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Abstract. Compile-time optimizations involve a number of transformations such
as loop permutation, fusion, tiling, array contraction, etc. Determination ofthe
choice of these transformations that minimizes the execution time is a challeng-
ing task. We address this problem in the context of tensor contraction expressions
involving arrays too large to fit in main memory. Domain-specific featuresof the
computation are exploited to develop an integrated framework that facilitatesthe
exploration of the entire search space of optimizations. In this paper, we discuss
the exploration of the space of loop fusion and tiling transformations in order to
minimize the disk I/O cost. These two transformations are integrated and pruning
strategies are presented that significantly reduce the number of loop structures to be
evaluated for subsequent transformations. The evaluation of the framework using
representative contraction expressions from quantum chemistry shows a dramatic
reduction in the size of the search space using the strategies presented.

1 Introduction

Optimizing compilers incorporate a number of loop transformations such as permutation,
tiling, fusion, etc. Considerable work has addressed loop tiling for enhancement of data
locality [4, 8, 12, 17, 21, 22, 25–28]. Much work has also beendone on improving locality
and/or parallelism by loop fusion [10, 11, 13, 14, 24]. Fusion often creates imperfectly
nested loops, which are more complex to tile effectively than perfectly nested loops.
Several works have addressed the tiling of imperfectly nested loops [2, 25]. Although
there has been much progress in developing unified frameworks for modeling a variety
of loop transformations [1, 2, 19, 28], their use has so far been restricted to optimization
of indirect performance metrics such as reuse distance, degree of parallelism, etc.

The development of model-driven optimization strategies that target direct perfor-
mance metrics, remains a difficult task. In this paper, we address the problem in the
specific domain of tensor contractions (generalized matrixproducts) involving tensors
too large to fit into physical memory. We use special properties of the computations in
this domain to integrate the various transformations and investigate pruning strategies to
reduce the search space to be explored.

The large sizes of the tensors involved require the development ofout-of-core imple-
mentations that orchestrate the movement of data between disk and main memory. We



have developed an integrated approach to determine the appropriate combination of loop
permutation, fusion, and tiling, and the position and ordering of I/O placements. In this
paper, we discuss the integration of loop fusion and tiling transformations with the ob-
jective of minimizing disk I/O cost. We first evaluate the setof all fusions to be explored.
For each fusion structure, all loop permutations and I/O placements would be evaluated.
A generalized tiling approach is presented that significantly reduces the number of loop
structures to be explored. It also enables subsequent optimizations of I/O placements and
loop permutations. This approach enables an exploration ofthe entire search space using
a realistic performance model, without the need to resort toheuristics and search of a
limited subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the next section, we elaborate on the
computational context of interest and introduce some preliminary concepts. An overview
of the program synthesis system, of which the presented framework is a part, is given
in Section 3. Section 4 describes a tree partitioning algorithm. In Section 5, we propose
a loop structure enumeration algorithm and prove its completeness. The reductions in
the space of loop structures to be explored is shown for representative computations in
Section 6. Conclusions are provided in Section 7.

2 Computational Context

The work presented in this paper is being developed in the context of the Tensor Con-
traction Engine (TCE) program synthesis tool [3, 5–7, 16]. The TCE targets a class of
electronic structure calculations which involve many computationally intensive compo-
nents expressed as tensor contraction expressions.

The TCE takes as input a high-level specification of a computation expressed as a
set of tensor contraction expressions, and transforms it into efficient parallel code. The
current prototype of the TCE incorporates several compile-time optimizations which
are treated in a decoupled manner, with the transformationsbeing performed in a pre-
determined sequence. In [15], we presented an integrated approach to determine the tile
sizes and I/O placements for a fixed structure of the computational loops after fusion
and permutation. Techniques to prune the search space of possible I/O placements, or-
derings, loop permutations and tiling for given a choice of fusion of tensor contractions
were presented in [23]. In this paper, we present a techniqueto enumerate the various
fusion structures and develop an algorithm to significantlyreduce the number of loop
nests to be evaluated for each fusion structure.

In the class of computations considered, the final result to be computed can be ex-
pressed using a collection of multi-dimensional summations of the product of several
input arrays. As an example, we consider a transformation often used in quantum chem-
istry codes to transform a set of two-electron integrals from an atomic orbital (AO) basis
to a molecular orbital (MO) basis:

B(a,b,c,d) = ∑
p,q,r,s

C1(d,s)×C2(c,r)×C3(b,q)×C4(a, p)×A(p,q,r,s)

Here, all arrays would be initially stored on disk. The indicesp, q, r, ands have the
same rangeN. The indicesa, b, c, andd have the same rangeV . Typical values forN
range from 60 to 1300; the value forV is usually between 50 and 1000.

The calculation ofB is done in four steps to reduce the number of floating point
operations,

T1(a,q,r,s) = ∑
p

C4(a, p)×A(p,q,r,s)



T2(a,b,r,s) = ∑
q

C3(b,q)×T1(a,q,r,s)

T3(a,b,c,s) = ∑
r

C2(c,r)×T2(a,b,r,s)

B(a,b,c,d) = ∑
s

C1(d,s)×T3(a,b,c,s)

The sequence of contractions in this form can be representedby an operation tree, as
shown in Fig. 1(a). The leaves correspond to the input arraysand the root of the operation
tree to the output array. The interior nodes, intermediate or output arrays, are produced
by the tensor contraction of their immediate children. The edges in the operation tree
represent theproducer-consumer relationship between the different tensor contraction
expressions. Note that the operation tree is a binary in treein which each node has either
zero or two children.

Assuming that the available memory limit on the machine running this calculation is
less thanV 4 (which is 3TB forV = 800), any of the logical arraysA, T1, T2, T3, and
B is too large to entirely fit in memory. Therefore, if the computation is implemented
as a succession of four independent steps, the intermediates T1, T2, andT3 have to be
written to disk after they are produced, and read from disk before they are used in the
next step. Furthermore, the amount of disk access volume could be much larger than the
total volume of the data on disk. Since none of these array canbe fully stored in memory,
it may not be possible to read each element only once from disk.

Suitable fusion of the common loops involved in the contractions that produce and
consume an intermediate can reduce the size of the intermediate array, making it feasible
to retain it in memory. Henceforth, the term intermediate node will be used to refer to
both the intermediate array produced in the corresponding interior node of the operation
tree, and the contraction that produces it. The reference shall be clear from the context.

Given a choice of fusion, an intermediate node not fused withits parent divides the
operation tree into two parts, both of which can be evaluatedindependently. Such an
intermediate node which is not fused, is said to be acut-point in the operation tree. A
cut-point node is assumed to be written to disk on productionand read back during its
consumption. A connected operation tree without any interior cut-points is called afused
sub-tree. The divided operation tree for the four-index transform corresponding toT1
being a cut-point is shown in Fig. 2(a). The cut-point divides the operation tree into two
fused sub-trees, one of which producesT1, and the other which consumes it.

The loop nesting tree (LNT) represents the loop structure corresponding to a fused
sub-tree. Each node in a LNT is labeled by the indices of a set of fully permutable
loops that appear together at some level in the overall imperfectly nested loop structure
that results after applying loop fusion to the contraction computations in the sub-tree.
The leaves represent the innermost loops, while the root represents the outermost loops.
Fig. 2(b) shows two possible LNT’s for the two fused subtreesin Fig. 2(a) , respectively.
The corresponding code structure is shown in Fig. 2(c).

3 Integrated Framework

The program synthesis system takes an operation tree representing a set of tensor contrac-
tions as input, and generates an efficient loop structure with explicit disk I/O statements
to implement the computation. The optimization process maybe viewed in terms of the
following steps:

1. Operation Tree Partitioning: In this step, we divide the original operation tree into
several fused subtrees by identifying cut-points. The optimal loop structures for the
subtrees are independent of each other, and are determined separately.
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(a) Operation tree for the four-index
transform

for a,r,q,s,p
[ t1a,q,r,s += Ap,q,r,s ∗C4a,p

for a,b,r,s,q
[ t2a,b,r,s += t1a,q,r,s ∗C3b,q

for a,b,c,r,s
[ t3a,b,c,s += t2a,b,r,s ∗C2c,r

for a,b,c,d,s
[ Ba,b,c,d += t3a,b,c,s ∗C1d,s

(b) Corresponding unfused code structure

Fig. 1.Operation tree and unfused code structure for the four-index transform

2. Loop Structures Enumeration: For each fused subtree, we enumerate candidate loop
structures to be evaluated, as a set of LNT’s.

3. Intra-Tile Loop Placements: For a given LNT, we tile all loops at each node and
propagate intra-tile loops to all the nodes below it.

4. Disk I/O Placements and Orderings: We then explore various possible placements
and orderings of disk I/O statements for each disk array in a tiled loop structure with
a pruning strategy to determine the best placement and ordering.

5. Tile Size Selection: For each combination of loop transformations and I/O place-
ments, the I/O cost is formulated as a non-linear optimization problem in terms of
the tile sizes. The tile sizes that minimize the disk I/O costare determined using a
general-purpose non-linear optimization solver.

6. Code Generation: We calculate the disk access cost for each solution obtained, and
generate code for the one with the minimal disk I/O cost.

Algorithm 1 shows the procedure to evaluate the optimal loopstructure with I/O
placements for a sub-tree of the operation tree rooted at a given nodet. The fused sub-
tree rooted at that node is called a top subtree. Lett.FS denote the optimal loop structure
of the sub-tree rooted at nodet, which includes three fields:TCS, FFT andCost. TCS
represents the set of cut-points that are leaves of the top subtree;FFT represents the
fused loop structure of the top subtree; andCost represents the disk cost incurred by the
optimal loop structure.

The top subtrees are first enumerated. This is explained in Section 4. Each of these
sub-trees is evaluated in turn to determine the optimal loopstructure. Given a fused sub-
tree, its initial cost is evaluated to be sum of the costs of its cot-point nodes. The optimal
loop structure and the corresponding cost for a given fused sub-tree are determined by
first enumerating all candidate loop nesting trees and determining the disk I/O place-
ments, orderings, loop permutations, and tile sizes that minimize the disk I/O cost. The
enumeration of candidate loop nesting trees is discussed inSection 5. The search space
of disk I/O placements and orderings, loop permutations, and tile sizes is pruned and
modeled as a non-linear optimization problem, which is thensolved to determine the
disk I/O cost. This process is encapsulated in the proceduredataLocality().
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(b) Loop nesting trees

loopNest1 :
for a,r,q,s,p
[ t1a,q,r,s += Ap,q,r,s ∗C4a,p

loopNest2 :
for a,b









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

for r,s






for q
[ t2r,s += t1a,q,r,s ∗C3b,q
for c
[ t3c,s += t2r,s ∗C2c,r

for c,d,s
[ Ba,b,c,d += t3c,s ∗C1d,s

(c) Corresponding code
structure

Fig. 2.Representations involved in generation of a fused code structure.

In this paper, we focus on determination of the fused sub-trees and the enumeration
of candidate loop nesting trees to be evaluated. Details on subsequent steps can be found
in [23].

4 Tree Partitioning

In this section, we discuss the procedure to enumerate the set of all fused subtrees to be
evaluated. In general, fusing a loop between the producer ofan intermediate array and
its consumer eliminates the corresponding dimension of thearray and reduces the array
size. If the array fits in memory after fusion, no disk I/O is required for that array. On the
other hand, if the array does not fit in the physical memory even after fusion, the disk I/O
cost is not reduced, and the fusion does not result in any improvement.

Therefore, fusion of any loops corresponding to an intermediate node is assumed to
cause the resulting intermediate to reside in memory. It potentially resides in disk if the
intermediate node is not fused with its parent.

For an arbitrary operation tree withM intermediate nodes, it has at mostO(2M) pos-
sible fused sub-trees, but not all of them can be fused. Consider an intermediate nodet. If
both its children are fused with it, then the loops corresponding to the summation indices
in the given node must be the outermost loops; and it can not befused with its parent
anymore. Thus, eithert or one of its children must be a cut-point.

Based on this property, we can restrict the number of top subtrees toO(M2). The al-
gorithm to enumerate the fused sub-trees rooted at a given node is shown in Algorithm 2.
It proceeds in a bottom-up fashion, constructing the fused sub-trees rooted at a given node
from those of its children. A node consuming the arrays produced by its children extends
the fused sub-trees from each of its children. These sub-trees can further be extended to
include the given node’s parent. In turn, these sub-trees form a “chain” starting from the
given node and terminating at a cut-point. In addition, the given node can be considered
as a cut-point. In this scenario, all possible pairs of left and right fused sub-trees form a
valid fused sub-tree for the given node.

The field t.TreeSet represents the set of fused sub-trees which can be extended to
include the parent oft.



Algorithm 1 SearchOptimalLoopStructure(t: the root of a subtree)

//Given a subtree rooted att, the algorithm will find the optimal loop structure with
disk I/O

TreeSet = EnumerateFusedSubtrees(t)
for each subtreeTi in TreeSet do

TCS = Ti.Cut pointSet
Lea fCost = 0
for each cut-pointct in TCS do

Lea fCost = Lea fCost + ct.FS.Cost
end for
//Enumearte all loop structures of fused subtreeTi

LoopSet = EnumerateLoop(Ti)
OptCost = ∞
//Compute the minimal disk I/O cost of subtreeTi

for each loop structureFFS in LoopSet do
Cost = dataLocality(FFS)
if Cost < OptCost then

OptCost = Cost
OptFFS = FFS

end if
end for
Cost = OptCost + lea fCost
if Cost < t.FS.Cost or t.FS = null then

t.FS.Cost = Cost
t.FS.TCS = TCS
t.FS.FFS = OptFFS

end if
end for

5 Loop Structure Enumeration

In this section, we first present an algorithm that can generate a set of loop structures of
a fused subtree. Then, we prove that for any loop structureS of the fused subtree, we can
find a corresponding loop structureS′ in the generated set, so thatS′ can be transformed
to S by some proper multi-level tiling strategies.

5.1 Enumeration Algorithm

In the previous section, we showed that a fused subtree must be in one of these two forms:

– All contractions form a chain. We call it acontraction chain. For instance, Fig. 1 is
such an operation tree, in which the contraction chain isT1,T2,T3,B.

– The contractions form two chains joining at the root node. Inthis case, thecontrac-
tion chain is connected by these two chains. An example of such an operation tree is
shown in Fig. 3, in which the contraction chain isT1,T2,B,T3,T4



Algorithm 2 EnumerateFusedSubtrees(t: the root of a subtree) returnsTreeSet

t1 = the left child oft; t2 = the right child oft; TreeSet = empty
//Only one subtree
if botht1 andt2 are input nodesthen

Create a new TreeTr with Tr.Cut pointSet = /0
InsertTr into TreeSet

end if
//Extending subtrees from the child not an input
if t1 is an input node andt2 is an intermediate nodethen

childSet = t2.TreeSet
Create a new TreeTr with Tr.Cut pointSet = {t2}
InsertTr into TreeSet

end if
if t2 is an input node, andt1 is an intermediate nodethen

childSet = t1.TreeSet
Create a new TreeTr with Tr.Cut pointSet = {t1}
InsertTr into TreeSet

end if
for each subtreest in childSet do

Create a new TreeTr with Tr.Cut pointSet = st.Cut pointSet
InsertTr into TreeSet

end for
t.TreeSet = TreeSet
//Entending subtrees from either child, and cutting another child off
if botht andt2 are intermediate nodesthen

childSet1 = t1.TreeSet
for each subtreest in childSet1 do

Create a new TreeTr with Tr.Cut pointSet = {st.Cut pointSet, t2}
InsertTr into TreeSet

end for
childSet2 = t2.TreeSet
for each subtreest in childSet2 do

Create a new TreeTr with Tr.Cut pointSet = {st.Cut pointSet, t1}
InsertTr into TreeSet

end for
Create a new TreeTr with Tr.Cut pointSet = {t1, t2}
InsertTr into TreeSet
t.TreeSet = TreeSet
//Merging subtrees from both children, and extending the result
for each pair of subtreesst1 in childSet1 andst2 in childSet2 do

Create a new TreeTr
Tr.Cut pointSet = {st1.Cut pointSet,st2.Cut pointSet}
InsertTr into TreeSet

end for
end if
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Fig. 3.An operation tree with two chains

Given an operation tree that hasn contraction nodest1, t2, ...tn, let ti.indices denote all
loop indices surrounding the contraction nodeti. First, we create a contraction chain of
the operation tree. It corresponds to a sequence of perfectly nested loops. Many different
choices exist in the ordering of the fusions within this sequence of perfectly nested loop
nests. Each of the perfectly nested loops, corresponding toa contraction, can be consid-
ered an independent loop nesting tree. The fusion of subtrees producing and consuming
an intermediate creates an imperfectly nested loop nests, in which some of the common
loops are merged. The process of construction of the loop nesting tree of the fused sub-
tree can be modeled as a paranthesization problem. Considerthe sequence of contraction
nodes T1, T2, T3, and B in the operation tree shown in Fig. 1.((T1(T2 T3))B) corre-
sponds to a parenthesization in which the contractions producing T3 and consuming T3
are fused first and the resulting loop nest is fused with the contractions producing T1 and
B, in that order. Fig. 4 shows one possible parenthesizationfor the four-index transform
and the corresponding loop nesting tree.

We enumerate all possible parenthesizations of the contraction chain. For each paren-
thesization, a maximally fused loop structure is created bya recursive construction proce-
dure. We call itmaximally fused since, in the construction procedure, each intermediate
node will have its indices fused as much as possible with its parent. The construction
procedure is shown in Algorithm 3. It takes a parenthesization P as input, and gener-
ate a corresponding LNT. A parenthesization of a contraction chain withn nodes has
n−1 pairs of parentheses. Each pair of parentheses includes two elements, left and right
element. Each element is either a single contraction node, or a parenthesization of a sub-
chain within a pair of parentheses.

For easy understanding, we use an example to explain how the algorithm works.
Consider a parenthesization((T1(T2 T3))B) of four-index transform. Fig. 4 shows how
the construction procedure creates the corresponding LNT step by step.

5.2 Completeness

In this section, we prove that the set ofmaximally fused loop structures generated by the
enumeration algorithm above can represent all loop structures of a fused subtree. The
following definitions are provided to clarify terms used in the proof.

Definition 1. Each leaf in a LNT includes a contraction node. The set of contraction
nodes from all the leaves in a LNT is calledleafcontractions of the LNT.



Algorithm 3 Construction(P)

//Given a parenthesization, the algorithm map it to a maximally fused loop structure in
LNT

l = P.le f t
r = P.right
if l is a parenthesizationthen

lt = Construction(le f t)
else ifl is a contractionthen

lt = Create a new LNT node
lt.indices = l.indices
lt.children = null
lt.contraction = l {lt is a leaf, which includes a contraction node in it}

end if
if r is a parenthesizationthen

rt = Construction(right)
else ifr is a contractionthen

rt = Create a new LNT node
rt.indices = r.indices
rt.children = null
rt.contraction = r {rt is a leaf, which includes a contraction node in it}

end if
comindices = lt.indices∩ rt.indices
lt.indices = lt.indices− comindices
rt.indices = rt.indices− comindices
lnt = Create a new LNT node
lnt.indices = comindices
lnt.children = {lt,rt}
returnlnt

Definition 2. In a LNT, each nodet has exactly one path to the root. Lett.upperindices
denotes the union of all indices belonging to nodes on the path from t to the root. If a
subtreeslnt is rooted att, we also defineslnt.upperindices to equal tot.upperindices.

Definition 3. In a LNT, suppose two leavesti andt j belong to one subtreeslnt. If there
is no other subtree that contains bothti andt j and is a subtree ofslnt, then we say that
slnt is theminimal common subtree of ti andt j, denoted asMCS(ti, t j).

Given an arbitrary loop nesting treelnt, we can map it to a maximal fused loop
nesting treelnt ′, which is in the set ofmaximally fused loop structures generated by the
enumeration algorithm above, and can be translated tolnt with some proper multi-level
tiling strategy. The mapping algorithm consists of two steps:

1. Takelnt as input, and generate a parenthesizationP of the contraction chain using
the generation routine provided in Algorithm 4.

2. Apply the construction procedure in Algorithm 3 onP to generate a maximally fused
loop structurelnt ′.



Parenthesization                LNT 
(T2 T3) 

(T1 (T2 T3))  

((T1 ( T2 T3)) B) 

 

  b 

q (T2) c (T3) 

 a,r,s 

p,q (T1) 

  r 

  a,s 

b,c,d (B) 

  b 

q (T2) c (T3) 

 a,r,s 

p,q (T1) 

a,b,r,s 

q (T2) c (T3) 

Fig. 4.Construction of a maximally fused loop structure for a particular parenthesization
of the four-index transform.

Obviously,lnt ′ is the set ofmaximally fused loop structures generated by the enumer-
ation algorithm. Afterward, we show thatlnt ′ can be translated tolnt by sinking indices
at upper levels down.

Lemma 1. For any pair of contraction nodesti andt j, let common(lnt, ti, t j) be the loops
shared byti andt j in lnt. We havecommon(lnt, ti, t j) ⊆ common(lnt ′, ti, t j).

Proof. Given a subtreeslnt, slnt.upperindices represents all common loops shared by
slnt.leafcontractions.

There is an interesting property ofmaximally fused loop structures in the way they
are constructed. For any subtreeslnt in the LNT of amaximally fused loop structure,
slnt.upperindices includes all common loops amongslnt.lea f contractions. In other
words, it includes all possibly shared loops amongslnt.lea f contractions. In addition,
from the mapping method, we can see that iflnt has a subtreeslnt, then there exist a twin
subtreeslnt ′ in lnt ′, which satisfied the following conditions:

slnt.lea f contractions = slnt ′.lea f contractions
slnt.upperindices ⊆ slnt ′.upperindices



Algorithm 4 Parenthesize(lnt)

//Given an LNT, the algorithm map it to a corresponding parenthesization

if lnt.children 6= null then
P = null
for each childc in lnt.children do

P′ = Parenthesize(c)
if P is null then

P = P′

else
P = new Parenthesization(P, P′)

end if
end for

else
P = c.contraction {c is a leaf and includes a contraction node}

end if
returnP

Given any pair of leaf nodesti andt j, we definemlnt = MCS(ti, t j) in lnt, wheremlnt.
upperindices = common(lnt, ti, t j). Hence, we can find the corresponding subtreemlnt ′

in lnt ′, where

mlnt.upperindices ⊆ mlnt ′.upperindices ⊆ common(lnt, ti, t j)

Thus, we havecommon(lnt, ti, t j) ⊆ common(lnt ′, ti, t j). ⊓⊔

Lemma 2. If common(lnt, ti, t j) ⊂ common(lnt ′, ti, t j), then we can transformlnt ′ to
form lnt ′′ by sinking indices down, so thatcommon(lnt, ti, t j) = common(lnt ′′, ti, t j)

Proof. We definemlnt and mlnt ′ as MCS(ti, t j) in lnt and lnt ′ respectively. Any loop
in common(lnt ′, ti, t j) belongs to the root or an ancestor ofmlnt ′. Assuming loopl is in
the difference ofcommon(lnt, ti, t j) andcommon(lnt ′, ti, t j). We removel from the orig-
inal noder, and insert it to all children ofr. After that, if l still belongs to the root or
an ancestor ofmlnt ′, we repeat the sinking operation described above, untill is not in
mlnt ′.upperIndices any more. The same method is applied for all indices in the dif-
ference ofcommon(lnt, ti, t j) andcommon(lnt ′, ti, t j). The new LNT is denoted aslnt ′′.
Then, we havecommon(lnt, ti, t j) = common(lnt ′′, ti, t j). ⊓⊔

Applying the sinking operation in Lemma 2 for each pair of contraction nodes(ti, t j),
we can transformlnt ′ to lnt ′′, which satisfies the condition:∀(ti, t j),common(lnt, ti, t j) =
common(lnt ′′, ti, t j). After that, if a noder has no indices inr.indices, we remover from
lnt ′′, and put all children ofr to its parent. Then,lnt ′′ is same aslnt.

Usingmulti-level tiling strategy, a maximally fused loop strcuture can be transformed
into an arbitrarily fused loop structure by appropriate choice of tile sizes.Multi-level
tiling can transform the LNT of a loop structure as follows. Each loop present in the
root is split into two components, inter-tile loop and intra-tile loop. The intra-tile loop is
placed on child nodes of the root. Then the loops present in each of the child nodes in-
cluding the intra-tile loops from the root, are again split and intra-tile loops are placed on



their respective child nodes. This process is porformed recursively till the leaf nodes are
encountered. The loop structure corresponding to the LNT can also be transformed ac-
cordingly. Figure 5 shows the way to tile loopa in the LNT in Fig. 4 and the relationship
between different tiles, wherea.range represents the range of loopa.

The sinking operation in LNT can be modeled as themulti-level tiling in the loop
structure. Given a loop structure, if we tile a fused loop with a tile size equal to its loop
range, it leads to the same result as we sink the loop index from original node to all its
children. LetS andS′ be loop structures representd bylnt and lnt ′ respectively. Since
we can transformlnt ′ to lnt by sinking operations, we can also transformS′ to S by
proper multi-level tiling strategies. Next, we will use an example to show the details of
the transformation procedure.

An arbitrary fully fused loop structureS of four-index transform is shown in Fig-
ure 6(a), and the corresponding maximally fused loop structureS′ is in Figure 6(b). After
we apply multi-level tiling strategies,S′ is translated to the format shown in Figure 7(a).
In addition, if we set ranges of inter-tile loops according to the following formulas, and
remove all loops withrange = 1, thenS′ can be rewritten as the format shown in Fig-
ure 7(b), which is exactly the same asS. It should be noted that the indexing of the
intermediate arrays has been shown in a more generic way.

aT2 = aT3 = sT1 = sT2 = sT3 = rT2 = qT1 = 1 aT1 = a.range rI1 = r.range

 

  aT3,b 

aI3,q (T2) aI3,c (T3) 

 a,r,s 

aI2, p,q (T1) 

  aT2, r 

  aT1,s 

aI1, b,c,d (B) 

(a) Multi-level tiling loopa

aT1.range×aI1.range = a.range

aT2.range×aI2.range = aI1.range

aT3.range×aI3.range = aI2.range

(b) Range of different level tiles

Fig. 5.An example of multi-level tiling in LNT

5.3 Complexity

The total number of loop structures generated by the enumeration algorithm is the same
as the number of parenthesizations of the contraction chain. For a contraction chain with
n nodes, the number of all possible parenthesizations is called thenth Catalan Number.
It is exponential inn, and the upper bound isO(4n/n3/2). In contrast, the number of
possible loop structures is potentially exponential in thetotal number of distinct loop
indices in then intermediate nodes, a considerably larger number. The fused operation
tree is not very long for most representative computations.In most practical applications,
a fused subtree usually has no more than 5 contractions in a single chain. Note that the
nth Catalan Number is not very large whenn is small. The first six Catalan Numbers are
listed here: 1,1,2,5,14,42....



for a
























for r






for q,s,p
[ t1s,q += Ap,q,r,s ∗C4a,p
for b,s,q
[ t2b,r,s += t1s,q ∗C3b,q

for b,c,r,s
[ t3b,c,s += t2b,r,s ∗C2c,r
for b,c,d,s
[ Ba,b,c,d += t3b,c,s ∗C1d,s

(a) Arbitrary fused loop structure: S

for a,s




























for r
















for q






for p
[ t1 += Ap,q,r,s ∗C4a,p
for b
[ t2b += t1∗C3b,q

for b,c
[ t3b,c += t2b ∗C2c,r

for b,c,d
[ Ba,b,c,d += t3b,c ∗C1d,s

(b) Maximally fused loop structure: S’

Fig. 6.An arbitrary loop structure and the corresponding maximally fused structure

for aT1,sT1




























for rT1,aT2,sT2
















for qT1,rT2,aT3,sT3






for p,qI1,rI2,aI3,sI3
[ t1aI,qI,rI,sI+ = Ap,q,r,s ∗C4a,p
for b, qI1,rI2,aI3,sI3
[ t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗C3b,q

for b, c, rI1, aI2,sI2
[ t3aI,b,c,sI+ = t2aI,b,rI,sI ∗C2c,r

for aI1, b, c, d, sI1
[ Ba,b,c,d+ = t3aI,b,c,sI ∗C1d,s

(a) After inserting intra-tile loops

for aT1
























for rT1






for p,qI1,sI3
[ t1aI,qI,rI,sI+ = Ap,q,r,s ∗C4a,p
for b, qI1,sI3
[ t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗C3b,q

for b, c, aI2,sI2
[ t3aI,b,c,sI+ = t2aI,b,rI,sI ∗C2c,r
for b, c, d, sI1
[ Ba,b,c,d+ = t3aI,b,c,sI ∗C1d,s

(b) After selecting proper tile counts

Fig. 7.Translate S’ to S by multi-level tiling strategy

6 Results

The enumeration algorithm discussed in Section 5.1 generates a set of candidates loop
structures to be considered for data locality optimization. Without this algorithm, and
generalized tiling, the set of loop structures to be evaluated might be too large, precluding
their complete evaluation and necessitating the use of heuristics.

We evaluate the effectiveness of our approach using the following tensor contractions
from representative computations from the quantum chemistry domain.

1. Four-index transform (4index): This is the sequence of contractions introduced in
Section 2.

2. CCSD: The second and the third computations are from the class of Coupled Cluster
(CC) equations [9, 18, 20] for ab initio electronic structure modeling. The sequence
of tensor contraction expressions extracted from this computation is shown as fol-
lows:

S( j, i,b,a) = ∑l,k (A(l,k,b,a)
×(∑d (∑c(B(d,c, l,k)×C(i,c))×D( j,d)))

3. CCSDT: This is a more accurate CC model. A sub-expression from the CCSDT
theory is:



Table 1.Effectiveness of pruning of loop structures.

#Contractions #Loop structures Reduction
Total Pruned

4index 4 241 5 98%
CCSD 3 69 2 97%

CCSDT 4 182 5 98%

S(h3,h4, p1, p2) = ∑p9,h6,h8(y ooovvv(h8,h6,h4, p9, p1, p2)×

∑h10
(

t vo(p9,h10)×∑p7 (t vo(p7,h8)×

∑p5 (t vo(p5,h6)× v oovv(h10,h3, p7, p5))
)))

We evaluated the fused subtree corresponding to the entire operation tree without any
cut-points. The number of all possible loop structures and the number of candidate loop
structures enumerated by our approach are shown in Table 1. It can be seen that a very
large fraction of the set of possible loop structures, up to 98%, is pruned away using the
approach developed in this paper.

7 Conclusions

In this paper we addressed the problem of optimizing the diskaccess cost of tensor con-
traction expressions by applying loop transformations. Wediscussed approaches to parti-
tioning of the operation tree into fused sub-trees and generating a small set of “maximally-
fused”’ loop structures that “cover” all possible imperfectly nested fused loop structures.
The approach was evaluated on a set of computations representative of the targeted quan-
tum chemistry domain and a significant reduction was demonstrated in the number of
loop structures to be evaluated.
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