ardgpf I/O placements. In this
paper, we discuss the integration of loop fusion and tiliag$formations with the ob-
jective of minimizing disk 1/0 cost. We first evaluate the g&all fusions to be explored.
For each fusion structure, all loop permutations and I/@gi@ents would be evaluated.
A generalized tiling approach is presented that signifigareduces the number of loop
structures to be explored. It also enables subsequentiaptions of 1/0 placements and
loop permutations. This approach enables an exploratitimecéntire search space using
a realistic performance model, without the need to resoltetaristics and search of a
limited subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the nexiegowve elaborate on the
computational context of interest and introduce someipiglry concepts. An overview
of the program synthesis system, of which the presentedefrark is a part, is given
in Section 3. Section 4 describes a tree partitioning algari In Section 5, we propose
a loop structure enumeration algorithm and prove its cotapkss. The reductions in
the space of loop structures to be explored is shown for septative computations in
Section 6. Conclusions are provided in Section 7.

2 Computational Context

The work presented in this paper is being developed in théegbof the Tensor Con-
traction Engine (TCE) program synthesis tool [3,5-7,16]e TCE targets a class of
electronic structure calculations which involve many caiagionally intensive compo-
nents expressed as tensor contraction expressions.

The TCE takes as input a high-level specification of a conmjmrtaxpressed as a
set of tensor contraction expressions, and transformsatefficient parallel code. The
current prototype of the TCE incorporates several contpite optimizations which
are treated in a decoupled manner, with the transformabeirsy performed in a pre-
determined sequence. In [15], we presented an integrafgdagh to determine the tile
sizes and I/O placements for a fixed structure of the comiputtloops after fusion
and permutation. Techniques to prune the search space sibjg80 placements, or-
derings, loop permutations and tiling for given a choiceusfién of tensor contractions
were presented in [23]. In this paper, we present a techrti@®umerate the various
fusion structures and develop an algorithm to significargiyuce the number of loop
nests to be evaluated for each fusion structure.

In the class of computations considered, the final resuletocdmputed can be ex-
pressed using a collection of multi-dimensional summatiohthe product of several
input arrays. As an example, we consider a transformatitanafsed in quantum chem-
istry codes to transform a set of two-electron integralenfem atomic orbital (AO) basis
to a molecular orbital (MO) basis:

B(abc,d)= % Cl(d,s) xC2(c,r) x C3(b,q) x C4(a, p) x A(p,q,",s)
p,g,r.s

Here, all arrays would be initially stored on disk. The iredip, g, r, ands have the
same rang®&\. The indicesa, b, ¢, andd have the same rangé Typical values foN
range from 60 to 1300; the value fdris usually between 50 and 1000.

The calculation ofB is done in four steps to reduce the number of floating point
operations,
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T2(abr,s) = C3(b,q) x T1(a,q,r,s)
G

T3(a,b,c,s) = ZCZ(c,r) xT2(a,b,r,s)
r

B(a,b,c,d) = ZCl(d,s) x T3(a,b,c,s)
S

The sequence of contractions in this form can be represéytad operation tree, as
shown in Fig. 1(a). The leaves correspond to the input aaaglgdhe root of the operation
tree to the output array. The interior nodes, intermediateutput arrays, are produced
by the tensor contraction of their immediate children. Thgess in the operation tree
represent theroducer-consumer relationship between the different tensor contraction
expressions. Note that the operation tree is a binary inredaich each node has either
zero or two children.

Assuming that the available memory limit on the machine nogthis calculation is
less tharV4 (which is 3TB forV = 800), any of the logical arraya, T1, T2, T3, and
B is too large to entirely fit in memory. Therefore, if the corgtion is implemented
as a succession of four independent steps, the intermediatd 2, andT 3 have to be
written to disk after they are produced, and read from didbreethey are used in the
next step. Furthermore, the amount of disk access volumd beunuch larger than the
total volume of the data on disk. Since none of these arrayedully stored in memory,
it may not be possible to read each element only once from disk

Suitable fusion of the common loops involved in the contoaxs that produce and
consume an intermediate can reduce the size of the intesteaatiray, making it feasible
to retain it in memory. Henceforth, the term intermediatdawvill be used to refer to
both the intermediate array produced in the corresponditggior node of the operation
tree, and the contraction that produces it. The referenaietsd clear from the context.

Given a choice of fusion, an intermediate node not fused itstparent divides the
operation tree into two parts, both of which can be evaluatddpendently. Such an
intermediate node which is not fused, is said to beitapoint in the operation tree. A
cut-point node is assumed to be written to disk on produddimh read back during its
consumption. A connected operation tree without any iotenit-points is called tused
sub-tree. The divided operation tree for the four-index transfornresponding tor 1
being a cut-point is shown in Fig. 2(a). The cut-point didle operation tree into two
fused sub-trees, one of which produdels and the other which consumes it.

The loop nesting tree (LNT) represents the loop structure corresponding to adfuse
sub-tree. Each node in a LNT is labeled by the indices of a Bétlly permutable
loops that appear together at some level in the overall ifapty nested loop structure
that results after applying loop fusion to the contractiomputations in the sub-tree.
The leaves represent the innermost loops, while the rooésepts the outermost loops.
Fig. 2(b) shows two possible LNT's for the two fused subtiiedsig. 2(a) , respectively.
The corresponding code structure is shown in Fig. 2(c).

3 Integrated Framework

The program synthesis system takes an operation tree egpirgga set of tensor contrac-
tions as input, and generates an efficient loop structute exiplicit disk 1/0O statements

to implement the computation. The optimization process bwyiewed in terms of the

following steps:

1. Operation Tree Partitioning: In this step, we divide thigioal operation tree into
several fused subtrees by identifying cut-points. Thenopltioop structures for the
subtrees are independent of each other, and are deterneipachtely.



B = SUM(T3*C1)

/ \ for ar,qsp
[tla‘q’rﬁs += Ap’q’r‘s*c4a_’p

T3 = SUM(T2*C2) c1
for a br,sq
[t2abrs +=tlagrs*C3pgq

T2 = SUM(T1*C3)

ez for abocr,s
/ \ [t3a,b7c,s += t2a.,b,r,s*Czc,r
3

T1 = SUM(A*C4) c for abocds

/ \ [Ba,b,c,d += t3a,b,c,s*C:I-d,s
A c4

(a) Operation tree for the four-index (b) Corresponding unfused code structure

transform

Fig. 1. Operation tree and unfused code structure for the foundtrdasform

2. Loop Structures Enumeration: For each fused subtreenumerate candidate loop
structures to be evaluated, as a set of LNT’s.

3. Intra-Tile Loop Placements: For a given LNT, we tile albps at each node and
propagate intra-tile loops to all the nodes below it.

4. Disk I/0O Placements and Orderings: We then explore varmmssible placements
and orderings of disk I/O statements for each disk array iled foop structure with
a pruning strategy to determine the best placement andingder

5. Tile Size Selection: For each combination of loop tramsftions and 1/0O place-
ments, the 1/0O cost is formulated as a non-linear optimaragiroblem in terms of
the tile sizes. The tile sizes that minimize the disk /0O @t determined using a
general-purpose non-linear optimization solver.

6. Code Generation: We calculate the disk access cost forssation obtained, and
generate code for the one with the minimal disk I/O cost.

Algorithm 1 shows the procedure to evaluate the optimal Iswpcture with 1/0
placements for a sub-tree of the operation tree rooted ates giodet. The fused sub-
tree rooted at that node is called a top subtreet [Ee® denote the optimal loop structure
of the sub-tree rooted at notlewhich includes three field§.CS, FFT andCog. TCS
represents the set of cut-points that are leaves of the toppesyFFT represents the
fused loop structure of the top subtree; &wdt represents the disk cost incurred by the
optimal loop structure.

The top subtrees are first enumerated. This is explaineddtiddet. Each of these
sub-trees is evaluated in turn to determine the optimal &inpgture. Given a fused sub-
tree, its initial cost is evaluated to be sum of the costssafdt-point nodes. The optimal
loop structure and the corresponding cost for a given fusbetree are determined by
first enumerating all candidate loop nesting trees and nhittiérg the disk I/O place-
ments, orderings, loop permutations, and tile sizes thaimize the disk 1/0 cost. The
enumeration of candidate loop nesting trees is discuss8ddtion 5. The search space
of disk I/O placements and orderings, loop permutationd, tde sizes is pruned and
modeled as a non-linear optimization problem, which is thelved to determine the
disk I/0O cost. This process is encapsulated in the procethiaocality().
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(a) Divided operation trees

Fig. 2. Representations involved in generation of a fused codetsiiel

In this paper, we focus on determination of the fused substeand the enumeration
of candidate loop nesting trees to be evaluated. Detailsibsegjuent steps can be found
in [23].

4 Tree Partitioning

In this section, we discuss the procedure to enumerate tioé akt fused subtrees to be
evaluated. In general, fusing a loop between the producandhtermediate array and
its consumer eliminates the corresponding dimension oétrey and reduces the array
size. If the array fits in memory after fusion, no disk I/O iqu&ed for that array. On the
other hand, if the array does not fit in the physical memoryneafter fusion, the disk I/O
cost is not reduced, and the fusion does not result in anyawepnent.

Therefore, fusion of any loops corresponding to an intefietechode is assumed to
cause the resulting intermediate to reside in memory. Bmp@lly resides in disk if the
intermediate node is not fused with its parent.

For an arbitrary operation tree wit intermediate nodes, it has at m@{2M) pos-
sible fused sub-trees, but not all of them can be fused. @enan intermediate nodelf
both its children are fused with it, then the loops corresiiagto the summation indices
in the given node must be the outermost loops; and it can nfdes with its parent
anymore. Thus, eithéror one of its children must be a cut-point.

Based on this property, we can restrict the number of topreebttoO(M?). The al-
gorithm to enumerate the fused sub-trees rooted at a gividmisshown in Algorithm 2.
It proceeds in a bottom-up fashion, constructing the fusbdteees rooted at a given node
from those of its children. A node consuming the arrays pceduby its children extends
the fused sub-trees from each of its children. These s@s-ttan further be extended to
include the given node’s parent. In turn, these sub-trees fo“chain” starting from the
given node and terminating at a cut-point. In addition, tiverynode can be considered
as a cut-point. In this scenario, all possible pairs of leff @ght fused sub-trees form a
valid fused sub-tree for the given node.

The fieldt.TreeSet represents the set of fused sub-trees which can be exteaded t
include the parent df



Algorithm 1 SearchOptimalLoopStructute¢he root of a subtree)

/IGiven a subtree rooted gtthe algorithm will find the optimal loop structure with
disk I/0

TreeSet = EnumerateF usedSubtrees(t)
for each subtre@&; in TreeSet do
TCS=T;.Cut point Set
LeafCog =0
for each cut-pointt in TCSdo
LeafCost = LeafCogt + ct.FS.Cost
end for
/[Enumeatrte all loop structures of fused subffee
LoopSet = Enumeratel.oop(T;)
OptCost =
//Compute the minimal disk 1/O cost of subtrge
for each loop structurEF Sin LoopSet do
Cog = datalocality(FFS)
if Cost < OptCost then

OptCost = Cost
OptFFS=FFS
end if
end for

Cost = OptCost + |leafCost
if Cost < t.FSCost ort.FS= null then
t.FSCos = Cost

t.FSTCS=TCS
t.FSFFS=OptFFS
end if
end for

5 Loop Structure Enumeration

In this section, we first present an algorithm that can gdéeexaet of loop structures of
a fused subtree. Then, we prove that for any loop stru@uifehe fused subtree, we can
find a corresponding loop structugein the generated set, so tHaitcan be transformed
to Shy some proper multi-level tiling strategies.

5.1 Enumeration Algorithm
In the previous section, we showed that a fused subtree ralistdme of these two forms:

— All contractions form a chain. We call it@ntraction chain. For instance, Fig. 1 is
such an operation tree, in which the contraction chamlisT 2, T 3, B.

— The contractions form two chains joining at the root nodehia case, theontrac-
tion chain is connected by these two chains. An example of such an apetege is
shown in Fig. 3, in which the contraction chainli4, T2,B,T3,T4



Algorithm 2 EnumerateFusedSubtreteslie root of a subtree) returfgeeSet

ty = the left child oft; t =the right child oft; TreeSat = empty
/[Only one subtree
if botht; andt; are input nodethen
Create a new Tre&r with Tr.CutpointSet = 0
InsertTr into TreeSet
end if
/[Extending subtrees from the child not an input
if t1 is an input node ant} is an intermediate nodéen
childSet =t,. TreeSat
Create a new Tre€r with Tr.CutpointSet = {t2}
InsertTr into TreeSet
end if
if t is an input node, ang is an intermediate nodéen
childSet =t;.TreeSat
Create a new Tre€r with Tr.CutpointSet = {t1}
InsertTr into TreeSet
end if
for each subtred in childSet do
Create a new Tre€r with Tr.Cut pointSet = st.Cut point Set
InsertTr into TreeSet
end for
t.TreeSet = TreeSat
/[Entending subtrees from either child, and cutting anothdd off
if botht andt, are intermediate noddken
childSetl =t;. TreeSat
for each subtred in childSet1 do
Create a new Tre€r with Tr.CutpointSet = {st.Cut pointSet,t2}
InsertTr into TreeSet
end for
childSet2 =t,. TreeSat
for each subtredt in childSet2 do
Create a new Tre€r with Tr.CutpointSet = {st.Cut pointSet,t1}
InsertTr into TreeSet
end for
Create a new Tre€r with Tr.CutpointSet = {t1,t2}
InsertTr into TreeSet
t.TreeSet = TreeSat
/IMerging subtrees from both children, and extending tiselte
for each pair of subtrees1 in childSet1 andst2 in childSet2 do
Create a new Tre@r
Tr.CutpointSet = {st1.Cut pointSet, st2.Cut pointSet }
InsertTr into TreeSat
end for
end if




B = SUM(T2*T3)

/N

T2 = SUM(T1*C3) T3 = SUM(C2*T4)
T1 = SUM(A*C4) C3 cC2 T4 = SUM(D*C1)

SN N

Fig. 3. An operation tree with two chains

Given an operation tree that hasontraction nodes, tz, ...t,, lett;.indicesdenote all
loop indices surrounding the contraction nddé-irst, we create a contraction chain of
the operation tree. It corresponds to a sequence of perfeesked loops. Many different
choices exist in the ordering of the fusions within this saee of perfectly nested loop
nests. Each of the perfectly nested loops, correspondiagctmtraction, can be consid-
ered an independent loop nesting tree. The fusion of submelucing and consuming
an intermediate creates an imperfectly nested loop nestghich some of the common
loops are merged. The process of construction of the loojingesee of the fused sub-
tree can be modeled as a paranthesization problem. Cotisédsequence of contraction
nodes T1, T2, T3, and B in the operation tree shown in Fig(T1(T2 T3))B) corre-
sponds to a parenthesization in which the contractionsymiad T3 and consuming T3
are fused first and the resulting loop nest is fused with timraotions producing T1 and
B, in that order. Fig. 4 shows one possible parenthesiz&tiotihe four-index transform
and the corresponding loop nesting tree.

We enumerate all possible parenthesizations of the cdignachain. For each paren-
thesization, a maximally fused loop structure is created iBcursive construction proce-
dure. We call itmaximally fused since, in the construction procedure, each intermediate
node will have its indices fused as much as possible witharemt. The construction
procedure is shown in Algorithm 3. It takes a parenthesipng® as input, and gener-
ate a corresponding LNT. A parenthesization of a contractioain withn nodes has
n— 1 pairs of parentheses. Each pair of parentheses includesiéments, left and right
element. Each element is either a single contraction nadeparenthesization of a sub-
chain within a pair of parentheses.

For easy understanding, we use an example to explain howlgbethm works.
Consider a parenthesizatiofT 1(T2 T3))B) of four-index transform. Fig. 4 shows how
the construction procedure creates the corresponding &y step.

5.2 Completeness

In this section, we prove that the setrofiximally fused loop structures generated by the
enumeration algorithm above can represent all loop strestaf a fused subtree. The
following definitions are provided to clarify terms used lire tproof.

Definition 1. Each leaf in a LNT includes a contraction node. The set ofreatibn
nodes from all the leaves in a LNT is callbshfcontractions of the LNT.



Algorithm 3 Constructionip)

/IGiven a parenthesization, the algorithm map it to a mahinfiased loop structure in
LNT

| =Pleft
r = Pright
if | is a parenthesizatiotmen
It = Constructionleft)
else ifl is a contractiorthen
It = Create a new LNT node
It.indices=|.indices
It.children = null
It.contraction =1 {ltis a leaf, which includes a contraction node ih it
end if
if r is a parenthesizatidinen
rt = Construction(ight)
else ifr is a contractiorthen
rt = Create a new LNT node
rt.indices=r.indices
rt.children = null
rt.contraction =r {rt is a leaf, which includes a contraction node i it
end if
comindices = It.indicesNrt.indices
It.indices = It.indices— comindices
rt.indices = rt.indices— comindices
Int = Create a new LNT node
Int.indices = comindices
Int.children= {It,rt}
returnint

Definition 2. In a LNT, each nodéhas exactly one path to the root. ltatpperindices
denotes the union of all indices belonging to nodes on thle fpat t to the root. If a
subtreesnt is rooted at, we also definalnt.upperindicesto equal ta.upperindices.

Definition 3. In a LNT, suppose two leavésandt; belong to one subtresint. If there
is no other subtree that contains bgtlandt; and is a subtree aint, then we say that
sint is theminimal common subtree of t; andt;, denoted a#ICS(t;, t;).

Given an arbitrary loop nesting trdet, we can map it to a maximal fused loop
nesting treent’, which is in the set ofmaximally fused loop structures generated by the
enumeration algorithm above, and can be translatédt twith some proper multi-level
tiling strategy. The mapping algorithm consists of two step

1. Takelnt as input, and generate a parenthesizaBaf the contraction chain using
the generation routine provided in Algorithm 4.

2. Apply the construction procedure in Algorithm 3 Brio generate a maximally fused
loop structurdnt’.



Parenthesization LNT
(T2 T3) —
a2 | [c3 |
(T1 (T2 73))
a,l,s
[pacn] [ b |
a2 | | c) |
(T1(T273)) B) [T\
| r | |b,c,d(B)|
[pamn] [ b |
a2 | | e |

Fig. 4. Construction of a maximally fused loop structure for a gatir parenthesization
of the four-index transform.

Obviously,Int’ is the set ofmaximally fused loop structures generated by the enumer-
ation algorithm. Afterward, we show thhit’ can be translated tot by sinking indices
at upper levels down.

Lemma 1. For any pair of contraction nodgsandt;, letcommon(Int,t;,t;) be the loops
shared by; andt; in Int. We havecommon(Int, t;,t;) C common(Int’,t;,t;).

Proof. Given a subtreaint, snt.upperindices represents all common loops shared by
sint.leafcontractions.

There is an interesting property ofaximally fused loop structures in the way they
are constructed. For any subtrdet in the LNT of amaximally fused loop structure,
sint.upperindices includes all common loops amordjnt.leafcontractions. In other
words, it includes all possibly shared loops amatg.leaf contractions. In addition,
from the mapping method, we can see thanithas a subtrednt, then there exist a twin
subtreesint’ in Int’, which satisfied the following conditions:

dnt.leafcontractions = sint’.leafcontractions
dnt.upperindices C sint’.upperindices



Algorithm 4 Parenthesizéit)
/IGiven an LNT, the algorithm map it to a corresponding pHresization

if Int.children # null then
P =null
for each childc in Int.children do
P’ = Parenthesize
if Pisnull then
P=F
else
P = new ParenthesizatioR(P’)
end if
end for
else
P = c.contraction {c is a leaf and includes a contraction npde
end if
returnP

Given any pair of leaf nodes andtj, we definemlnt = MCS(t;,t;) in Int, wheremint.
upperindices = common(Int,t;,t;). Hence, we can find the corresponding subtrist’
inInt’, where

mint.upperindices C mint’.upperindices C common(Int,t.t;)
Thus, we haveommon(Int,t;,tj) € common(Int’,t;,t;). O

Lemma 2. If common(Int,t,tj) C common(Int’,t,t;), then we can transforrimt’ to
form Int” by sinking indices down, so thabmmon(Int, tj,t;) = common(Int”,t;,t;)

Proof. We definemint andmint’ as MCS(t;,t;) in Int andInt’ respectively. Any loop
in common(Int’,t;,t;) belongs to the root or an ancestorrdifnt’. Assuming loogd is in
the difference otommon(Int,t;,t;) andcommon(Int’,t;,t;). We removd from the orig-
inal noder, and insert it to all children of. After that, if | still belongs to the root or
an ancestor omlnt’, we repeat the sinking operation described above, Uigilnot in
mint’.upperindices any more. The same method is applied for all indices in the dif
ference ofcommon(Int,t;,t;) andcommon(Int’,t;,t;). The new LNT is denoted dsit”.
Then, we haveommon(Int,t;,t;) = common(Int”.t,t;). |

Applying the sinking operation in Lemma 2 for each pair ofraction nodest;, t;),
we can transfornint’ to Int”, which satisfies the conditioit;,t;), common(Int,t,t;) =
common(Int”,tj,t;). After that, if a node has no indices im.indices, we remove from
Int”, and put all children of to its parent. Therdnt” is same ant.

Usingmulti-level tiling strategy, a maximally fused loop strcuture can be transformed
into an arbitrarily fused loop structure by appropriateichoof tile sizes.Multi-level
tiling can transform the LNT of a loop structure as follows. Eactplpeesent in the
root is split into two components, inter-tile loop and intile loop. The intra-tile loop is
placed on child nodes of the root. Then the loops presentdh efthe child nodes in-
cluding the intra-tile loops from the root, are again sptitlantra-tile loops are placed on



their respective child nodes. This process is porformedredeely till the leaf nodes are
encountered. The loop structure corresponding to the LNiTatso be transformed ac-
cordingly. Figure 5 shows the way to tile loagn the LNT in Fig. 4 and the relationship
between different tiles, wheerange represents the range of loap

The sinking operation in LNT can be modeled as thdti-level tiling in the loop
structure. Given a loop structure, if we tile a fused loophwdittile size equal to its loop
range, it leads to the same result as we sink the loop index énaginal node to all its
children. LetSandS be loop structures representd by andInt’ respectively. Since
we can transformnt’ to Int by sinking operations, we can also transfomo S by
proper multi-level tiling strategies. Next, we will use axaeple to show the details of
the transformation procedure.

An arbitrary fully fused loop structur8 of four-index transform is shown in Fig-
ure 6(a), and the corresponding maximally fused loop streq is in Figure 6(b). After
we apply multi-level tiling strategies is translated to the format shown in Figure 7(a).
In addition, if we set ranges of inter-tile loops accordinghe following formulas, and
remove all loops witlrange = 1, thenS can be rewritten as the format shown in Fig-
ure 7(b), which is exactly the same &slt should be noted that the indexing of the
intermediate arrays has been shown in a more generic way.

alp=alz3=sli=slh=slz=rT,=ql1 =1 al, = arange rly =r.range

aTi,s

| aTe.r | |a|1, b,c,d(B1

aT,.range x al;.range = a.range

aTy.range x alp.range = aly.range

| alz, p.q (T1)| | aTs,b | aTsz.range x alz.range = al.range

| alag (T2) | | ab,c (T3) |

(a) Multi-level tiling loopa (b) Range of different level tiles

Fig. 5. An example of multi-level tiling in LNT

5.3 Complexity

The total number of loop structures generated by the endioer@gorithm is the same
as the number of parenthesizations of the contraction ckaira contraction chain with
n nodes, the number of all possible parenthesizations isdaétlen™ Catalan Number.

It is exponential inn, and the upper bound iB(4"/n%?2). In contrast, the number of
possible loop structures is potentially exponential in @&l number of distinct loop
indices in then intermediate nodes, a considerably larger number. Thelfaperation
tree is not very long for most representative computatibnsiost practical applications,
a fused subtree usually has no more than 5 contractions imgkesihain. Note that the
n Catalan Number is not very large whetis small. The first six Catalan Numbers are
listed here: 11,2,5,14,42....



for a for a s

rfor r rfor r
for a,sp for g
[tlsq += Apqrs*Cdap for
for b, S, q [tl += Ap‘q’r’s*C4avp
[t2rs +=tlsq*C3pq for b
for b,cr,s [t2y +=t1xC3pq
[t3pcs += 125 s*C2r for b, c
for b,cd s [t3pc += 125+ C2r
L [Bapcd += t3pcs*Clys for bycd
L [ Ba,b,c,d += t3b.c*C1d,s

(a) Arbitrary fused loop structure: S (b) Maximally fused loop structure: S

Fig. 6. An arbitrary loop structure and the corresponding maxiynaised structure

for aTy, sTh
rfor rTy, al, S f_cf)roraTrlT
for qTy, Ty, als, STz for ‘1) dly, o3

for p, aly, rly, als, sls
[tlaiqi,ris+ = Apgrs*Clap
for b, dqlg,rly, als, sl3
[tzal,b,rl,sl +=tlg ql,risl *C3b,q

for b, ¢ rly, alp, sl

[t3al besdt = 124 Jbyrlsl ¥ Czc,r

for aly, b, ¢ d, s
L [ Bapb,c.,d"’ = t3aIAb,c,sI *Cld,s

[t1aigiris+ = Apgrs*Clap
for b, qly,sl3
[t2a pri,s+ =tlai g8 *C3ug
for b, ¢ aly sl
[t3a bcs + =1t2a bri g *C2r
for b ¢ d, si
| [Babcdt =13a bcs *Clds

(a) After inserting intra-tile loops (b) After selecting proper tile counts

Fig. 7. Translate S’ to S by multi-level tiling strategy

6 Results

The enumeration algorithm discussed in Section 5.1 gesgeeaset of candidates loop
structures to be considered for data locality optimizatifithout this algorithm, and
generalized tiling, the set of loop structures to be evaldiatight be too large, precluding
their complete evaluation and necessitating the use ofdtmst

We evaluate the effectiveness of our approach using th@fity tensor contractions
from representative computations from the quantum cheyrdsimain.

1. Four-index transform (4index): This is the sequence of contractions introduced in
Section 2.

2. CCSD: The second and the third computations are from the classul€d Cluster
(CC) equations [9, 18, 20] for ab initio electronic struetinodeling. The sequence
of tensor contraction expressions extracted from this egatin is shown as fol-
lows:

S(jviabaa)ZZLK(A(I’k?bva) . .
X (Zd (ZC(B(dvcalak) X C(l,C)) X D(Jvd)))

3. CCSDT: This is a more accurate CC model. A sub-expression from thSITIC
theory is:



Table 1. Effectiveness of pruning of loop structures.

#Contractions #Loop structures Reduction

Total Pruned
4index 4 241 5 98%
CCSD 3 69 2 97%
CCSDT 4 182 5 98%

S(hsa h4a p17 p2) = Zpg,hﬁ,hS (y,OOOV\N(hS, h67 h47 pga p17 p2) X
Yhio (t-vo(p9,h10) x ¥ 7 (t_vo(p7,h8) x
3 ps (t-vo(p5,h6) x v_oow(h10,h3, p7, p5)))))

We evaluated the fused subtree corresponding to the eptration tree without any
cut-points. The number of all possible loop structures &edhtumber of candidate loop
structures enumerated by our approach are shown in Tableedn be seen that a very
large fraction of the set of possible loop structures, up8%9is pruned away using the
approach developed in this paper.

7 Conclusions

In this paper we addressed the problem of optimizing the alisless cost of tensor con-
traction expressions by applying loop transformations d¥Weussed approaches to parti-
tioning of the operation tree into fused sub-trees and gdimgra small set of “maximally-
fused™ loop structures that “cover” all possible impetfgaested fused loop structures.
The approach was evaluated on a set of computations repatigenf the targeted quan-
tum chemistry domain and a significant reduction was dematest in the number of
loop structures to be evaluated.
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