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Abstract— This paper addresses the problem of par-
allel transposition of large out-of-core arrays. Although
algorithms for out-of-core matrix transposition have been
widely studied, previously proposed algorithms have sought
to minimize the number of I/O operations and the in-
memory permutation time. We propose an algorithm that
directly targets the improvement of overall transposition
time. The I/O characteristics of the system are used to
determine the read, write and communication block sizes
such that the total execution time is minimized. We also
provide a solution to the array redistribution problem for
arrays on disk. The solution to the sequential transposition
problem and the parallel array redistribution problem are
then combined to obtain an algorithm for the parallel out-
of-core transposition problem.

Index Terms— out-of-core, parallel matrix transposition,
disk-based array redistribution

I. INTRODUCTION

This paper addresses the problem of parallel out-of-
core matrix transposition. The problem is viewed in
terms of two sub-problems: disk-based array redistribu-
tion, followed by concurrent independent uniprocessor
transposition of disk-based arrays. The same algebraic
framework is used for both steps. We first address
the sequential transposition problem, which has been
previously studied.

Consider an � � � matrix that is stored in disk in
row-major order. The system has main memory, which
can hold � elements, where � � � �, � � ����. The
problem is to transpose the matrix stored in disk, when
only a part of the matrix can be brought into memory at
any time. Applications that need to access the elements
of a matrix in column-major order transpose the matrix
before accessing its elements. Matrix transpose is a key
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operation in various scientific applications. For example,
the multidimensional Fast Fourier transform (FFT) [1],
[2] can be implemented as a series of one-dimensional
FFTs, one along each dimension. For a matrix stored in
disk in row-major order that is too large to fit in memory,
the most effective mechanism is to transpose the matrix
between the one-dimensional FFTs.

Our primary motivation for addressing the parallel
out-of-core matrix transposition problem arises from the
domain of electronic structure calculations using ab initio
quantum chemistry models such as Coupled Cluster
models. We are developing an automatic synthesis sys-
tem called the Tensor Contraction Engine (TCE) [3],
to generate efficient parallel programs from high level
expressions for a class of computations expressible as
tensor contractions [4]–[7]. Often the tensors (essentially
multi-dimensional matrices) are too large to fit in mem-
ory and must be disk-resident.

The optimized parallel programs synthesized by the
tool often have to take as input large disk-resident
tensors created by other software packages, such as
the NWChem computational chemistry suite [8]. For
efficient execution, the TCE-synthesized program might
need to store and access the disk-resident tensors in a
very different order than that used by the producer pro-
gram. Efficient transformation of the data from the avail-
able format to the required format is required through
transposition and/or re-blocking. In addition, when TCE-
synthesized code is used on different machines, different
transformations are required on the data produced by
packages like NWChem, requiring efficient out-of-core
matrix transposition and transformation algorithms.

This problem has been widely studied in the literature.
A simple in-place element-wise approach to transpose
the matrix is prohibitively expensive. The block trans-
position algorithm transposes the array in a single pass
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in ������� I/O operations. An in-place transposition
algorithm requiring ��� ����� disk accesses was pro-
posed by Eklundh [9]. This algorithm requires at least
two rows to fit in memory. Extensions to the algorithm
for rectangular matrices were presented in [10]–[12].
Kaushik et al. [13] proposed an out-of-place algorithm
that improves upon these algorithms by reducing the
number of read operations. Suh and Prasanna [14] re-
duced the in-memory permutation time by using collect
buffers, instead of in-memory permutation, in addition to
reducing the number of I/O operations. Their algorithm
combines writes and collects the rows to be permuted in
subsequent passes.

All these studies use the number of I/O operations as
the primary optimization metric. Although the execution
time of the solution provided has been improved by all
these efforts, the total execution time has not been used
as the primary metric for optimization. A reduction in
the number of I/O operations, in most cases, translates
to larger sizes of I/O blocks. The importance given to
reducing the number of I/O operations is due to the
fact that the seek time for the disk head is very large
(of the order of several milliseconds) compared to the
per-byte transfer time (of the order of microseconds or
less). If the I/O blocks read/written are relatively small,
the total number of I/O operations is indeed a suitable
optimization metric. However, as the I/O blocks get
larger, the data transfer time becomes significant and be-
gins to dominate the total access time. Since previously
proposed algorithms for out-of-core transposition have
focused on reducing the number of I/O operations, they
can become sub-optimal when large block transfers are
involved.

Cormen et al. [15] solve the problem based on the
parallel disk model (PDM) [16]. PDM handles the read
and write block sizes as equivalent, while the I/O char-
acteristics of reads and writes can differ widely. PDM
uses the number of I/O operations as the metric, where
the size of each I/O is determined by the layout of data
on disk. It does not take into account the effect of read-
ahead and request reordering in the I/O subsystem.

All the algorithms in the literature determine the
fundamental unit of I/O based on the size of the matrix,
i.e., they are data-centric. The basic unit of I/O operation
in these algorithms is one row of the matrix or a multiple
thereof. They do not adapt to the I/O characteristics of
the system. In contrast, the approach proposed here takes
into account the empirically determined I/O character-
istics of the disk and file system in determining the
parameters of the algorithm. The basic unit of I/O is
not a row, but is determined by the I/O characteristics
and the instance of the problem at hand. The execution
time of the algorithm on the system is estimated based

on the experimentally observed I/O characteristics. The
parameters that minimize the execution time are chosen.

The paper is organized as follows. The I/O charac-
teristics of two systems are discussed in Section II.
In Section III the transposition problem is formulated
using the matrix-vector product notation. The sequential
transposition algorithm is described in Section IV. The
algorithm is extended to parallel systems in Section V.
Experimental results are presented in Section VI. Sec-
tion VII concludes the paper.

II. I/O CHARACTERISTICS

Out-of-core transposition involves reading and writing
blocks of data at different strides. To understand the
variation in performance of the algorithm with respect
to these parameters, we studied the variation of read and
write times with changes in size and stride of I/O on
the machines in two clusters at the Ohio Supercomputer
Center (OSC) [17]. The configuration of the machines in
both the clusters is shown in Table I. Fig. 1 and Fig. 2
show the strided read and write times respectively on the
IA32 cluster. Fig. 3 and Fig. 4 show the strided read and
write times respectively on the Itanium 2 cluster.

For both the systems we observe that beyond a par-
ticular block size the stride does not affect the per-byte
transfer cost and approximates to the cost of sequential
I/O. More importantly, the incremental improvement
obtained in the I/O time by increasing the block size
decreases and is very small beyond a particular block
size. We expect this observation to hold across a wide
variety of systems. These block sizes, above which the
per-byte read and write times are not affected by the
stride of access, will henceforth be referred to as the read
and write thresholds respectively. These parameters vary
depending on the system under consideration and the
per-byte read and write costs can saturate at different
block sizes. The read and write thresholds for IA 32
Cluster are 2MB and 1MB, respectively. For the Itanium
2 Cluster they are 1MB and 1MB, respectively.

An out-of-core algorithm needs to perform I/O on suf-
ficiently large block sizes for good performance. On the
other hand, a smaller block size provides more flexibility
in accessing data and can improve performance of the
algorithm. In the case of out-of-core matrix transposition
if the thresholds are smaller than � , the size of the
matrix, fractions of a row can be read and written
with little additional penalty, irrespective of the stride
of access. This might result in a decrease in the number
of passes. In the extreme case, if each element is large
enough to be read/written individually, a simple single-
pass element-wise transposition would be efficient. An
out-of-core algorithm that chooses the largest possible
I/O block size when I/O on a much smaller block can be
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Fig. 1. Strided read times for the IA32 Cluster. x-axis is the stride in
number of blocks. y-axis is the per-byte access time in microseconds.
Each line corresponds to a block size.
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Fig. 2. Strided write times for the IA32 Cluster. x-axis is the stride in
number of blocks. y-axis is the per-byte access time in microseconds.
Each line corresponds to a block size.

performed efficiently may not be optimal. An algorithm
might involve more I/O operations but be faster than
another algorithm with fewer I/O operations due to this
effect.

III. MATRIX VECTOR PRODUCT FORMULATION OF

TRANSPOSITION ALGORITHMS

In this section, matrix transposition algorithms are
formulated based on the matrix-vector notation used in
[18]. This section provides a generic formulation for
transposition algorithms.

Transposition of a matrix can be viewed as an inter-
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Fig. 3. Strided read times for the Itanium 2 Cluster. x-axis is the stride
in number of blocks. y-axis is the per-byte access time in microseconds.
Each line corresponds to a block size
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Fig. 4. Strided write times for the Itanium 2 Cluster. x-axis is the stride
in number of blocks. y-axis is the per-byte access time in microseconds.
Each line corresponds to a block size

change of the indices of the matrix.

� ��� �� � ��� ��

where � is the row index and � is the column index.
This is a particular instance of a general class of index
transformation algorithms.

Each element of the array on disk has a linear address
obtained by concatenating the column index bits to the
row index bits. This is the address upon which the
permutation is applied. The transformation of the address
vector using a permutation matrix corresponds to the
permutation of the address vector and hence the matrix.
The linear address of an element in the array contains
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System Configuration
Processor Memory OS Compiler

IA32 Cluster Dual AMD Athlon MP (1.533 GHz) 2GB linux 2.4.20 pgcc 4.0-2
Itanium 2 Cluster Dual Itanium-2(900 MHz) 4GB linux 2.4.18 gcc 2.96

TABLE I

CONFIGURATION OF THE SYSTEMS USED FOR I/O CHARACTERIZATION.

���� � ��� bits and hence the permutation matrix
contains �� rows.

The identity of the transformation is

�
	� �
� 	�

�
.

Matrix transposition is defined as the permutation of the
address vector �

�� � �

where T is the transformation matrix

�
� 	�
	� �

�
.

We use the following notation in the discussion.


�� �

�

 �
� �

�
(1)

��
��� �

�
� �


 �

�
(2)

Thus, ��	�� 	�� is the desired permutation. Since
the entire array does not fit in memory, ��	�� 	�� is
factorized into a number of permutation matrices such
that the transformation effected by each of the matrices
can be done with the memory available.

Any out-of-core matrix transposition algorithm con-
sists of three phases — read, permute and write. Each
of these phases can be used to permute the linear address.
Hence each phase corresponds to a permutation on the
linear address and can be represented by a permutation
matrix. These phases are repeated on disjoint parts
of the array in the different steps of each pass. The
algorithm might involve many passes, each operating on
the entire array. Thus, out-of-core matrix transformation
algorithms are of the form

� � ��	�� 	�� �

����
�����

�����

where � is the permutation matrix corresponding to
a write, �� is a permutation matrix corresponding to
a read and �� corresponds to in-memory permutation.
The algorithms under this formulation read some data,
permute it in memory, and write the data to disk before
reading data for the next step in the same pass. � specifies
the number of passes. Thus each algorithm is defined by
the parameters ���� �� and ��, where the suffix � is
used to refer to the permutations in the �th pass. Each
algorithm can also have additional parameters.

Some restrictions apply to the possible values of  �,
�� and ��. These restrictions are induced by the memory
constraint involved in the algorithm. Each permutation
matrix must correspond to a transformation of the given
matrix that can be done with the memory available. Thus,
each step of the algorithm can operate on at most �
elements. In particular, �, �� and �� must be expressed
as

�� � 
����� � 	� � � �

�� � 	����� ���

� � ������ � 	� � � �

The algorithm reads � � �� elements and writes
 � �� elements in one I/O operation. The formulation
enforces contiguity in these operations and requires the
amount of data read to be less than the memory size
� � ��. Henceforth, we use the term read(write) block
size to refer to �( ) and the least significant �(�)
rows of the permutation matrix, interchangeably. The
reference will be clear from the context. Also note that
�� can permute only data corresponding to elements in
memory. Given these parameters for an algorithm it can
be implemented as

Algorithm 1: Generic Transposition Algorithm
(1) for � � � to �� �
(2) for � � � to ������ � �
(3) Read M elements at address ���

� ���
/*Might involve multiple I/O operations*/

(4) Permute data in memory according to � �.
(5) Write M elements at address ����

/*Might involve multiple I/O operations*/

The read (write) may involve multiple I/O operations
each of size at least ��(��) elements.

For a discussion of performance of different transpo-
sition algorithms based on these I/O characteristics, refer
to [19].

IV. SEQUENTIAL TRANSPOSITION ALGORITHM

Our algorithm is based on estimating the total trans-
position time and choosing parameters for the algorithm
that optimize it. The observation that an increase in
I/O size beyond the threshold does not influence the
performance of the algorithm is exploited. There is a
trade-off between the I/O size and the number of passes
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the algorithm requires. The smaller the I/O size, the
more the algorithms approach the block-transposition
algorithm and hence run in a smaller number of passes.
However, reducing the I/O size below the threshold
increases the I/O time above the minimum possible.

The transposition time can be written as

Timetotal �
������
���

TimeRead	TimePermute	TimeWrite

The read and write times for each pass can be computed
from the stride and block size of the I/O operation.
Estimating the permutation time is more difficult as it
depends on the exact permutation involved. Unlike the
I/O characteristics of a system, which can be determined
independent of any specific algorithm, the permutation
characteristic for each algorithm has to be individually
determined. Here, we determine the best parameters
for the algorithm that optimize the total I/O time. The
characteristics of the algorithm allow for optimizing the
in-memory permutation, as will be discussed later.

The algorithm has two parameters, namely the read
and write block sizes. They are chosen close to the
threshold in order to optimize the total I/O time. The
most common case in which the I/O block size is chosen
to be smaller than the threshold is when such a choice
reduces the number of passes and offsets the additional
cost incurred due to the smaller I/O size.

In previous algorithms, the basic unit of I/O is a row.
The I/O permutations are of the form 
� 	� , while the
required permutation ��	�� 	�� involves exchanging the
upper and lower � address elements in the address vector.
The nature of the I/O permutation prevents any effective
permutation from being done in the read and write
phases. The I/O phases ‘gather’ data to be permuted and
‘scatter’ the result of the permutation. In our algorithm,
the I/O block size could be smaller than � , say � � ��,
in which case the exchange �� 
 ����� �� 
 �	 ����
can be done in the read and/or write phases. This reduces
the number of address vector elements to be permuted
in the permutation phase and might result in a reduction
in the number of passes, and hence significantly reduce
transposition time.

Our algorithm is formulated as shown below. The
unit of each read and write is �� and �� elements
respectively. Except in the first pass, the algorithm reads
� elements in each read operation.

Conditions to be satisfied

� � �

� � � � �

� � �

Parameters

�� �

�
����� �� �� if � � �

����� ���� if � � �

� �

�
� if �� � �

� 	 �����
��� � otherwise

� � �� � ��� mod ��� ��

�� �

�
� if � � �� � and � � �
�� � otherwise

First pass �� � ��

Case 1: � � �

�� � 	��
�� � 	���� � ��	�� � 	��� � ��	���� � 	�� ��
� � ��	���� � 	�������� 	�

Case 2: � � �

�� � 	���� � ��	�� � 	����� 	�
�� � 	��������� � ��	�� � 	��� � ��	���� � 	�� ��
� � ��	���� � 	�������� 	�

Remaining passes (� � � � �� �)

��� �
����
	��

�	

�� � 	��
�� � 	��������� � ��	�� � ��	���
���� � 	����

� 	�
�
� � 	��� ���	����

� 	��������� � 	���� 	�

The formulation requires the read block size to be
at least as large as the write block size, which could
be relaxed. It is also assumed, as in earlier algorithms,
that each row is individually writable. The memory size
and read block size do not have any relation to the size
of the array. Thus restrictions in earlier algorithms on
minimum memory size in terms of number of rows of
the array do not hold. The number of passes, �, depends
primarily on the write block size and the memory size.
The algorithm involves moving the least significant �
elements in the linear address beyond the write block
size(�). The smaller the write block size, the smaller
the number of passes. The larger the memory, the more
room there is for permutation and the smaller the number
of passes. ��� � � � � ���� specify the number of rows to be
permuted out of the write block size in each of the �

passes. Additionally, the first pass permutes the address
elements in the column index that are beyond the write
block size to their target positions. The first pass also
optimizes for the case when the read block size is smaller
than a row, by reading at a stride.

With increasing memory size, a modification of the
I/O parameters provides diminishing improvements, un-
less it results in a reduction in the number of passes.
Greater improvements can be obtained if the additional
memory available is used to improve permutation time.
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Kaushik et al. perform an in-place in-memory permuta-
tion. Suh and Prasanna use collect buffers to collect data
to be written in each write operation. The locality of the
permutation operation can be improved by optimizations
such as blocking.

We use collect operations to perform the permutation,
as this was empirically found to take less time than in-
memory permutation. The permutation involved in the
first pass is similar to transposition. Since the naive
element-wise approach or even the collect operation has
poor cache performance in the first pass, the permutation
was done out-of-place in-memory. The I/O size was
further reduced in order to maintain the number of
passes.

V. PARALLEL OUT-OF-CORE MATRIX

TRANSPOSITION

In this section, the problem of transposing an out-
of-core array distributed among multiple processors is
discussed. Each processor has a local disk and the array
is distributed among the processors in a row-blocked
fashion. The required distribution of the transposed array
among the processors is specified.

In the following discussion, we first formulate the
representation of an array distributed among multiple
processors. Then an algorithm is provided for redis-
tributing out-of-core arrays in a parallel system. To our
knowledge the problem of parallel out-of-core array
redistribution has not been addressed previously.

The array redistribution mechanism and the sequential
transposition algorithm are combined to describe the
out-of-core transposition algorithm for arrays distributed
among multiple processors.

A. Formulation for Arrays Distributed among Multiple
Processors

The arrays are assumed to be distributed in a regular
fashion so that some of the elements in the address vector
represent the processor identifier. This corresponds to
a mapping of the elements of the array to a sequence
of processors. A row-blocked distribution is obtained
when the most significant elements in the address vector
represent the processor identifier. A cyclic distribution
is obtained when the least significant elements of the
address vector represent the processor identifier.

We define the linear address vector of an element in
the array to be the concatenation of the address vector of
the element in the local disk to the processor identifier.
This view preserves the notion of contiguity of elements
which differ in the lower most elements of the address
vector, analogous to the sequential formulation. Hence
the formulation can represent read and write thresholds

in the address vector and the access pattern that can take
advantage of prefetching as well.

Given that the uppermost elements in the linear
address vector correspond to the processor identifier,
the distribution of the array among multiple processors
corresponds to choosing a set of elements in the address
vector to become the uppermost elements. Hence array
distribution among multiple processors can be viewed
as a permutation of the linear address space of the
array. The identity of array distribution is 	��, which
corresponds to a row-blocked distribution. Any other
distribution of data among processors is viewed as a per-
mutation on the row-blocked distribution. For example,
a cyclic distribution of an array among two processors
corresponds to the following permutation:�

� �
	����� �

�

B. Array Redistribution Problem

The array redistribution problem is stated as follows:
Given an array distributed among processors, represented
by a permutation matrix, achieve a target distribution
corresponding to a new permutation.

The array redistribution problem brings with it another
cost factor in the form of communication. Communi-
cation cost varies linearly and is modeled as �� 	 � 	
��, where �� is the startup cost, � the message size
and �� the per-byte transfer cost. Depending on the
parameters �� and �� of a communication protocol,
beyond a message size �, the transfer cost dominates
the startup cost and the average per-byte cost converges
to a constant. The message size beyond which there
is little change in the communication cost is called
the communication threshold ��. Note that as in the
case of the read and write thresholds, the message size
chosen for a specific instance of an algorithm may be
below the threshold, if it cannot be improved upon. The
communication characteristics of various systems have
been widely studied and we do not discuss them here.
For the following discussion, it is assumed that there are
�
 processors. The uppermost � rows of any permutation
matrix correspond to the elements that constitute the
processor identifier. The lowermost � elements of the
address vector correspond to the communication thresh-
old. The terms read, write and communication thresholds
will be used interchangeably to refer to the size of I/O
and �, � and � least significant elements in the address
vector respectively. The reference will be clear from the
context.

The formulation of the parallel redistribution involves
four permutation matrices — read, write, in-memory
permutation and communication. Extending the template
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for the formulation of read, write and in-memory permu-
tation discussed in Section III to the parallel domain we
get

�� � 	
 �
������
 � 	� � � �

�� � 	����� ���

� � 	
 � �������
 � 	� � � �

which indicates that ��, � and �� cannot permute the
elements corresponding to the processor identifier. Only
communication can permute the elements corresponding
to the processor identifier. The permutation correspond-
ing to communication is of the form

�� �

�
������ �

� 	�

�

where � describes the permutations done by communi-
cation.

Note that there are some restrictions on �� similar to
those on ��, � and �� as discussed in Section III. ��

cannot permute between address elements corresponding
to in-memory and out-of-memory data (the elements
corresponding to the processor identifier are special and
will be discussed below). Any permutation except those
involving the the processor identifier can be performed
by �� and �. Therefore, we place additional restrictions
on �, so that it can only involve permutations required
to change the processor identifier. In most cases, � is
smaller than � and � and we assume the same.

Array redistribution can involve permutations of three
kinds. First is the exchange of address vector elements
that are part of the processor identifier. This effect
is achieved by an exchange of all the data between
processors. An equivalent effect could be achieved by
relabeling the processors. But this does not obviate the
problem as the same situation arises when there are
multiple arrays which are aligned with respect to one
another. This, or other constraints, might involve such
an exchange that cannot be handled by relabeling.

Second is the exchange involved when elements
within the communication threshold are to become part
of the processor identifier. Any permutation involving
the elements beyond the communication threshold is
performed by an all-to-all personalized collective com-
munication operation. If the number of elements within
the communication threshold that are to become ele-
ments corresponding to the processor identifier is greater
than �� �, then a sequence of in-memory permutation
and communication operations are carried out. Each in-
memory permutation operation moves as many elements
from within the communication threshold to be beyond
the threshold as possible. These elements are then made
part of the processor identifier by a scatter operation.
This process is repeated until there are no more elements
in the least significant � address elements that are to be
part of the processor identifier.

Thus any element already part of the processor identi-
fier or within the least significant � elements (memory
size), that is to be part of the processor identifier can be
made part of the processor identifier in a single pass.

A more complicated operation is required when trying
to permute the elements corresponding to the proces-
sor identifier and those beyond the least significant �
elements. This involves a collect operation by each
processor. The difference in handling this case and the
previous two cases is that in the previous two cases
all processors do the same operations throughout each
pass. In this case, each processor collects all the data
in memory from certain other processors in turn, in
different iterations of the loop. But since all the collected
data cannot be stored in memory, the data received
from every processor is written to disk. This breaks the
clear demarcation between the communication and write
operations as they become interleaved. Since handling
this case essentially involves writing the data to disk,
this case is handled last.

But note that this may not be the most efficient way of
performing the array redistribution. In handling the last
case, each processor might receive data from a different
set of processors in different iterations. Each receive is
separated by a write to disk. Hence the communication
and write times cannot overlap and could lead to very
poor execution time especially when the number of pro-
cessors is large. A more optimal implementation would
be to schedule the communication among processors so
that they overlap. A simple schedule would be for each
processor to operate on data that has to be sent to one
processor and then begin processing data to be sent to
another processor. Each processor would be sending to
and receiving data from a different processor, say as in
a ring topology, ensuring overlap of communication and
writing of data to disk. But this would modify the read
and write access patterns by reordering of the reads and
writes. The performance is not significantly impacted as
the block size of I/O has been chosen to be large enough.

Hence all communication required to handle array
redistribution can be done in a single pass. The im-
plementation of this phase might involve a series of
communications as just described. Henceforth we shall
refer to �� as the permutation effected on the linear
address by the communication step and not get into the
implementation details.

C. Combining Array Redistribution and Sequential Ma-
trix Transposition

In this section, we combine the mechanisms con-
sidered until now to derive an algorithm for trans-
posing out-of-core matrices which are distributed in a
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row-blocked fashion among multiple processors. Row-
blocked distribution of data involves a permutation that is
similar to transposition. Arbitrary data distribution would
correspond to arbitrary permutations. The approach pre-
sented applies to arbitrary distributions but we formulate
the row-blocked distribution to illustrate the procedure
involved.

The parallel version of the algorithm differs from the
sequential version only in the first pass. Since array
redistribution can be performed in a single pass, it is
performed in combination with the first pass of the
sequential algorithm. Subsequent passes are identical to
running the sequential algorithm on all the processors.
The first pass for the parallel algorithm has the following
flavor:

� Read as in sequential case (��).
� Perform in-memory permutation as in sequential

case ��.
� Perform array distribution, handling the different

cases discussed above.
� Perform any permutation need to regroup the data.
� Write data to disk.
The subsequent passes are identical to those in the

sequential case. Thus the parallel case does not lead
to an increase in the number of passes in the form of
additional reads or writes. The formulation for the first
pass is shown below.

Conditions to be satisfied
� � �

� � � � �

� � �

Parameters
� �

��
��� ��

�� �

�
����� if � � �
��

�

������� otherwise

�� �

�
����� � � �� �� if � � �

����� �� �� �� if � � �

�� �

�
�� ��� �� if � � ��� ��
� otherwise

� �

�
� if �� 	 �� � �

� 	 ��������

��� � otherwise
� � �� � �� � ��� mod ��� ��

�� �

�
� if � � �� � and � � �
�� � otherwise

First pass �� � ��

Case 1: � � �

�� � 	��
�� � 	��
�� � ��	
� ��	��
� 	
��� 	��


� �

� � 	���� � ��	�� � 	��� � ��	���� � 	�� ��
� � 	
 � ��	��
��� � ��	
� 	�����
����� 	�

Case 2: � � � and � � ��� ��
�� � 	���� � ��	�� � 	����� 	�
�� � 	��������� � ��	�� � 	��� � ��	���� � 	�� ��
�� � ��	
� ��	��
��� � 	
��� 	�����


� �

� � 	��
� � 	
 � ��	��
��� � ��	
� 	�����
����� 	�

Case 3: � � � and � � ��� ��
�� � 	���� � ��	�� � 	����� 	�
�� � 	����������

��	�� � 	��
�� � ��	��
��� � 	����
�� � ��	� � � � ��	
������� 	��
����� 	
��

	��
���

� �

� � 	������� � ��	
������� 	�� �� 	��


� � 	
 � ��	���
����� � 	�� �� 	�

There are some noticeable differences in the first
pass as compared to that in the sequential algorithm.
�� represents the array redistribution phase. The first
pass consists of five phases. There are two in-memory
permutation steps, �� and � �

�, that prepare data for
communication and regroup the data before writing to
disk. This could involve a series of interleaved permuta-
tion and communication steps, where the communication
steps satisfy the communication threshold. The amount
of memory available should be at least double the
read block size chosen. This is because communication
requires buffers to store the received data in addition
to the data read from disk, which might be sent to
another processor in parallel. Increase in the number
of processors implies an increase in the total available
memory. If the number of processors is large enough,
the communication phase can contribute to permuting
the address elements within the write threshold. This
factor is represented by ��. When the number of pro-
cessors is large enough to contribute to permutation of
the linear address, the communication and in-memory
permutations involved are different from when it is not.
The formulation handles all the different cases.

The transposition of a � � � array is illustrated in
Table II. The array is distributed in a row-blocked
fashion among 2 processors. The transposed array is also
required to be in a row-blocked distribution. In terms
of data, the top half of the matrix is stored in the first
processor’s disk, the bottom half on second processor’s
disk. The parameters of the algorithm are shown on the
left hand side of the table. The actual data layout is
shown on the right hand side. The algorithm requires
two passes to transpose the array. In the first pass no
elements within the write block size are permuted and no
in-memory permutation is done. In the illustration these
permutations are combined with other phases to simplify
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the diagrams, as they are just identity transformations.
Upon completion of the first pass, the elements have
been redistributed to the target processors. In the second
pass, each processor permutes the array independently
to arrive at the transposed form. Note that the reads and
writes conform to the read and write block size thus
ensuring a minimum contiguity in I/O.

VI. EXPERIMENTAL RESULTS

In this section, we discuss the results obtained from
implementing the parallel transposition algorithm. The
transposition times were measured on the Itanium 2
cluster and on the IA32 cluster at the Ohio Supercom-
puter Center, whose I/O characteristics were discussed in
Section II. Both clusters use the Myrinet [20] intercon-
nection network. The implementation was out-of-place
and used an auxiliary array.

The transposition times for different memory sizes and
numbers of processors were measured. Tables III and IV
show the transposition times on the Itanium 2 cluster for
array sizes of 16GB (�=64K) and 64GB (�=128K).
Tables V and VI show the transposition times on the
IA32 cluster for the same array sizes.

In both systems the read threshold was much higher
than � . So the execution time was influenced mainly
by the write threshold. Increasing the memory decreases
the number of I/O operations. If I/O operations were an
effective measure of performance, doubling the memory
size should halve the execution time. But the execution
time improves little with increase in memory size, except
when the larger memory size leads to a reduction in the
number of passes. Reduction in the number of passes
is accompanied by a significant reduction in the total
execution time. This can be seen, for example, in the
transition from 32MB to 64MB on one processor in
Table V. The slight improvement seen with the increase
in memory size is due to a reduction in the stride of
writes. The write block size is reduced to be below the
write threshold if it can reduce the number of passes and
hence the total execution time. This is the case for 64MB
memory on the one processor in Table V. In certain
cases, the stride of write is so large as to wrap around
and result in the writing of adjacent blocks before earlier
written blocks have been flushed to disk. This leads to
larger write block sizes and hence shorter total execution
time. This trend can be especially seen in Table V at the
transition in the number of passes, when the write block
size is reduced to avoid an increase in the number of
passes.

The parallel algorithm scales well with an increase
in the number of processors. A slightly super-linear
speedup can be seen in some cases. This is due to
improved locality in I/O. Note that for an array size of

#procs Memory size (MB)
16 32 64 128 256 512

1 3406 3322 2265 2230 2003 2079
2 1536 1127 962 949 984 1006
4 740 542 484 483 475 474

TABLE III

EXECUTION TIME, IN SECONDS, ON THE ITANIUM 2 CLUSTER.

ARRAY SIZE IS 16GB (N=64K).

#procs Memory size (MB)
16 32 64 128 256 512

4 3448 3252 3213 2102 2907 2801
8 1470 1533 1469 921 985 1007

TABLE IV

EXECUTION TIME, IN SECONDS, ON THE ITANIUM 2 CLUSTER.

ARRAY SIZE IS 64GB (N=128K).

16GB and for four processors, the portion of each array
in a processor is 4GB, equal to the memory size in the
Itanium 2 cluster. But since there are three arrays the
arrays are not fully cached in memory, making the results
dependent on the caching mechanism. In some cases, an
increase in the number of processors reduces the number
of passes thus significantly reducing the execution time.
This effect can be observed in Table V for a memory size
of 32MB, when the number of processors is increased
from one to two.

VII. CONCLUSIONS

In this paper, we have addressed the efficient parallel
out-of-core transposition of matrices that are too large to

#procs Memory size (MB)
16 32 64 128 256 512

1 7443 7386 3344 4254 4374 4223
2 3865 2098 2179 2253 2333 2207
4 1971 981 1142 1131 1165 1122
8 995 583 549 688 638 560

TABLE V

EXECUTION TIME, IN SECONDS, ON THE IA32 CLUSTER. ARRAY

SIZE IS 16GB (N=64K).

#procs Memory size (MB)
16 32 64 128 256 512

4 8122 6365 4948 3959 3855 3923
8 3523 3469 2695 2167 2046 1855

TABLE VI

EXECUTION TIME, IN SECONDS, ON THE IA32 CLUSTER. ARRAY

SIZE IS 64GB (N=128K).
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Parameters Data layout

� � �, � � � � �, � � �, � � �
� � ��� ��, �� � �, � � �

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
pass=0 (Case 2)
�� � 	�

� � 	�
�� � ��	�� ��	�� 	���� 	�

 �

�
� 	�

� � 	� � ��	�� 	��� 	�

����
�

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

��
�

0 1 8 9
4 5 12 13
2 3 10 11
6 7 14 15

�
�

�
��

�

0 1 4 5
8 9 12 13
2 3 6 7
10 11 14 15

pass=1
�� � 	�

� � 	� � ��	�� 	��
� � 	� � ��	�� 	�� � 	�

��
�

0 1 4 5
8 9 12 13
2 3 6 7

10 11 14 15

��
�

0 4 1 5
8 12 9 13
2 6 3 7
10 14 11 15

��
�

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

TABLE II

ILLUSTRATION OF THE PARALLEL ALGORITHM.

fit in main memory. The problem was cast as a compo-
sition of two sub-problems: disk-based array redistribu-
tion, followed by concurrent independent uniprocessor
transposition of disk-based arrays. The same algebraic
framework was used for both steps. By viewing the
transposition problem as an index permutation on the
addresses of matrix elements, effective use was made
of available main memory in optimizing the overall
transposition time, rather than reducing the number of
I/O operations, as previous algorithms have done. A
solution to the out-of-core array redistribution problem
was then provided using the same algebraic framework,
combining to provide an algorithm for parallel out-of-
core matrix transposition. Experimental measurements
were provided, demonstrating the scalability of the pro-
posed approach and the limited communication over-
head. Extensions of this framework are being pursued for
efficient index permutation of multi-dimensional arrays
on parallel systems.
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