
Proceedings of the MSPLS Spring ’98 Workshop Page 1 of 1

file://G:\Work\MSPLS\Spring98\index.html 7/8/98

Proceedings of the
MSPLS Spring ’98 Workshop
Saturday, 16 May 1998, Loyola University Chicago, Chicago, IL

Gerald Baumgartner(*) and Konstantin Läufer(**) (eds.)
Technical Report OSU-CISRC-6/98-TR21 (PDF Format)

Dept. of Computer and Information Sciences
The Ohio State University

URL: http://www.cis.ohio-state.edu/~gb/MSPLS/Spring98/

26 June 1998

Foreword

Historically, the aim of MSPLS Workshops has been to allow an informal exchange of
ideas in all areas of programming languages and systems among researchers and
practitioners from midwestern universities and companies. Contributions span the range
from presentations on preliminary research results to introductory lectures on ongoing
research efforts.

This report is a collection of abstracts, extended abstracts, and/or papers of the talks
given at the Spring '98 Workshop of the Midwest Society for Programming Languages
and Systems, which took place at Loyola University Chicago, Water Tower Campus, on
Saturday, 16 May 1998, following the IEEE Computer Society 1998 International
Conference on Computer Languages (ICCL '98).

Program

Attendees

The list of attendees is only available to workshop attendees.

(*) Dept. of Computer and Information Science, The Ohio State University, 395 Dreese Lab., 2015
Neil Ave., Columbus, OH 43210-1277. Email: gb@cis.ohio-state.edu.

(**) Dept. of Mathematical and Computer Sciences, Loyola University of Chicago, 6525 North
Sheridan Road, Chicago, IL 60626. Email: laufer@cs.luc.edu.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Program Page 1 of 2

file://G:\Work\MSPLS\Spring98\program.html 8/14/98

MSPLS Spring ’98 Workshop
Program

Saturday, 16 May 1998

1:30-2:00 Registration

2:00-3:30 Technical Session I

Building a Bridge between Pointer Aliases and Program Dependences
John L. Ross (Dept. of Computer Science, University of Chicago) and Mooly Sagiv, (Tel-Aviv
University)
Abstract, Paper

Using Static Single Assignment Form to Improve Flow-Insensitive Pointer Analysis
Rebecca Hasti and Susan Horwitz (Computer Sciences Dept., University of Wisconsin -
Madison)
Abstract, Paper

Edge Profiling vs. Path Profiling: The Showdown
Thomas Ball, Peter Mataga (Bell Laboratories, Lucent Technologies), and Mooly Sagiv (Tel-
Aviv University)
Abstract, Paper

3:30-4:00 Break

4:00-5:30 Technical Session II

Action Transformation: An Application of Sort Inference
Kent Lee (Dept. of Computer Science, Luther College)
Abstract, Slides, Slide supplement: test0.action, Slide supplement: test0.sorts, Paper

Integration of Software Development Documents with the Software Concordance
Ethan Munson (Dept. of Electrical Engineering and Computer Science, University of
Wisconsin - Milwaukee)
Abstract, Paper

Issues in the Design of SWAR Programming Models
Randall J. Fisher and Hank Dietz (Dept. of Electrical and Computer Engineering, Purdue
University)
Abstract

5:30-6:00

MSPLS Spring ’98 Workshop Program Page 2 of 2

file://G:\Work\MSPLS\Spring98\program.html 8/14/98

Business Meeting
Election of Gerald Baumgartner and Konstantin Läufer as new MSPLS co-presidents.

Selection of De Paul University, Chicago, as the meeting site for the Fall '98 Workshop. The
workshop will be held on Saturday, 10 October 1998. It will be hosted by Karen Bernstein (
kbernstein@cs.depaul.edu).

6:00-9:00 Dinner

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Ross-Sagiv-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Building a Bridge between Pointer Aliases and Program
Dependences

John L. Ross (Dept. of Computer Science, University of Chicago) and Mooly Sagiv, (Tel-Aviv
University)

In this paper we present a surprisingly simple reduction of the program dependence problem to the
may-alias problem. While both problems are undecidable, providing a bridge between them has great
practical importance. Program dependence information is used extensively in compiler optimizations,
automatic program parallelizations, code scheduling in super-scalar machines, and in software
engineering tools such as code slicers. When working with languages that support pointers and
references, these systems are forced to make very conservative assumptions. This leads to many
superfluous program dependences and limits compiler performance and the usability of software
engineering tools. Fortunately, there are many algorithms for computing conservative approximations
to the may-alias problem. The reduction has the important property of always computing conservative
program dependences when used with a conservative may-alias algorithm. We believe that the
simplicity of the reduction and the fact that it takes linear time may make it practical for realistic
applications.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Hasti-Horwitz-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Using Static Single Assignment Form to Improve Flow-
Insensitive Pointer Analysis

Rebecca Hasti and Susan Horwitz (Computer Sciences Dept., University of Wisconsin - Madison)

A pointer-analysis algorithm can be either flow-sensitive or flow-insensitive. While flow-sensitive
analysis usually provides more precise information, it is also usually considerably more costly in
terms of time and space. This talk will present another option in the form of an algorithm that can be
‘tuned’ to provide a range of results that fall between the results of flow-insensitive and flow-sensitive
analysis. The algorithm combines a flow-insensitive pointer analysis with static single assignment
(SSA) form and uses an iterative process to obtain progressively better results.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Ball-Mataga-Sagiv-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Edge Profiling vs. Path Profiling: The Showdown

Thomas Ball, Peter Mataga (Bell Laboratories, Lucent Technologies), and Mooly Sagiv (Tel-Aviv
University)

Edge profiles are the traditional control flow profile of choice for profile-directed compilation. They
have been the basis of path-based optimizations that select "hot" paths, even though edge profiles
contain strictly less information than path profiles. Recent work on path profiling has suggested that
path profiles are superior to edge profiles in practice.

We present theoretic and algorithmic results that may be used to determine when an edge profile is a
good predictor of hot paths (and what those hot paths are) and when it is a poor predictor. Our
algorithms efficiently compute sets of definitely and potentially hot paths in a graph annotated with
an edge profile. A definitely hot path has a frequency greater than some non-zero lower bound in all
path profiles that induce a given edge profile.

Experiments on the SPEC95 benchmarks show that a huge percentage of the execution frequency in
these programs is dominated by definitely hot paths (on average, 84% for FORTRAN benchmarks
and 76% for C benchmarks). We also show that various hot path selection algorithms based on edge
profiles work extremely well in most cases, but that path profiling is needed in some cases. These
results indicate the usefulness of our algorithms for characterizing edge profiles and selecting hot
paths.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Lee-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Action Transformation: An Application of Sort Inference

Kent Lee (Dept. of Computer Science, Luther College)

Action Semantics is a formal method of defining programming language semantics in which actions
describe the manipulation of three entities: transients, bindings, and storage. An Action Semantic
Description for a programming language translates a program in the source language to a
corresponding action. However, due to the high-level nature of Action Semantics, actions cannot
generally be directly translated into efficient code in an Action Semantics-based compiler. However,
by applying sort inference to an action, it is possible to transform it into an action that can be
translated into efficient code. This talk will demonstrate the problem and solution by giving an
example of a simple program and it’s compilation to efficient code using an Action Semantics-based
compiler.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Munson-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Integration of Software Development Documents with the
Software Concordance

Ethan Munson (Dept. of Electrical Engineering and Computer Science, University of Wisconsin -
Milwaukee)

Large software projects produce many documents of many different types that, together, describe the
plans for, implementation of, and experience with the program. Ensuring that these documents do not
have serious conflicts with each other is a critical task in any real software system, but requires a
level of integration among the different types of software documents that is not possible with current
development tools.

Our research project is now beginning work to identify the document representations, software tools,
and user interface services that are required to integrate program source code and all other software
documents into a seamless, interconnected whole. The project is producing a prototype development
environment, called the Software Concordance, that allows arbitrary multimedia documentation and
hyperlinks inside program source files and additional tools for managing and understanding the
relationships between software documents. Successful creation of the Software Concordance will
require solutions to problems of document representation, integration of incremental parsing and
formatting services, fine-grained version control, and tools for analysis of networks of time-stamped,
directed hypertext links. It is our hope that this research will break down the barriers that currently
exist between program source code and the natural language documents that motivate, evaluate, and
explain it.

In this talk, I will present our vision for the Software Concordance and describe the research
problems that we will be investigating.

Gerald Baumgartner

MSPLS Spring ’98 Workshop Abstract Page 1 of 1

file://G:\Work\MSPLS\Spring98\Fisher-Dietz-abstract.html 7/8/98

MSPLS Spring ’98 Workshop
Abstract

Issues in the Design of SWAR Programming Models

Randall J. Fisher and Hank Dietz (Dept. of Electrical and Computer Engineering, Purdue University)

Over the past few years, high-end microprocessor designs have added support for a version of SIMD
(Single Instruction, Multiple Data) parallel execution that can improve specific multimedia
operations, yet can be implemented without completely restructuring the microprocessor design. This
version of SIMD, which we call SWAR (SIMD Within A Register), uses most of the existing
datapaths of the microprocessor, but allows registers and datapaths to be logically partitioned into
fields on which operations SIMD parallel operations can be performed.

AMD/Cyrix/Intel MMX, Sun SPARC V9 VIS, HP PA-RISC MAX, DEC Alpha MAX, SGI MIPS
MDMX, and now Motorola PowerPC AltiVec, are all SWAR extensions, but they are all different
and somewhat quirky, initially intended only to be used by hand-writing assembly-level code. It is
also possible to obtain speedup using software SWAR techniques with ordinary processors. This talk
discusses the design of a portable high-level programming model for SWAR and the techniques
needed to compile programs written in such a language into efficient implementations on any of these
types of processors.

Gerald Baumgartner

Building a Bridge between Pointer Aliases and

Program Dependences ?

John L. Ross1 and Mooly Sagiv2

1 University of Chicago, e-mail: johnross@cs.uchicago.edu
2 Tel-Aviv University, e-mail: sagiv@math.tau.ac.il

Abstract. In this paper we present a surprisingly simple reduction
of the program dependence problem to the may-alias problem. While
both problems are undecidable, providing a bridge between them has
great practical importance. Program dependence information is used ex-
tensively in compiler optimizations, automatic program parallelizations,
code scheduling in super-scalar machines, and in software engineering
tools such as code slicers. When working with languages that support
pointers and references, these systems are forced to make very conserva-
tive assumptions. This leads to many superuous program dependences
and limits compiler performance and the usability of software engineering
tools. Fortunately, there are many algorithms for computing conservative
approximations to the may-alias problem. The reduction has the impor-
tant property of always computing conservative program dependences
when used with a conservative may-alias algorithm. We believe that the
simplicity of the reduction and the fact that it takes linear time may
make it practical for realistic applications.

1 Introduction

It is well known that programs with pointers are hard to understand, debug, and
optimize. In recent years many interesting algorithms that conservatively ana-
lyze programs with pointers have been published. Roughly speaking, these algo-
rithms [19, 20, 25, 5, 16, 17, 23, 8, 6, 9, 14, 27, 13, 28] conservatively solve the may-
alias problem, i.e., the algorithms are sometimes able to show that two pointer
access paths never refer to the same memory location at a given program point.

However, may-alias information is insu�cient for compiler optimizations, au-
tomatic code parallelizations, instruction scheduling for super-scalar machines,
and software engineering tools such as code slicers. In these systems, information
about the program dependences between di�erent program points is required.
Such dependences can be uniformly modeled by the program dependence graph
(see [21, 26, 12]).

In this paper we propose a simple yet powerful approach for �nding program
dependences for programs with pointers:

? Partially supported by Binational Science Foundation grant No. 9600337

Given a program P , we generate a program P 0 (hereafter also referred
to as the instrumented version of P) which simulates P . The program
dependences of P can be computed by applying an arbitrary conservative
may-alias algorithm to P 0.

We are reducing the program dependence problem, a problem of great prac-
tical importance, to the may-alias problem, a problem with many competing so-
lutions. The reduction has the property that as long as the may-alias algorithm
is conservative, the dependences computed are also conservative. Furthermore,
there is no loss of precision beyond that introduced by the chosen may-alias
algorithm. Since the reduction is quite e�cient (linear in the program size), it
should be possible to integrate our method into compilers, program slicers, and
other software tools.

1.1 Main Results and Related Work

The major results in this paper are:

{ The uni�cation of the concepts of program dependences and may-aliases.
While these concepts are seemingly di�erent, we provide linear reductions
between them. Thus may-aliases can be used to �nd program dependences
and program dependences can be used to �nd may-aliases.

{ A solution to the previously open question about the ability to use \store-
less" (see [8{10]) may-alias algorithms such as [9, 27] to �nd dependences.
One of the simplest store-less may alias algorithm is due to Gao and Hen-
dren [14]. In [15], the algorithm was generalized to compute dependences
by introducing new names. Our solution implies that there is no need to
re-develop a new algorithm for every may-alias algorithm. Furthermore, we
believe that our reduction is actually simpler to understand than the names
introduced in [15] since we are proving program properties instead of modi-
fying a particular approximation algorithm.

{ Our limited experience with the reduction that indicates that store-less may-
alias algorithms such as [9, 27] yield quite precise dependence information.

{ The provision of a method to compare the time and precision of di�erent
may-alias algorithms by measuring the number of program dependences re-
ported. This metric is far more interesting than just comparing the number
of may-aliases as done in [23, 11, 31, 30, 29].

Our program instrumentation closely resembles the \instrumented seman-
tics" of Horwitz, Pfei�er, and Reps [18]. They propose to change the program
semantics so that the interpreter will carry-around program statements. We in-
strument the program itself to locally record statement information. Thus, an
arbitrary may-alias algorithm can be used on the instrumented program without
modi�cation. In contrast, Horwitz, Pfei�er, and Reps proposed modi�cations to
the speci�c store based may-alias algorithm of Jones and Muchnick [19] (which
is imprecise and doubly exponential in space).

An additional bene�t of our shift from semantics instrumentation into a
program transformation is that it is easier to understand and to prove correct.
For example, Horwitz, Pfei�er, and Reps, need to show the equivalence between
the original and the instrumented program semantics and the instrumentation
properties. In contrast, we show that the instrumented program simulates the
original program and the properties of the instrumentation.

Finally, program dependences can also be conservatively computed by com-
bining side-e�ect analysis [4, 7, 22, 6] with reaching de�nitions [2] or by combin-
ing conict analysis [25] with reaching de�nitions as done in [24]. However, these
techniques are extremely imprecise when recursive data structures are manipu-
lated. The main reason is that it is hard to distinguish between occurrences of
the same heap allocated run-time location (see [6, Section 6.2] for an interesting
discussion).

1.2 Outline of the rest of this paper

In Section 2.1, we describe the simple Lisp-like language that is used throughout
this paper. The main features of this language are its dynamic memory, pointers,
and destructive assignment. The use of a Lisp-like language, as opposed to C,
simpli�es the presentation by avoiding types and the need to handle some of the
di�cult aspects of C, such as pointer arithmetic and casting.

In Section 2.2, we recall the de�nition of ow dependences. In Section 2.3
the may-alias problem is de�ned.

In Section 3 we de�ne the instrumentation. We show that the instrumented
program simulates the execution of the original program. We also show that
for every run-time location of the original program the instrumented program
maintains the history of the statements that last wrote into that location. These
two properties allow us to prove that may-aliases in the instrumented program
precisely determine the ow dependences in the original program.

In Section 4, we discuss the program dependences computed by some may-
alias algorithms on instrumented programs. Finally, Section 5, contains some
concluding remarks.

2 Preliminaries

2.1 Programs

Our illustrative language (following [19, 5]) combines an Algol-like language for
control ow and functions, Lisp-like memory access, and explicit destructive
assignment statements. The atomic statements of this language are shown in
Table 1. Memory access paths are represented by hAccessi. Valid expressions
are represented by hExpi. We allow arbitrary control ow statements using con-
ditions hCondi1. Additionally all statements are labeled.

1 Arbitrary expressions and procedures can be allowed as long as it is not possible to
observe actual run-time locations.

Figure 1 shows a program in our language that is used throughout this paper
as a running example. This program reads atoms and builds them into a list by
destructively updating the cdr of the tail of the list.

program DestructiveAppend()
begin

s1: new(head)
s2: read(head.car)
s3: head.cdr := nil
s4: tail := head
s5: while(tail.car 6= 'x') do
s6: new(temp)
s7: read(temp.car)
s8: temp.cdr := nil
s9: tail.cdr := temp
s10: tail := tail.cdr

od
s11: write(head.car)
s12: write(tail.car)

end.

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s1

Fig. 1. A program that builds a list by destructively appending elements to tail and
its ow dependences.

2.2 The Program Dependence Problem

Program dependences can be grouped into ow dependences (def-use), output
dependences (def-def), and anti-dependences (use-def) [21, 12]. In this paper, we
focus on ow dependences between program statements. The other dependences
are easily handled with only minor modi�cations to our method.

Table 1. An illustrative language with dynamic memory and destructive updates.

hSti ::= si: hAccessi :=hExpi
hSti ::= si:new(hAccessi)
hSti ::= si: read(hAccessi)
hSti ::= si:write(hExpi)
hAccessi ::= variable j hAccessi:hSeli
hExpi ::= hAccessi j atom j nil
hSeli ::= car j cdr

hCondi ::= hExpi = hExpi
hCondi ::= hExpi 6= hExpi

Our language allows programs to explicitly modify their store through point-
ers. Because of this we must phrase the de�nition of ow dependence in terms
of memory locations (cons-cells) and not variable names. We shall borrow the
following de�nition for ow dependence:

De�nition 1 ([18]). Program point q has a ow dependence on program point
p if p writes into memory location loc that q reads, and there is no intervening
write into loc along an execution path by which q is reached from p.

Figure 1 also shows the ow dependences for the running example program.
Notice that s11 is ow dependent on only s1 and s2, while s12 is ow dependent
on s2, s4, s7, and s10. This information could be used by slicing tools to �nd
that the loop need not be executed to print head:car in s11, or by an instruction
scheduler to reschedule s11 for anytime after s2. Also, s3 and s8 have no state-
ments dependent on them, making them candidates for elimination. Thus, even
in this simple example, knowing the ow dependences would potentially allow
several code transformations.

Since determining the exact ow dependences in an arbitrary program is
undecidable, approximation algorithms must be used. A ow dependence ap-
proximation algorithm is conservative if it always �nds a superset of the true
ow dependences.

2.3 The May-Alias Problem

The may-alias problem is to determine whether two access-paths, at a given
program point, could denote the same cons-cell.

De�nition 2. Two access-paths are may-aliases at program point p, if there
exists an execution path to program point p where both denote the same cons-
cell.

In the running example program, head:cdr:cdr and tail are may-aliases at
s6 since before the third iteration these access paths denote the same cons-cell.
However, tail:cdr:cdr is not a may-alias to head since they can never denote the
same cons-cell.

Since the may-alias problem is undecidable, approximation algorithms must
be used. A may-alias approximation algorithm is conservative if it always �nds
a superset of the true may-aliases.

3 The Instrumentation

In this section the instrumentation is de�ned. For notational simplicity, P stands
for an arbitrary �xed program, and P 0 stands for its instrumented version.

3.1 The Main Idea

The program P 0 simulates all the execution sequences of P . Additionally, the
\observable" properties of P are preserved.

Most importantly, P 0 records for every variable v, the statement from P that
last wrote into v. This \instrumentation information" is recorded in v:car (while
storing the original content of v in v:cdr). This \totally static" instrumentation2

allows program dependences to be recovered by may-alias queries on P 0.

More speci�cally, for every statement in P there is an associated cons-cell in
P 0. We refer to these as statement cons-cells. Whenever a statement si assigns a
value into a variable v, P 0 allocates a cons-cell that we refer to as an instrumen-
tation cons-cell. The car of this instrumentation cons-cell always points to the
statement cons-cell associated with si. Thus there is a ow dependence from a
statement p to q: x := y in P if and only if y:car can point to the statement cons-
cell associated with p in P 0. Finally, we refer to the cdr of the instrumentation
cons-cell as the data cons-cell. The data cons-cell is inductively de�ned:

{ If si is an assignment si: v := A for an atom, A, then the data cell is A.

{ If si is an assignment si: v := v0 then the data cell denotes v0:cdr.

{ If the statement is si:new(v), then the data cons-cell denotes a newly allo-
cated cons-cell. Thus P 0 allocates two cons-cells for this statement.

In general, there is an inductive syntax directed de�nition of the data cells
formally de�ned by the function txe de�ned in Table 3.

3.2 The Instrumentation of the Running Example

To make this discussion concrete, Figure 2 shows the beginning of the running
example program and its instrumented version. Figure 3 shows the stores of
both the programs just before the loop (on the input beginning with 'A'). The
cons-cells in this �gure are labeled for readability only.

The instrumented program begins by allocating one statement cons-cell for
each statement in the original program. Then, for every statement in the original
program, the instrumented statement block in the instrumented program records
the last wrote-statement and the data. The variable rhs is used as a temporary
to store the right-hand side of an assignment to allow the same variable to be
used on both sides of an assignment.

Let us now illustrate this for the statements s1 through s4 in Figure 3.

{ In the original program, after s1, head points a new uninitialized cons-cell,
c1. In the instrumented program, after the block of statements labeled by
s1, head points to an instrumentation cons-cell, i1, head:car points to the
statement cell for s1, and head:cdr points to c0

1
.

2 In contrast to dynamic program slicing algorithms that record similar information
using hash functions, e.g., [1].

{ In the original program, after s2, head:car points to the atom A. In the in-
strumented program, after the block of statements labeled by s2, head:cdr:car
points to an instrumentation cons-cell, i2, head:cdr:car:car points to the
statement cell for s2, and head:cdr:car:cdr points to A.

{ In the original program, after s3, head:cdr points to nil. In the instrumented
program, after the block of statements labeled by s3, head:cdr:cdr points
to an instrumentation cons-cell, i3, head:cdr:cdr:car points to the statement
cell for s3, and head:cdr:cdr:cdr points to nil.

{ In the original program, after s4, tail points to the cons-cell c1. In the in-
strumented program, after the block of statements labeled by s4, tail points
to an instrumentation cons-cell, i4, tail:car points to the statement cell for
s4, and tail:cdr points to c0

1
. Notice how the sharing of the r-values of head

and tail is preserved by the transformation.

3.3 A Formal De�nition of the Instrumentation

Formally, we de�ne the instrumentation as follows:

De�nition 3. Let P be a program in the form de�ned in Table 1. Let s1; s2; : : : ; sn
be the statement labels in P. The instrumented program P 0 is obtained from P
starting with a prolog of the form new(psi) where i = 1; 2 : : : n. After the prolog,
we rewrite P according to the translation rules shown in Table 2 and Table 3.

Example 4. In the running example program (Figure 2), in P , s11 writes head:car
and in P 0, s11 writes head:cdr:car:cdr. This follows from:
txe(head:car) = txa(head:car):cdr = txa(head):cdr:car:cdr = head:cdr:car:cdr

3.4 Properties of the Instrumentation

In this section we show that the instrumentation has reduced the ow dependence
problem to the may-alias problem. First the simulation of P by P 0 is shown in the
Simulation Theorem. This implies that the instrumentation does not introduce
any imprecision into the ow dependence analysis. We also show the Last Wrote
Lemma which states that the instrumentation maintains the needed invariants.
Because of the Simulation Theorem, and the Last Wrote Lemma, we are able to
conclude that:

1. exactly all the ow dependences in P are found using a may-alias oracle on
P 0.

2. using any conservative may-alias algorithm on P 0 always results in conser-
vative ow dependences for P .

Intuitively, by simulation, we mean that at every label of P and P 0, all the
\observable properties" are preserved in P 0, given the same input. In our case,
observable properties are:

{ r-values printed by the write statements

program DestructiveAppend()
begin

s1: new(head)

s2: read(head.car)

s3: head.cdr := nil

s4: tail := head

s5: while(tail.car 6= 'x') do

program InstrumentedDestructiveAppend()
begin

new(psi) 8i 2 f1; 2; : : : ; 12g
s1: new(head)

head.car := ps1
new(head.cdr)

s2: new(head.cdr.car)
head.cdr.car.car := ps2
read(head.cdr.car.cdr)

s3: rhs := nil
new(head.cdr.cdr)
head.cdr.cdr.car := ps3
head.cdr.cdr.cdr := rhs

s4: rhs := head.cdr
new(tail)
tail.car := ps4
tail.cdr := rhs

s5: while(tail.cdr.car.cdr 6= 'x') do

Fig. 2. The beginning of the example program and its corresponding instrumented
program.

Table 2. The translation rules that de�ne the instrumentation excluding the prolog.
For simplicity, every assignment allocates a new instrumentation cons-cell. The variable
rhs is used as a temporary to store the right-hand side of an assignment to allow the
same variable to be used on both sides of an assignment.

si: hAccessi:=hExpi =) si: rhs :=txe(hExpi)
new(txa(hAccessi))
txa(hAccessi):car:=psi
txa(hAccessi):cdr:= rhs

si:new(hAccessi) =) si: new(txa(hAccessi))
txa(hAccessi):car:=psi
new(txa(hAccessi):cdr)

si: read(hAccessi) =) si: new(txa(hAccessi))
txa(hAccessi):car:=psi
read(txa(hAccessi):cdr)

si:write(hExpi) =) si: write(txa(hExpi))
hExp1i = hExp2i =) txe(hExp1i) = txe(hExp2i)
hExp1i 6= hExp2i =) txe(hExp1i) 6= txe(hExp2i)

s1:new(head) s0

1:new(head);head:car := ps1;new(head:cdr)

head -
c1

head- r

i1

r

?

-

ps1 -

c0

1

s2: read(head:car) s0

2:new(head:cdr:car);head:cdr:car:car := ps2; read(head:cdr:car:cdr))

head -
c1

r

?
A

head- r

i1

r

?

-

ps1 -

c0

1

r

?
r

i2

r

?

-

ps2 -

A

s3:head:cdr := nil s0

3: rhs := nil; new(head:cdr:cdr);head:cdr:cdr:car := ps3;head:cdr:cdr:cdr := rhs

head - r

c1

r

?

- nil

A

head- r

i1

r

?

-

ps1 -

r

c0

1

r

?

-

r

i2

r

?
@
@
@Rps2 - A

r

i3

r

?

-

ps3�

nil

s4: tail := head s0

4: rhs := head:cdr;new(tail); tail:car := ps4; tail:cdr := rhs

head -
tail -

r

c1

r

?

- nil

A

head- r

i1

r

?

-

ps1 -

r

c0

1

r

?

-

r

i2

r

?
@
@
@Rps2 - A

r

i3

r

?

-

ps3�

niltail - r

i4

r

?

?

ps4 -

Fig. 3. The store of the original and the instrumented running example programs just
before the loop on an input list starting with `A'. For visual clarity, statement cons-
cells not pointed to by an instrumentation cons-cell are not shown. Also, cons-cells are
labeled and highlighted to show the correspondence between the stores of the original
and instrumented programs.

Table 3. The function txa which maps an access path in the original program into
the corresponding access path in the instrumented program. The function txe maps an
expression into the corresponding expression in the instrumented program.

txa(variable) = variable

txa(hAccessi:hSeli) = txa(hAccessi):cdr:hSeli
txe(hAccessi) = txa(hAccessi):cdr
txe(atom) = atom

txe(nil) = nil

{ equalities of r-values

In particular, the execution sequences of P and P 0 at every label are the same.
This discussion motivates the following de�nition:

De�nition 5. Let S be an arbitrary sequence of statement labels in P e1; e2 be

expressions, and I be an input vector. We denote by I; S
P

j=e1 = e2 the fact that
the input I causes S to be executed in P, and in the store after S, the r-values
of e1 and e2 are equal.

Example 6. In the running example, head:cdr:cdr and tail denote the same cons-
cell before the third iteration for inputs lengths of four or more. Therefore,

I; [s1; s2; s3; s4; s5]([s6; s7; s8; s9; s10])
2
P

j=head:cdr:cdr = tail

Theorem 7. (Simulation Theorem) Given input I, expressions e1 and e2,
and sequence of statement labels S:

I; S
P

j=e1 = e2 () I; S
P

0

j=txe(e1) = txe(e2)

Example 8. In the running example, before the �rst iteration, in the last box of
Figure 3, head and tail denote the same cons-cell and head:cdr and tail:cdr de-
note the same cons-cell. Also, in the instrumented program, head:cdr:cdr:cdr:cdr
and tail:cdr denote the same cons-cell before the third iteration for inputs of
length four or more. Therefore, as expected from Example 6,

I; [s1; s2; s3; s4; s5]([s6; s7; s8; s9; s10])
2
P

0

j=txe(head:cdr:cdr) = txe(tail)

The utility of the instrumentation is captured in the following lemma.

Lemma 9. (Last Wrote Lemma) Given input I, sequence of statement labels
S, and an access path a, the input I leads to the execution of S in P in which
the last statement that wrote into a is si if and only if

I; S
P

0

j=txa(a):car = psi:

Example 10. In the running example, before the �rst iteration, in the last box

of Figure 3, we have I; [s1; s2; s3; s4; s5]
P

0

j=txa(head):car = ps1 since s1 is the
statement that last wrote into head. Also, for input list I = [0A0;0 x0], we have:

I; [s1; s2; s3; s4; s5; s11; s12]
P

0

j=txa(tail:car):car = ps2 since for such input s2 last
wrote into tail:car (through the assignment to head:car).

A single statement in our language can read from many memory locations.
For example, in the running example program, statement s5 reads from tail and
tail:car. The complete read-sets for the statements in our language are shown
in Tables 4 and 5.

We are now able to state the main result.

Table 4. Read-sets for the statements in our language.

si: hAccessi:=hExpi rsa(hAccessi) [rse(hExpi)
si:new(hAccessi) rsa(hAccessi)
si: read(hAccessi) rse(hAccessi)
si:write(hExpi) rse(hExpi)
hExp1i = hExp2i rse(hExp1i) [rse(hExp2i)
hExp1i 6= hExp2i rse(hExp1i) [rse(hExp2i)

Table 5. An inductive de�nition of rsa, the read-set for access-paths, and rse, the
read-set for expressions.

rsa(variable) = ;
rsa(hAccessi:hSeli) = rsa(hAccessi) [fhAccessig
rse(variable) = fvariableg
rse(hAccessi:hSeli) = rse(hAccessi) [fhAccessi:hSelig
rse(atom) = ;
rse(nil) = ;

Theorem 11. (Flow Dependence Reduction) Given program P, its instru-
mented version P 0, and any two statement labels p and q. There is a ow de-
pendence from p to q (in P) if and only if there exists an access path, a, in the
read-set of q, s.t. psp is a may-alias of txa(a):car at q in P 0.

Example 12. To �nd the ow dependences of s5 in the running example:
s5 : while(tail:car 6= `x0)
First Tables 4 and 5 are used to determine the read-set of s5:
rse(hExp1i) [rse(hExp2i) = rse(tail:car) [rse(`x0) = rse(tail) [ftail:carg [;

= ftailg [ftail:carg = ftail; tail:carg:
Then txa(a):car is calculated for each a in the read-set:
txa(tail):car = tail:car

txa(tail:car):car = txa(tail):cdr:car:car = tail:cdr:car:car
Next the may-aliases to tail:car and tail:cdr:car:car are calculated by any may-
aliases algorithm. Finally s5 is ow dependent on the statements associated with
the statement cons-cells that are among the may-aliases found to tail:car and
tail:cdr:car:car.

The Read-Sets and May-Aliases for the running example are summarized in
Table 6.

From a complexity viewpoint our method can be very inexpensive. The pro-
gram transformation time and space are linear in the size of the original program.
In applying Theorem 11 the number of times the may-alias algorithm is invoked
is also linear in the size of the original program, or more speci�cally, proportional

Table 6. Flow dependence analysis of the running example using a may-alias oracle.

Stmt Read-Set May-Aliases

s1 ; ;
s2 fheadg f(head:car; ps1)g
s3 fheadg f(head:car; ps1)g
s4 fheadg f(head:car; ps1)g
s5 ftail; tail:carg f(tail:car; ps4); (tail:car; ps10);

(tail:cdr:car:car; ps2); (tail:cdr:car:car; ps7)g
s6 ; ;
s7 ftempg f(temp:car; ps6)g
s8 ftempg f(temp:car; ps6)g
s9 ftail; tempg f(tail:car; ps4); (tail:car; ps10); (temp:car; ps6)g
s10 ftail; tail:cdrg f(tail:car; ps4); (tail:car; ps10); (tail:cdr:cdr:car; ps9)g
s11 fhead; head:carg f(head:car; ps1); (head:cdr:car:car; ps2)g
s12 ftail; tail:carg f(tail:car; ps4); (tail:car; ps10);

(tail:cdr:car:car; ps2); (tail:cdr:car:car; ps7)g

to the size of the read-sets. It is most likely that the complexity of the may-alias
algorithm itself is the dominant cost.

4 Plug and Play

An important corollary of Theorem 11 is that an arbitrary conservative may-alias
algorithm on P 0 yields a conservative solution to the ow dependence problem
on P . Since existing may-alias algorithms often yield results which are di�cult to
compare, it is instructive to consider the ow dependences computed by various
algorithms on the running example program.

{ The algorithm of [9] yields the may-aliases shown in column 3 of Table 6.
Therefore, on this program, this algorithm yields the exact ow dependences
shown in Figure 1.

{ The more e�cient may-alias algorithms of [23, 14, 30, 29] are useful to �nd
ow dependences in programs with disjoint data structures. However, in
programs with recursive data structures such as the running example, they
normally yield many superuous may-aliases leading to superuous ow de-
pendences. For example, [23] is not able to identify that tail points to an
acyclic list. Therefore, it yields that head:car and ps7 are may-aliases at s11.
Therefore, it will conclude that the value of head:car read at s11 may be
written inside the loop (at statement s7).

{ The algorithm of [27] �nds, in addition to the correct dependences, superu-
ous ow dependences in the running example. For example, it �nds that s5
has a ow dependence on s8. This inaccuracy is attributable to the anony-
mous nature of the second cons-cell allocated with each new statement. There
are two possible ways to remedy this inaccuracy:

� Modify the algorithm so that it is 2-bounded, i.e., also keeps track of car
and cdr �elds of variables. Indeed, this may be an adequate solution for
general k-bounded approaches, e.g., [19] by increasing k to 2k.

� Modify the transformation to assign unique names to these cons-cells.
We have implemented this solution, and tested it using the PAG [3]
implementation of the [27] algorithm3 and found exactly all the ow
dependences in the running example.

5 Conclusions

In this paper, we showed that may-alias algorithms can be used, without any
modi�cation, to compute program dependences. We are hoping that this will
lead to more research in �nding practical may-alias algorithms to compute good
approximations for ow dependences.

For simplicity, we did not optimize the memory usage of the instrumented
program. In particular, for every executed instance of a statement in the origi-
nal program that writes to the store, the instrumented program creates a new
instrumentation cons-cell. This extra memory usage is harmless to may-alias al-
gorithms (for some algorithms it can even improve the accuracy of the analysis,
e.g., [5]). In cases where the instrumented program is intended to be executed,
it is possible to drastically reduce the memory usage through cons-cell reuse.

Finally, it is worthwhile to note that ow dependences can be also used to
�nd may-aliases. Therefore, may-aliases are necessary in order to compute ow
dependences. For example, Figure 4 contains a program fragment that provides
the instrumentation to \check" if two program variables v1 and v2 are may aliases
at program point p. This instrumentation preserves the meaning of the original
program and has the property that v1 and v2 are may-aliases at p if and only if
s2 has a ow dependence on s1.

p: if v1 6= nil then
s1: v1:cdr := v1:cdr �
if v2 6= nil then

s2:write(v2:cdr) �

Fig. 4. A program fragment such that v1 and v2 are may-aliases at p if and only if s2
has a ow dependence on s1.

Acknowledgments

We are grateful for the helpful comments of Thomas Ball, Michael Benedikt,
Thomas Reps, and Reinhard Wilhelm for their comments that led to substantial

3 On a SPARCstation 20, PAG used 0.53 seconds of cpu time.

improvements of this paper. We also would like to thank Martin Alt and Florian
Martin for PAG, and their PAG implementation of [27] for a C subset.

References

1. H. Agrawal and J.R. Horgan. Dynamic program slicing. In SIGPLAN Confer-
ence on Programming Languages Design and Implementation, volume 25 of ACM
SIGPLAN Notices, pages 246{256, White Plains, New York, June 1990.

2. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985.

3. M. Alt and F. Martin. Generation of e�cient interprocedural analyzers with PAG.
In SAS'95, Static Analysis, number 983 in Lecture Notes in Computer Science,
pages 33{50. Springer-Verlag, 1995.

4. J.P. Banning. An e�cient way to �nd the side e�ects of procedure calls and the
aliases of variables. In ACM Symposium on Principles of Programming Languages,
pages 29{41, New York, NY, 1979. ACM Press.

5. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures.
In SIGPLAN Conference on Programming Languages Design and Implementation,
pages 296{310, New York, NY, 1990. ACM Press.

6. J.D. Choi, M. Burke, and P. Carini. E�cient ow-sensitive interprocedural compu-
tation of pointer-induced aliases and side-e�ects. In ACM Symposium on Principles
of Programming Languages, pages 232{245, New York, NY, 1993. ACM Press.

7. K.D. Cooper and K. Kennedy. Interprocedural side-e�ect analysis in linear time.
In SIGPLAN Conference on Programming Languages Design and Implementation,
pages 57{66, New York, NY, 1988. ACM Press.

8. A. Deutsch. A storeless model for aliasing and its abstractions using �nite repre-
sentations of right-regular equivalence relations. In IEEE International Conference
on Computer Languages, pages 2{13, Washington, DC, 1992. IEEE Press.

9. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In SIGPLAN Conference on Programming Languages Design and Implementation,
pages 230{241, New York, NY, 1994. ACM Press.

10. A. Deutsch. Semantic models and abstract interpretation for inductive data struc-
tures and pointers. In Proc. of ACM Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM'95, pages 226{228, New York,
NY, June 1995. ACM Press.

11. M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In SIGPLAN Conference on Program-
ming Languages Design and Implementation, New York, NY, 1994. ACM Press.

12. J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems,
3(9):319{349, 1987.

13. R. Ghiya and L.J. Hendren. Is it a tree, a dag, or a cyclic graph? In ACM
Symposium on Principles of Programming Languages, New York, NY, January
1996. ACM Press.

14. R. Ghiya and L.J. Hendren. Connection analysis: A practical interprocedural heap
analysis for c. In Proc. of the 8th Intl. Work. on Languages and Compilers for
Parallel Computing, number 1033 in Lecture Notes in Computer Science, pages
515{534, Columbus, Ohio, August 1995. Springer-Verlag.

15. R. Ghiya and L.J. Hendren. Putting pointer analysis to work. In ACM Symposium
on Principles of Programming Languages. ACM, New York, January 1998.

16. L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell University, Ithaca, N.Y., Jan 1990.

17. L. Hendren and A. Nicolau. Parallelizing programs with recursive data structures.
IEEE Transactions on Parallel and Distributed Systems, 1(1):35{47, January 1990.

18. S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis for pointer variables.
In SIGPLAN Conference on Programming Languages Design and Implementation,
volume 24 of ACM SIGPLAN Notices, pages 28{40, Portland, Oregon, June 1989.
ACM Press.

19. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4, pages 102{131. Prentice-Hall, Englewood Cli�s, NJ,
1981.

20. N.D. Jones and S.S. Muchnick. A exible approach to interprocedural data ow
analysis and programs with recursive data structures. In ACM Symposium on
Principles of Programming Languages, pages 66{74, New York, NY, 1982. ACM
Press.

21. D.J. Kuck, R.H. Kuhn, B. Leasure, D.A. Padua, and M. Wolfe. Dependence graphs
and compiler optimizations. In ACM Symposium on Principles of Programming
Languages, pages 207{218, New York, NY, 1981. ACM Press.

22. W. Land, B.G. Ryder, and S. Zhang. Interprocedural modi�cation side e�ect
analysis with pointer aliasing. In Proc. of the ACM SIGPLAN '93 Conf. on Pro-
gramming Language Design and Implementation, pages 56{67, 1993.

23. W. Landi and B.G. Ryder. Pointer induced aliasing: A problem classi�cation. In
ACM Symposium on Principles of Programming Languages, pages 93{103, New
York, NY, January 1991. ACM Press.

24. J.R. Larus. Re�ning and classifying data dependences. Unpublished extended
abstract, Berkeley, CA, November 1988.

25. J.R. Larus and P.N. Hil�nger. Detecting conicts between structure accesses. In
SIGPLAN Conference on Programming Languages Design and Implementation,
pages 21{34, New York, NY, 1988. ACM Press.

26. K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
pages 177{184, New York, NY, 1984. ACM Press.

27. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In ACM Symposium on Principles of Programming
Languages, New York, NY, January 1996. ACM Press.

28. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 1997. To Appear.

29. M. Shapiro and S. Horwitz. Fast and accurate ow-insensitive points-to analysis.
In ACM Symposium on Principles of Programming Languages, 1997.

30. B. Steengaard. Points-to analysis in linear time. In ACM Symposium on Principles
of Programming Languages. ACM, New York, January 1996.

31. R.P. Willson and M.S. Lam. E�cient context-sensitive pointer analysis for c pro-
grams. In SIGPLAN Conference on Programming Languages Design and Imple-
mentation, pages 1{12, La Jolla, CA, June 18-21 1995. ACM Press.

Using Static Single Assignment Form to Improve Flow-Insensitive Pointer

Analysis �

Rebecca Hasti and Susan Horwitz

Computer Sciences Department, University of Wisconsin-Madison

1210 West Dayton Street, Madison, WI 53706 USA

Electronic mail: fhasti, horwitzg@cs.wisc.edu

Abstract

A pointer-analysis algorithm can be either ow-sensitive or
ow-insensitive. While ow-sensitive analysis usually pro-
vides more precise information, it is also usually consider-
ably more costly in terms of time and space. The main
contribution of this paper is the presentation of another op-
tion in the form of an algorithm that can be `tuned' to
provide a range of results that fall between the results of
ow-insensitive and ow-sensitive analysis. The algorithm
combines a ow-insensitive pointer analysis with static sin-
gle assignment (SSA) form and uses an iterative process to
obtain progressively better results.

1 Introduction

Having information about what pointer variables may point
to is very useful (and often necessary) when performing
many kinds of program analyses. Obviously, the better (or
more precise) the information, the more useful the informa-
tion is. A points-to analysis that takes into account the order
in which statements may be executed (i.e., a ow-sensitive
analysis) generally provides more precise information than a
ow-insensitive analysis; however, ow-sensitive analyses are
considerably more costly in terms of time and/or space than
ow-insensitive analyses. Thus, the options for pointer anal-
ysis one is generally presented with are: (1) ow-insensitive
- faster but less precise; and (2) ow-sensitive - more precise
but time/space consuming. The main contribution of this
paper is the presentation of another option in the form of an
algorithm that can be `tuned' to provide a range of results.
The algorithm combines a ow-insensitive pointer analysis
with static single assignment (SSA) form and uses an itera-
tive process to obtain progressively better results along the
spectrum from ow-insensitive to ow-sensitive. The par-
ticular ow-insensitive analysis used will a�ect the precision
of the �nal results. Whether it is possible to obtain results
as precise as those obtained by a ow-sensitive analysis is

�This work was supported in part by the National Science Foun-
dation under grant CCR-9625656, and by the Army Research O�ce
under grant DAAH04-85-1-0482.

To appear in the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, June
1998, Montreal, Canada.

an open question.

1.1 Flow-sensitive vs. ow-insensitive analysis

Program analyses may be categorized as either ow-sensitive
or ow-insensitive. A ow-sensitive analysis takes into ac-
count the order in which the statements in the program may
be executed; a ow-insensitive analysis does not. In other
words, in a ow-sensitive analysis the program is handled as
a sequence of statements while in a ow-insensitive analysis
it is handled as a set of statements. Thus, a ow-sensitive
analysis produces results at the statement level (e.g., it may
discover di�erent properties of a variable p at each state-
ment) whereas a ow-insensitive analysis produces results
at the program level (e.g., it can only discover properties of
a variable p that hold for the entire program).

(Analyses can be further categorized as context-sensitive
or context-insensitive. A context-sensitive analysis takes
into account the fact that a function must return to the
site of the most recent call; a context-insensitive analysis
propagates information from a call site, through the called
function, and back to all call sites. In this paper, all analyses
are assumed to be context-insensitive.)

One way to think about ow-insensitive analysis is in
terms of a variation on the standard dataow framework
[Kil73]. The standard framework includes:

1. a lattice of dataow facts,

2. a set of monotonic dataow functions,

3. a control ow graph (CFG),

4. a mapping that associates one dataow function with
each graph node (we use fn to denote the function
mapped to node n).

The ideal goal of a ow-sensitive analysis is to �nd the
meet-over-all-paths solution to the dataow problem [Kil73].
When this is not feasible (e.g., when the functions are not
distributive), an acceptable goal is to �nd the greatest so-
lution (under the lattice ordering) to the following set of
equations (one equation for each CFG node n):

n:fact =
u

m�predecessors(n)
fm(m:fact) (1)

(This equation is for a forward dataow problem. The
equation for a backward dataow problem is similar, with
successors used in place of predecessors.)

Flow-insensitive analysis uses the same framework, ex-
cept that it uses a version of the CFG in which there is

1

a = 1 a0 = 1
b = 2 b0 = 2
c = a+ b c0 = a0 + b0
if (: : :) if (: : :) (1)
then a = 3 then a1 = 3

a2 = �(a1; a0)
d = b d0 = b0
c = a+ b c1 = a2 + b0 (2)
print(c) print(c1) (3)

(a) Original (b) SSA Form

Figure 1: Example for constant propagation

an edge from each node to every other node (including it-
self) [Hor97]. Again, the ideal goal of the analysis is to �nd
the meet-over-all-paths solution (in the modi�ed CFG), and
when this is not feasible, to �nd the greatest solution to the
set of equations:

n:fact =
u

m�nodes(CFG)
fm(m:fact) (2)

(Note that this framework is useful for understanding ow-
insensitive analysis; actual algorithms do not involve creat-
ing this modi�ed CFG or directly solving these equations.)

For the rest of this paper, when we refer to a ow-
sensitive analysis, we mean an analysis that computes the
greatest solution to the set of equations (1). Similarly, when
we refer to a ow-insensitive analysis, we mean an analy-
sis that computes the greatest solution to the set of equa-
tions (2).

Flow-sensitive analyses generally take more time and/or
space than their ow-insensitive counterparts; however, the
results are usually more precise. For example, consider
constant propagation on the code fragment in Figure 1(a).
A ow-sensitive constant-propagation analysis determines
that:

� At1 (1), a = 1, b = 2, c = 3

� At (2), b = 2, c = 3, d = 2

� At (3), b = 2, d = 2

and a ow-insensitive constant-propagation analysis deter-
mines that:

� b = 2, d = 2

Note that the results of the ow-insensitive analysis actually
mean that at every point in the program, b is either unini-
tialized or has the value 2, and similarly for d. This kind of
information is su�cient for most uses of the results of con-
stant propagation (e.g., replacing uses of constant variables
with their values). Also note that, although the results of
ow-insensitive analysis are not as precise as the results of
ow-sensitive analysis, they do provide some useful informa-
tion.

1.2 Using SSA form to improve ow-insensitive analysis

Static Single Assignment (SSA) form [CFR+91] is a pro-
gram representation in which variables are renamed (via
subscripting) and new de�nitions inserted to ensure that:

1When we say that some fact is true at a particular point, we mean
that the fact is true immediately before that point.

1. Each variable xi has exactly one de�nition site.

2. Each use of a variable xi is reached by exactly one
de�nition.

The new de�nitions (called � nodes) are inserted in the CFG
at those places reached by two (or more) de�nitions of a
variable x (the join points) and are of the form:

xk = �(xi1 ; xi2 ; : : : ; xin)

Figure 1(b) shows the SSA form for the example from
Figure 1(a). Notice that once the program has been put
into SSA form, ow-sensitive and ow-insensitive constant
propagation identify the same instances of constant vari-
ables in the code. For example, both a ow-sensitive and a
ow-insensitive analysis on Figure 1(b) produce the follow-
ing results (the results are shown in ow-sensitive format;
the results from ow-insensitive analysis hold not just at the
point given, but at every point in the program):

� At (1), a0 = 1, b0 = 2, c0 = 3

� At (2), a0 = 1, b0 = 2, c0 = 3, a1 = 3, d0 = 2

� At (3), a0 = 1, b0 = 2, c0 = 3, a1 = 3, d0 = 2

In other words, it does not matter whether the constant
propagation analysis done on the SSA form is ow-sensitive
or ow-insensitive. Thus, if the time and space required to
translate a program into SSA form and then perform a ow-
insensitive analysis are less than the time and space required
to do a ow-sensitive analysis, this approach is a win.

1.3 Points-to analysis

The presence of pointers in a program makes it necessary
to have information about what pointer variables may be
pointing to in order to do many program analyses (such as
constant propagation) correctly. Thus, a points-to analysis
must �rst be done on a program before any further anal-
yses are done. (There are two kinds of points-to analyses,
may and must. Whenever we use `points-to' we mean `may-
point-to'.) This points-to analysis may be ow-sensitive or
ow-insensitive. For example, consider the code fragment in
Figure 2(a).

A ow-sensitive points-to analysis determines the fol-
lowing points-to information at (i.e., immediately before)
each program point (p ! a means that p might point to a,
p! fa; bg means that p might point to a or to b):

Point Points-to information
(2) a! w
(3) a! w; p! a
(4) a! x; p! a
(5) a! x; p! a; c! x
(6) a! x; p! a; c! x
(7) a! fx; yg; p! a; c! x
(8) a! fx; yg; p! b; c ! x
(9) a! fx; yg; p! b; c ! x; d! fx; yg
(10) a! fx; yg; p! b; c ! x; d! fx; yg;

b! z

A ow-insensitive points-to analysis determines the fol-
lowing information:

p! fa; bg
a! fw; x; y; zg
b ! fy; zg
c ! fw; x; y; zg
d! fw; x; y; zg

2

a = &w a0 = &w0 (1)
p = &a p0 = &a0 (2)
a = &x a1 = &x0 (3)
c = �p c0 = �p0 (4)
if (: : :) if (: : :) (5)
then � p = &y then � p0 = &y0 (6)

p = &b p1 = &b0 (7)
d = a d0 = a1 (8)
�p = &z �p1 = &z0 (9)
print(�a) print(�a1) (10)

(a) Original (b) Naive SSA

Figure 2: An example with pointers and its naive translation
to SSA form

As before, the ow-insensitive analysis is not as precise as
the ow-sensitive analysis, but the information it does pro-
vide is safe (i.e., the points-to sets computed by the ow-
insensitive analysis are always supersets of the sets com-
puted by the ow-sensitive analysis).

Given the advantages of SSA form discussed above in
Section 1.2, it is natural to ask whether the approach of
translating the program to SSA form and then using a ow-
insensitive points-to analysis on the SSA form will achieve
the same results as a ow-sensitive analysis on the original
program. This approach seems reasonable since each vari-
able xk in the SSA form of the program corresponds only to
certain instances of the variable x in the original program.
Therefore, the `whole-program' results of the ow-insensitive
analysis of the SSA form could be mapped to `CFG node
speci�c' results in the original program. Unfortunately, this
approach will not work.

The basic problem is that it is not possible to translate
a program that contains pointers into SSA form without
�rst doing some pointer analysis. For example, Figure 2(b)
shows a naive translation to SSA form of the program shown
in Figure 2(a). There are several problems with the naive
translation. One problem is how the address-of operator (&)
is handled. For example, in Figure 2(a) at line (2), p0 is
given the address of a0. Clearly this is incorrect since it
leads to the incorrect inference that the dereference of p0 at
line (4) is a use of a0, when in fact it is a use of a1, de�ned
at line (3).

Another problem is that when a variable is de�ned indi-
rectly via a pointer dereference, that de�nition is not taken
into account in (naively) converting the program to SSA
form. For example, at (6) the assignment to �p is a def-
inition of a (since at that point p contains the address of
a). However, since variable a does not appear textually on
the left-hand side of the assignment, the naive conversion
to SSA form does not take this into account. The result
is that the program in Figure 2(b) violates the �rst prop-
erty of SSA form: that each variable xi have exactly one
de�nition site. Furthermore, because there is an (indirect)
assignment at line (6), the use of a1 at line (8) is reached by
two de�nitions, thus violating the second property of SSA
form.

Nevertheless, we believe that SSA form can be used to
improve the results of ow-insensitive pointer analysis. An
algorithm based on this idea is described below. The al-
gorithm is iterative: it starts with purely ow-insensitive
points-to information, and on each iteration it produces bet-
ter information (i.e., smaller points-to sets). We conjecture

that when the algorithm reaches a �xed point (the last iter-
ation produces the same points-to sets as the previous itera-
tion) the �nal results mapped back to the original program
will be the same as the results produced by a single run of
a ow-sensitive pointer analysis algorithm.

Empirical studies are needed to determine how the time
and space requirements of the iterative algorithm compare
with those of a ow-sensitive algorithm. However, since the
results of every iteration are safe (the points-to sets com-
puted after each iteration are supersets of the actual points-
to sets) the algorithm can also be safely terminated before
a �xed point is reached (for example, after a �xed number
of iterations, or when two consecutive iterations produce
results that are su�ciently similar). This means that the
algorithm can be `tuned' to produce results that fall along
the spectrum from ow-insensitive to ow-sensitive analysis.

2 Algorithm description

The main insight behind the algorithm is that we can use
the results of (ow-insensitive) pointer analysis to normalize
a program, producing an intermediate form that has two
properties:

1. There are no pointer dereferences.

2. The points-to sets of all variables in the intermediate
form are safe approximations to (i.e., are supersets of)
the points-to sets of all the variables in the original
program.

Property 1 means that the intermediate form can be trans-
lated into SSA form. Property 2 means that ow-insensitive
pointer analysis on the SSA form produces results that are
valid for the original program.

When ow-insensitive pointer analysis is done on the
SSA form, the results are in terms of the SSA variables.
However, each SSA variable xi corresponds to certain in-
stances of the variable x in the original program. This means
that the points-to set for each xi can be mapped back to
those instances of x in the original program that correspond
to xi. Note that in doing this we are producing points-to
results that are no longer ow-insensitive, i.e., a variable x
may now have di�erent points-to sets at di�erent places in
the program. This results in points-to sets that are often
more precise than the sets produced by the initial analysis
(done on the original non-SSA form of the program). These
improved points-to sets can then be used to (re)normalize
the program, producing a new intermediate form. If the new
intermediate form is di�erent from the previous one, the pro-
cess of converting the intermediate form to SSA form, doing
pointer analysis, and renormalizing can be repeated until a
�xed point is reached (no change is made to the intermediate
form).

Figure 3 gives an overview of the algorithm. Initially, we
will assume that the input program consists of a single func-
tion with no function calls. In Section 2.1 we describe how
to handle programs with multiple functions and functions
calls.

The algorithm �rst applies ow-insensitive pointer analy-
sis to the CFG, then uses the results to annotate each pointer
dereference in the CFG with its points-to set. Only pointer
dereferences are annotated because the places where we are
ultimately interested in knowing about points-to informa-
tion are the places where pointers are dereferenced. Note
that the CFG itself is never changed, except for the anno-
tations.

3

Given: a CFG G
Do ow-insensitive pointer analysis on G
Annotate the dereferences in G
Repeat:

Create the intermediate form (IM) from G
Convert IM to SSA form creating IMSSA
Do ow-insensitive pointer analysis on IMSSA
Update the annotations in G using IMSSA

and the pointer analysis results
until there are no changes in the annotations

Figure 3: An overview of the algorithm

Example: Figure 4(a) gives an example in which each
pointer dereference has been annotated using the results
of ow-insensitive points-to analysis. The annotations are
shown to the right of each node containing a pointer deref-
erence. For comparison, note that a ow-sensitive points-to
analysis would determine that at the dereference of t, t! s
and at the dereference of s, s! q. 2

The main loop of the algorithm begins by using the an-
notated CFG to create the (normalized) intermediate form
(IM). In the intermediate form, each pointer dereference is
replaced with its points-to set. If the points-to set con-
tains more than one element, the single original statement
is replaced with a multiway branch in which the kth arm of
the branch contains a copy of the original statement with
the pointer dereference replaced by the kth element of the
points-to set. If the points-to set contains only one element,
then rather than creating a branch, the pointer dereference
is just replaced with the element in the points-to set.

The intermediate form is then converted to SSA form in
two phases. In the �rst phase, conversion to SSA form is
done as usual (� nodes are added and variables are renamed
via subscripting) with the exception that the operands of the
address-of operator are not given subscripts, i.e., an assign-
ment of the form p = &x is converted to pi = &x; all other
(non-address-of) uses and de�nitions of x are subscripted.
In the second phase, each assignment of the form pi = &x is
converted to a multiway branch. The number of arms of the
branch is the number of subscripts that x has in the SSA
form. The kth arm of the branch is of the form pi = &xk.
(As in the translation to intermediate form, if x only has
one subscript, we just replace &x with &x0.)

The purpose of the second phase is to handle the �rst
problem with translating a program with pointers to SSA
form discussed in Section 1.3. Since a pointer that is given
the address of x could be pointing to any of the SSA versions
of x, using all possible versions in place of the address-of ex-
pression is a safe translation. Note that because we have
replaced each pointer dereference with its points-to set we
no longer have the problems mentioned in Section 1.3 that
arise from the indirect de�nition of variables through pointer
dereferences. Note also that after the second phase, the in-
termediate form may not be strictly in SSA form because
the transformation of pi = &x may result in multiple as-
signments to pi. However, this will not a�ect the pointer
analysis (which is the only way in which we are using this
form). An equivalent way to handle pi = &x would be to
convert it as described, followed by inserting a � node, and
renaming the pi's in the arms of the branch. In either case,
the net result is that the de�nition of p that is live imme-
diately after the transformation of pi = &x has all SSA
versions of x in its points-to set.

Example: Figure 4(b) shows the intermediate form for
Figure 4(a). The intermediate form after the �rst phase
in the conversion to SSA form is shown in Figure 4(c) and
Figure 4(d) shows the �nal SSA form. 2

The next step is to do ow-insensitive points-to analy-
sis on the SSA version of the intermediate form (which we
denote by IMSSA). The results of this pointer analysis are
then used to update the annotations in the CFG as follows:
For each CFG node N with a pointer dereference �p:

� Find the corresponding node N 0 in IMSSA. (If the
node has been converted to a multiway branch con-
struct, the branch node is the corresponding node.)
Recall that all pointer dereferences were replaced with
their corresponding points-to sets during the creation
of the intermediate form and thus the dereferenced
variable p itself is not present in N 0.

� Determine the SSA number k that p would have had
at node N 0 if it appeared there.

� Use the points-to set for pk to update the annotation
of �p in node N of the CFG.

The updating of the annotations completes one iteration of
the algorithm.

Example: Points-to analysis on IMSSA(Figure 4(d)) de-
termines that:

s0 ! p
s1 ! q
t0 ! s

Note that because of the way the address-of operator is han-
dled, if xi is in pk's points-to set, then xj is in pk's points-
to set for all j 2 f0; 1; 2; : : : ;max SSA #(x)g. Thus, the
points-to sets can be represented in canonical form by using
variables without subscripts.

The node in IMSSAthat corresponds to the node �s = 2
in the original CFG (Figure 4(a)) is the branch node that
has p1 = 2 and q1 = 2 as its arms. The SSA number that
s would have been given if it had appeared in that branch
node is 1. Because the analysis has determined that s1 ! q,
the node �s = 2 in the original CFG is annotated with
s ! fqg. Figure 5(a) shows the original program with
updated annotations. 2

Once the annotations have been updated, the process of
creating an intermediate form, converting it to SSA form,
doing pointer analysis, and obtaining better annotations can
be repeated. Notice that if the annotations are the same for
two di�erent iterations, then the intermediate forms created
using the annotations will be identical. Thus, when no an-
notations are changed during the updating stage of the algo-
rithm (i.e., the annotations are the same for two successive
iterations), the algorithm has reached a �xed point (i.e., no
new pointer information can be discovered) and the algo-
rithm halts. Since the results of every iteration are safe, the
algorithm may also be halted after a user-speci�ed number
of iterations (just after updating the annotations), resulting
in pointer information that lies somewhere in between the
results from a purely ow-insensitive analysis and the results
had the algorithm been run to completion.

Example: Figure 5(a) shows the CFG with its annota-
tions updated using the results of the �rst iteration. Fig-
ures 5(b), (c), and (d) illustrate the start of the second iter-
ation (the intermediate form and the two-phase conversion
to SSA form). Points-to analysis on Figure 5(d) determines
that:

s0 ! p
s1 ! q
t0 ! s

4

Original CFG Intermediate (Normalized) Form
(with annotations) (*t replaced by s, and

*s replaced by p and q)

p = 0

q = 1

s = &p

t = &s

s = &q

branch

p = 2 q = 2

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

*t = &q

*s = 2 s { p, q }

t { s }

p = 0

q = 1

s = &p

t = &s

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { p, q }

p = 0

q = 1

s = &p

t = &s

s = &q

branch

p = 2 q = 2

(a) (b)

To SSA Form Phase 1 Final SSA Form
(� nodes and subscripts added) (instances of & handled)

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { p, q }branch

p = 00

q = 1
0

s = &p0

t = &s0

s = &q1

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { p, q }

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

(c) (d)

Figure 4: Translation to SSA form (�rst iteration)

5

Annotated CFG Intermediate Form
(after 1 iteration) (*t replaced by s, and

*s replaced by q)

q = 2
1

p = 00

q = 1
0

s = &p0 0

branch

01s = &q 11s = &q

branch

t = &s0 0 t = &s0 1

s { q }

t { s }

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

q = 2
1

p = 00

q = 1
0

s = &p0 0

branch

01s = &q 11s = &q

branch

t = &s0 0 t = &s0 1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { q }

p = 0

q = 1

s = &p

t = &s

s = &q

q = 2

(a) (b)

To SSA Form Phase 1 Final SSA Form
(subscripts added) (instances of & handled)

q = 2
1

p = 00

q = 1
0

s = &p0 0

branch

01s = &q 11s = &q

branch

t = &s0 0 t = &s0 1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { q }

p = 00

q = 1
0

s = &p0

t = &s0

s = &q1

q = 2
1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { q }

q = 2
1

p = 00

q = 1
0

s = &p0 0

branch

01s = &q 11s = &q

branch

t = &s0 0 t = &s0 1

(c) (d)

Figure 5: Translation to SSA form (second iteration)

6

int g; h;

void f()
f
h = g;
g = 0;

g

void main()
f
int i;
g = 3;
f();
i = g;
if (: : :)
g = 4;

else
f();

g

Figure 6: A program with multiple functions

This is the same as the information determined by the �rst
iteration; thus, the CFG annotations do not change and the
algorithm terminates after the second iteration. Note that
the �nal results are the same as the ow-sensitive analysis
on the original program. 2

2.1 Handling multiple functions and function calls

A program that contains multiple functions can be repre-
sented by a set of CFGs, one for each function. However,
there are problems with translating functions represented
this way to SSA form when the program includes global
variables. Figure 6 shows an example C program that il-
lustrates two problems that arise when global variables are
present.

One problem arises because a global variable may be
used in a function before any de�nition of it appears in that
function. For example, in the function f , global variable g is
used in the assignment to h before any assignment to g. The
di�culty is in determining the SSA number to give such a
use. Another problem is that, because a function can modify
a global variable, a use of a global variable that appears after
a call may not be reached by the de�nition before the call.
For example, in the function main, the value of g in the
assignment to i is 0 (from the assignment g = 0 in f) and
not 3 (from the assignment g = 3 before the call to f) and
hence the g in i = g should not have the same SSA number
as the g in g = 3.

One way that these problems could be handled is to pass
the global variables used or modi�ed by a function as explicit
parameters, and to treat the function call as an assignment
to all of the global variables modi�ed by the function.

A simpler approach is to create a supergraph2 from the
set of CFGs. The supergraph contains all nodes and edges of
the original CFGs, including a call node and a return-point
node for each function call. Additional edges are added from
each call node to the entry node of the called function, and
from the exit node of the called function to the call's return-
point node. Figure 7(a) shows the CFGs for the program in

2The term supergraph was �rst used by Eugene Myers in [Mye81].
William Landi and Barbara Ryder [LR91] use the term interprocedu-

ral control ow graph (ICFG).

Given: a list L of CFGs
Do ow-insensitive pointer analysis on L
For each CFG G in L

Annotate the dereferences in G
Create the supergraph S for L
Repeat:

Create the intermediate form (IM) from S
Convert IM to SSA form creating IMSSA
Do ow-insensitive pointer analysis on IMSSA
For each CFG G in L

Update the annotations in G using
IMSSAand the pointer analysis results;
update calls through function pointers in S

until there are no changes in the annotations

Figure 8: The algorithm updated to handle multiple CFGs

Figure 6, and Figure 7(b) shows the corresponding super-
graph.

Calls through function pointers are represented using a
multiway branch in which the kth arm of the branch contains
a call to the kth element of the function pointer's points-
to set. This requires that pointer analysis be done before
the supergraph is created. Moreover, the points-to sets for
function pointers may change (i.e., get smaller) during it-
eration, so the supergraph may need to be updated (by re-
moving some of the arms of the multi-way branches that
represent calls through function pointers) when annotations
are changed. Figure 8 gives the algorithm from Figure 3
updated to handle multiple CFGs.

2.2 Complexity

Each iteration of our algorithm requires a transformation to
SSA form and a ow-insensitive pointer analysis.

Although there exists a linear-time algorithm for placing
� nodes [SG95], the renaming phase of translation to SSA
form can take cubic time in the worst case. Thus, in the
worst case, the time needed to completely translate a pro-
gram into SSA form (including renaming) is cubic. More-
over, the resulting program can be quadratic in the size of
the original program. However, experimental evidence sug-
gests that both the time to translate and the size of the
translated program are linear in practice [CFR+91] [CC95].

Andersen [And94] gives a ow-insensitive pointer-anal-
ysis algorithm that computes the greatest �xed point of
the set of equations (2) given in Section 1.1. Andersen's
algorithm is cubic in the worst case. Experimental evi-
dence intended to evaluate the algorithm's performance in
practice[SH97] is inconclusive: on small programs (up to
about 10,000 lines) its performance is very similar to that
of Steensgaard's (essentially) linear-time algorithm[Ste96];
however, lines of code alone does not seem to be a good
predictor of runtime (for example, one 6,000 line program
required over 700 CPU seconds, while several 7,000 line pro-
grams required only 3 seconds). Note that our algorithm
could make use of a fast algorithm like Steensgaard's. How-
ever, Steensgaard's algorithm does not always compute the
greatest �xed point of the set of equations (2). Therefore,
while the �nal result produced by our algorithm would still
be an improvement over a purely ow-insensitive analysis,
it is unlikely that it would be as good as a ow-sensitive
analysis that computes the greatest �xed point of the set of
equations (1).

7

Original CFGs Corresponding Supergraph

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { p, q }

Enter

Exit

h = g

g = 0

f

i = g

if (...)

g = 3

Exit

Call f

Return
point

Enter main

g = 4

Call f

Return
point

branch

p = 21
q = 2

1

p = (p , p)
12 0

φ

q = (q , q)
12 0

φ

p = 00

q = 1
0

branch

s = &p0 0 s = &p0 1 s = &p0 2

branch

01s = &q 11s = &q
21s = &q

branch

t = &s0 0 t = &s0 1

Enter

Exit

h = g

g = 0

f

p = 0

q = 1

s = &p

t = &s

*t = &q

*s = 2

t { s }

s { p, q }

i = g

if (...)

g = 3

Exit

Call f

Return
point

Enter main

g = 4

Call f

Return
point

(a) (b)

Figure 7: The CFGs and supergraph corresponding to the code in Figure 6

8

3 Related Work

A program representation similar to the intermediate form
described here was used by Cytron and Gershbein in [CG93],
where they give an algorithm for incrementally incorporat-
ing points-to information into SSA form. Our intermediate
representation is essentially an in-lined version of Cytron
and Gershbein's IsAlias function. However, their algorithm
requires pre-computed may-alias information and incorpo-
rates points-to information as needed into a partial SSA
form while solving another dataow problem (constant prop-
agation, in their paper).

Lapkowski and Hendren [LH96] also discuss the problems
with SSA form in the presence of pointers. However, they
abandon SSA form and develop instead a related analysis
called SSA Numbering.

Others have worked on improving the precision of ow-
insensitive alias analysis. In [BCCH94] Burke et al. develop
an approach that involves using pre-computed kill informa-
tion, although an empirical study by Hind and Pioli [HP97]
does not show it to be more precise in practice than a ow-
insensitive analysis. Shapiro and Horwitz [SH97] give an
algorithm that can be `tuned' so that its precision as well
as worst-case time and space requirements range from those
of Steensgaard's (almost linear, less precise ow-insensitive)
algorithm to those of Andersen's (cubic worst-case but more
precise ow-insensitive) algorithm.

4 Conclusions

We have presented a new iterative points-to analysis al-
gorithm that uses ow-insensitive pointer analysis, a nor-
malized intermediate form, and translation to SSA form.
The results after just one iteration are generally better than
those of a purely ow-insensitive analysis (on the original
program) and if the algorithm is run until the �xed point
is reached, the results may be as good as those of a ow-
sensitive analysis.

We are currently working on implementations of our al-
gorithm using the ow-insensitive pointer analyses de�ned
in [And94], [Ste96], and [SH97]. We plan to use the im-
plementations to explore how our algorithm compares to
ow-sensitive points-to analysis in practice.

5 Acknowledgement

Thanks to Charles Consel, whose question about using SSA
form in pointer analysis inspired this work.

References

[And94] L. O. Andersen. Program Analysis and Special-
ization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen, May
1994. (DIKU report 94/19).

[BCCH94] M. Burke, P. Carini, J.D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in
the presence of pointers. In K. Pingali, U. Baner-
jee, D. Galernter, A. Nicolau, and D. Padua,
editors, Languages and Compilers for Parallel
Computing: Proceedings of the 7th International
Workshop, volume 892 of Lecture Notes in Com-
puter Science, pages 234{250, Ithaca, NY, Au-
gust 1994. Springer-Verlag.

[CC95] C. Click and K.D. Cooper. Combining analy-
ses, combining optimizations. ACM Transac-
tions on Programming Languages and Systems,
17(2):181{196, 1995.

[CFR+91] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Weg-
man, and F.K. Zadeck. E�ciently computing
static single assignment form and the control
dependence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451{
490, October 1991.

[CG93] R. Cytron and R. Gershbein. E�cient ac-
commodation of may-alias information in SSA
form. SIGPLAN Conference on Programming
Language Design and Implementation, 28(6):36{
45, June 1993.

[Hor97] S. Horwitz. Precise ow-insensitive may-alias
analysis is NP-hard. ACM Transactions on Pro-
gramming Languages and Systems, 19(1):1{6,
January 1997.

[HP97] M. Hind and A. Pioli. An empirical comparison
of interprocedural pointer alias analyses. IBM
Research Report RC 21058, IBM Research Divi-
sion, December 1997.

[Kil73] G.A. Kildall. A uni�ed approach to global
program optimization. In ACM Symposium
on Principles of Programming Languages, pages
194{206, January 1973.

[LH96] C. Lapkowski and L.J. Hendren. Extended SSA
numbering: Introducing SSA properties to lan-
guages with multi-level pointers. ACAPS Tech-
nical Memo 102, School of Computer Science,
McGill University, Montr�eal, Canada, April
1996.

[LR91] W. Landi and B.G. Ryder. Pointer induced alias-
ing: A problem classi�cation. In ACM Sympo-
sium on Principles of Programming Languages,
pages 93{103, 1991.

[Mye81] E.W. Myers. A precise inter-procedural data ow
algorithm. In ACM Symposium on Principles of
Programming Languages, pages 219{230, 1981.

[SG95] V.C. Sreedhar and G.R. Gao. A linear time algo-
rithm for placing �-nodes. In ACM Symposium
on Principles of Programming Languages, pages
62{73, 1995.

[SH97] M. Shapiro and S. Horwitz. Fast and accu-
rate ow-insensitive points-to analysis. In ACM
Symposium on Principles of Programming Lan-
guages, pages 1{14, January 1997.

[Ste96] B. Steensgaard. Points-to analysis in almost lin-
ear time. In ACM Symposium on Principles of
Programming Languages, pages 32{41, January
1996.

9

Edge Pro�ling versus Path Pro�ling: The Showdown

Thomas Ball, Peter Mataga Mooly Sagiv�

Bell Laboratories Dept. of Computer Science

Lucent Technologies Tel-Aviv University

ftball,matagag@research.bell-labs.com sagiv@math.tau.ac.il

Abstract

Edge pro�les are the traditional control ow pro�le of choice
for pro�le-directed compilation. They have been the basis
of path-based optimizations that select \hot" paths, even
though edge pro�les contain strictly less information than
path pro�les. Recent work on path pro�ling has suggested
that path pro�les are superior to edge pro�les in practice.

We present theoretic and algorithmic results that may be
used to determine when an edge pro�le is a good predictor
of hot paths (and what those hot paths are) and when it
is a poor predictor. Our algorithms e�ciently compute sets
of de�nitely and potentially hot paths in a graph annotated
with an edge pro�le. A de�nitely hot path has a frequency
greater than some non-zero lower bound in all path pro�les
that induce a given edge pro�le.

Experiments on the SPEC95 benchmarks show that a
huge percentage of the execution frequency in these pro-
grams is dominated by de�nitely hot paths (on average, 84%
for FORTRAN benchmarks and 76% for C benchmarks).
We also show that various hot path selection algorithms
based on edge pro�les work extremely well in most cases, but
that path pro�ling is needed in some cases. These results
indicate the usefulness of our algorithms for characterizing
edge pro�les and selecting hot paths.

1 Introduction

Pro�le-directed compilation uses run-time information gath-
ered from one or more executions in order to better optimize
programs [CMH91]. Most pro�le-directed optimizations de-
pend on control ow pro�les, which can be gathered via
code instrumentation [BL94] or statistical sampling of the
program counter [GKM83, ABD+97]. There are three basic
types of control ow pro�les: a vertex (basic block) pro�le
counts how many times each basic block executes during a
run [KS73]; an edge (single branch) pro�le measures how
many times each branch transition executes [BL94]; a path
(correlated branch) pro�le measures how many times each

�This work was done while visiting the Software Production Re-
search Department of Bell Laboratories.

To appear in the 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Jan-
uary 1998, San Diego, CA.

path (of multiple branch transitions) executes.1

Edge pro�les are the traditional control ow pro�le for
use in pro�le-directed compilation. They have been the ba-
sis of path-based optimizations that select heavily executed
(hot) paths [Fis81, CmWH88], even though edge pro�les
contain strictly less information than path pro�les. Recent
work on path pro�ling has suggested that path pro�les are
superior to edge pro�les in practice [BL96, ABL97].

We show how to determine when an edge pro�le is a
good predictor of hot paths and when it is a poor predic-
tor, and how to select hot paths from edge pro�les. We
present dynamic programming algorithms to address these
questions. By focusing on directed acyclic graphs (and thus
acyclic paths), we are able to create specialized algorithms
that are more e�cient and provide greater information than
other general analysis techniques such as linear program-
ming [Dan63] and network ow algorithms [Tar83] that can
be brought to bear on the problem of predicting hot paths.

Let us consider how an edge pro�le constrains the pos-
sible path pro�les that could induce it. Figure 1 shows four
copies of a control ow graph representing a chain of three
if-then-else conditionals. There are eight paths from vertex
v1 to vertex v4 in the graph. A string of three characters
(over the alphabet f l, r g, which distinguishes a left branch
from a right branch) denotes one of the eight paths. For ex-
ample, the path that takes the left side of each branch is lll.
The graph may represent the body of a loop or procedure,
and so may be executed multiple times. In each of the four
cases, the graph has been executed 100 times from vertex v1
to v4.

Each graph is labeled with a di�erent edge pro�le (each
pro�le is identical to the one to its immediate left, except
for the boxed values). Edge frequencies in graph g1 are
skewed to the left side of branches, while edge frequencies
in g4 are much more evenly distributed. Graph g1's edge
pro�le greatly constrains which of the eight paths could have
contributed substantially to the 100 units of ow through
the graph. The path lll is always a hot path for this edge
pro�le. Path pro�ling is not needed to determine this; the
edge pro�le is su�cient.

On the other extreme, g4's edge pro�le places few con-
straints on the eight paths: it is possible for each of the
eight paths to make an approximately equal contribution to
the total ow of 100, or for only two paths to create a ow
near 100. In this case, path pro�ling is needed to determine

1Since there can be an unbounded number of paths for general
graphs and an exponential number for directed acyclic graphs, the
length of paths that are pro�led must be restricted.[BL96]

95 5

93 7

90 10

v1

v2

v3

v4

95 5

90 10

v1

v2

v3

v4

6040 40 60

90 10

v1

v2

v3

v4

5545 45 55

40 60

v1

v2

v3

v4

4951

g1 g2 g3 g4

Figure 1: Four identical control-ow graphs with varying edge pro�les.

which paths substantially contribute to the ow. The pro-
�les for graphs g2 and g3 fall in between these two extremes.
For example, in g2, the paths lll and lrl must contribute
most of the 100 units of ow. However, in g3, the number
of potentially hot paths ranges from two to four.

To make the above informal analysis a bit more precise,
consider the answers to the following questions. For a given
graph gi with an edge pro�le (from Figure 1) and a frequency
f , how many unique paths are there (from vertex v1 to vertex
v4):

� whose frequency de�nitely must be at least f in all
path pro�les that induce the given edge pro�le?

� whose frequency potentially could be at least f in some
path pro�le that induces the given edge pro�le?

The functions represented in Figure 2 answer the above two
questions, for any frequency. For each graph gi, there are
two functions: a de�nitely hot path function (top), which
maps a frequency f to the number of de�nitely hot paths
from v1 to v4 with frequency at least f , and a similarly
de�ned potentially hot path function (bottom). The x-axis
represents frequency (ranging from 0 to 100), while the y-
axis represents the value of the given function. Graph g1
has one path with maximal de�nite frequency of 78, while
g4 has no paths with non-zero de�nite frequency.

The impact of these functions is clear. In graph g1, 78 out
of 100 units of ow de�nitely can be assigned to a single path
(lll). In graph g2, 70 units of ow are de�nite, contributed
by the paths lrl (45) and lll (25). However, in g3 there is
a very small amount of de�nite ow (5 units), while in g4
there is none. As the amount of de�nite ow decreases, the
number of paths with higher potential frequency increases,
indicating that there is a great deal of variability in how
frequencies may be assigned to paths. In these cases, path
pro�ling will be need to determine the hot paths.

Our results are three-fold:

� We provide constructive characterizations of the def-
initely and potentially hot path functions and show
that both can be e�ciently encoded using a multiset
whose cardinality is linear in the number of edges in
the input graph. These observations lead straightfor-
wardly to e�cient dynamic programming algorithms
for computing de�nitely and potentially hot path func-
tions from edge pro�les, as well as to an algorithm
for enumerating these paths in decreasing order of fre-
quency.

� We show how to determine when an edge pro�le is a
good approximation to a path pro�le, such as in graphs
g1 and g2, and when path pro�ling is necessary, such
as in graphs g3 and g4. The fundamental insight is
that the integral of the de�nitely hot path function
is an exact lower bound on the total ow through a
procedure. Thus, if a procedure (such as g1 or g2) has
a de�nite ow integral close to the total ow, much of
the ow can be assigned to a �xed set of paths.

� Experimental results comparing edge pro�les and path
pro�les from the SPEC95 benchmarks. These results
show that, on average, 84% of the total ow in the
FORTRAN benchmarks is de�nite ow, while 76% of
the ow in the C benchmarks is de�nite, both remark-
ably high values. This large amount of de�nite ow
means that hot path predictors based on edge pro�les
can do very well, which we also show independently by
comparing our and other hot path predictors to paths
computed by the PP path pro�ling tool [BL96].

This paper is organized as follows. Section 2 discusses
some of the tradeo�s in pro�ling programs and highlights
results in edge and path pro�ling to date. Section 3 de-
�nes de�nitely and potentially hot paths and describes the
dynamic programming algorithms for computing and enu-
merating these paths from edge pro�les. Section 4 applies
our algorithms to edge pro�les collected from the SPEC95

2

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.

.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

.
.

.

.

0 20 40 60 80 100
0

2

4

6

8

g1 g2 g3 g4

Figure 2: The de�nitely and potentially hot path functions for the four graphs from Figure 1. For each graph (g1 to g4), there are
two functions plotted: the de�nitely hot path function (top), and the potentially hot path function (bottom). The x-axis represents
frequency (0 : : : 100) and the y-axis is the number of paths that de�nitely (potentially) have that frequency.

benchmarks and compares the results to path pro�les ob-
tained via a path pro�ling tool. Section 5 discusses related
work and Section 6 concludes the paper.

2 Edge Pro�les vs. Path Pro�les: Histori-

cal Context

There are two main issues in choosing what type of pro�le
to collect for optimization: the run-time overhead incurred
in order to collect the pro�le, and the accuracy and quality
of the collected data required for the intended optimization.

Vertex and edge pro�les are relatively cheap to collect
via instrumentation [KS73, BL94], incurring around 16%
overhead. Two recent results have improved the state of
pro�ling further: researchers at DEC used a modi�ed op-
erating system kernel to e�ciently collect vertex pro�les by
sampling the program counter, incurring only 1-3% over-
head [ABD+97]; Ball and Larus developed a simple instru-
mentation technique for path pro�ling that e�ciently col-
lects frequency information for acyclic paths in a proce-
dure [BL96, ABL97], with an overhead of about 30%.

Theoretically, path pro�les contain strictly more infor-
mation than edge pro�les. A precise edge pro�le can be de-
rived from a path pro�le (as shown in the next section), but
the converse does not hold. Stated another way, there are
many di�erent path pro�les that induce the same edge pro-
�le, but di�erent edge pro�les imply di�erent path pro�les.
Thus, path pro�les provide the most information about con-
trol ow behavior, subsumed only by the pro�ling of longer
and longer paths. The ultimate form of a path pro�le is
a trace of an entire execution, which is extremely costly to
collect and store.

Today, edge pro�les are the control ow pro�le of choice
for compiler optimization. We identify three main reasons
for this. First, edge pro�les provide a clear advantage over
vertex pro�les as they provide more accurate information
about the behavior of branches, which is crucial to many op-
timizations. Second, edge pro�les are generally thought to

be easier and cheaper to collect than path pro�les (although
the Ball-Larus work has shown that path pro�les may be
collected with relatively low overhead). Third, there is a
good amount of literature that indirectly suggests that edge
pro�les are an acceptable substitute for path pro�les. In
particular, work on branch prediction and trace-based opti-
mizations has implicitly addressed the power of edge pro�les
to predict hot paths:

� Branch prediction studies of the SPEC benchmarks
and other programs [FF92, BL93] have shown that
many branches are well-behaved in the following sense:
they take one direction with high probability and this
high probability direction remains the same over dif-
ferent executions.2 The implication for path pro�ling
is clear: a succession of highly skewed branches im-
plies that one path must execute with much greater
frequency than the remaining paths (e.g., graph g1 in
Figure 1).

� Trace-driven optimization has long used edge pro�les
to predict hot paths [Fis81, CMH91]. A greedy al-
gorithm is typically applied: starting at a hot vertex
or edge, the path is grown backwards or forwards by
choosing an edge incident to the beginning or end of
the path with maximal execution frequency. For exam-
ple, the Impact compiler uses a set of such heuristics
to partition the control ow graph into a set of non-
overlapping paths [CmWH88]. However, the founda-
tional basis for such algorithms is weak and the algo-
rithms cannot predict when they will have good suc-
cess.

Weighing in on the side of path pro�les, there is evidence
to suggest that path pro�les are superior to edge pro�les in
practice. A number of studies on dynamic branch prediction
mechanisms have shown that history-sensitive mechanisms

2For example, consider conditionals that perform error checks,
which rarely raise exceptions.

3

based on correlated branches (paths, that is) improve hard-
ware branch prediction mechanisms [Smi81, LS84, PSR92].
Ball and Larus compared the paths chosen by a greedy hot
path algorithm with those measured by their path pro�l-
ing tool, and found that the heuristic does indeed choose
incorrectly at times [BL96].

3 Path Pro�les from Edge Pro�les

This section presents e�cient algorithms for computing def-
initely and potentially hot paths from edge pro�les. Sec-
tion 3.1 precisely de�nes de�nitely and potentially hot paths
via the functions D̂ and P̂ . Section 3.2 constructively char-
acterizes these functions and describes some of their essential
properties. Section 3.3 presents our dynamic programming

algorithm for computing the D̂ function, and Section 3.4
does likewise for P̂ . Section 3.5 shows how to enumerate
the potentially and de�nitely hot paths by decreasing order
of frequency.

3.1 De�nitely and Potentially Hot Paths

First, let us de�ne some graph notations that are used in
the sequel.

De�nition 3.1 Let G(V;E) be a directed acyclic control
ow graph (DAG) with a unique entry vertex \entry" from
which all vertices are reachable, and a exit vertex \exit" that
is reachable from all vertices. An edge e = v ! w connects
source vertex v (denoted by src(e)) to target vertex w (de-
noted by tgt(e)). Let out(v) represent the edges e such that
v = src(e) and let in(v) represent the edges e such that
v = tgt(e).

A path in G is represented as a sequence of edges p =
[e1; e2; : : : ; en], where tgt(ei) = src(ei+1). Let P (G) denote
the set of all paths from entry to exit . The set of paths from
entry to exit in which edge e appears is denoted by P (e).

Next, we de�ne properties of an edge pro�le freq .

De�nition 3.2 For an edge e 2 E, let freq(e) be the number
of times that the edge e was executed. For a vertex v, freq(v)
is the number times v executed. An edge pro�le respects
conservation of ow at a vertex. That is, for every v 2
V � fentryg,

freq(v) =
X

e2in(v)

freq(e)

and for every v 2 V � fexitg,

freq(v) =
X

e2out(v)

freq(e)

It is straightforward to see that the conservation of ow
implies that freq(entry) = freq(exit), the total ow through
the DAG, which is denoted by F .

We now de�ne when an assignment pfreq of frequencies
to paths is admissible with respect to an edge pro�le freq .

De�nition 3.3 A frequency assignment pfreq to all paths
in P (G) is admissible w.r.t. an edge pro�le freq if for every
e 2 E,

freq(e) =
X

p2P (e)

pfreq(p)

The above equation shows how to derive an edge pro�le
from a path pro�le. Although pfreq assigns frequencies only
directly to paths in P (G), it indirectly assigns a frequency
to every path in the DAG. For any path q, let subpfreq(q)
denote q's frequency under pfreq , which is simply the sum
of all pfreq(p) such that p is a path in P (G) that contains q
as a subpath. The total ow through G may be expressed
in terms of paths as:

F =
X

p2P (G)

pfreq(p)

With admissible path frequency assignments in hand, we
now make precise the notion of de�nite and potential path
frequencies:

De�nition 3.4 A directed path p from v to exit has a de�-
nite frequency f if for every admissible frequency assignment
pfreq, subpfreq(p) � f .

A directed path p from v to exit has a potential frequency
f if there exists an admissible frequency assignment pfreq in
which subpfreq(p) � f .

The number of paths from v to exit with de�nite (re-

spectively, potential) frequency f is denoted by D̂[v](f) (re-

spectively, P̂ [v](f)). The domain of D̂[v] and P̂ [v] may be
restricted to the non-negative integers in 0 : : : F .

Example 3.5 Figure 2 shows the functions D̂[v1] (top row)

and P̂ [v1] (bottom row) for each of the four example graphs
from Figure 1. Graph g1 has one path with maximal de�nite
frequency of 78. That is, D̂[v1](f) = 1 for f � 78 and for

larger frequencies f , D̂[v1](f) = 0. In g4, no paths have
de�nite frequency greater than zero. In g2, there is one path
(lrl) of de�nite frequency 45 and two of de�nite frequency 25
(lrl and lll). Since de�nite frequencies hold for all admissible
assignments, these frequencies are simultaneously realizable.
That is, in all path pro�les that induce this edge pro�le,
lrl will have a frequency of at least 45 and lll will have a
frequency of at least 25.

In graph g1, the maximum potential frequency of a path
is 90 (path lll). Graph g2 has two paths whose potential

frequency can exceed 30. In contrast, in g3, P̂ [v1](30) = 4
since there are four paths from v1 to v4 whose frequency

can exceed 30. Finally, in g4, P̂ [v1](30) = 8. It is clear
that eight paths cannot simultaneously have a frequency of
30 in an admissible path frequency assignment for graph
g4. Unlike de�nite frequencies, potential frequencies are not
necessarily simultaneously realizable.

As should now be clear, the functions D̂[v] and P̂ [v] are
anti-monotonic. That is, for every f1 and f2 such that f1 �
f2:

D̂[v](f1) � D̂[v](f2) and P̂ [v](f1) � P̂ [v](f2)

3.2 Constructive Characterizations of D̂ and

P̂ and Properties

The de�nite frequency for a path p intuitively depends upon
the extent to which paths with which p shares edges are able
to \steal ow" from p. More precisely, for any path p that
ends with vertex exit , de�ne

BD(p) = F �
X
e2p

X
e02join(e)

freq(e0)

4

where for any edge e 2 E

join(e) = fe0 2 E j e0 6= e and tgt(e0) = tgt(e)g

The following theorem shows that this expression is ex-
act.

Theorem 1 A path p has a non-zero de�nite frequency f if
and only if f � BD(p).
Proof: See the appendix.

Example 3.6 Consider BD(lll) for graph g1 in Figure 1. In
g1, the smallest frequency that the path lll can have in any
admissible frequency assignment is:

100 � ((100� 95) + (100� 93) + (100� 90))
= 100 � (5 + 7 + 10) = 100 � 22
= 78

which is obtained by subtracting out the frequencies of the
other edges that join into lll (namely, 5, 7 and 10) from the
ow at v4 (100). On the other hand, BD(llr) is equal to:

100 � ((100� 95) + (100� 93) + (100� 10))
= 100 � (5 + 7 + 90)
= 100 � 102 < 0

and therefore llr has a de�nite frequency of zero.

A surprising result is that the number of paths with non-
zero de�nite frequency is sub-linear in jEj, as proved in the
theorem below. This fact, along with the anti-monotonicity
of D̂[v] means that the function can be represented accu-
rately and e�ciently by recording the steps of the function.
A step f 7! � is denoted by a pairing of a frequency f and
a magnitude �, where

� = D̂[v](f)� D̂[v](f + 1) > 0

Theorem 2 For all vertices v, the set of paths from v to
exit with non-zero de�nite frequency has cardinality less than
width(Gv),

3 where width(G) is the size of a maximal cut of
G (i.e., the number of edges crossing a maximal cut, over
all cuts of G, which is bounded by jEj).
Proof: See the appendix for full details. The proof relies
on the unique topological structure of paths with non-zero
de�nite frequency: any two paths with non-zero de�nite fre-
quency can split (or join) at most once.

Example 3.7 The width of the graph in Figure 1 is two,
and as can be seen in Figure 2, the number of paths with
non-zero de�nite frequency never exceeds two. In graph g2,
the paths lll and lrl both have non-zero de�nite frequency.
These paths split from one another exactly once (at vertex
v2).

A path can have a potential frequency f if each of the
edges in the path have enough capacity to admit f . This is
captured by the following theorem:

Theorem 3 Given an edge pro�le freq, a path [e1; e2; : : : ; en]
from v to exit has potential frequency f if and only if for ev-
ery i, f � freq(ei).
Proof: Trivial.

3
Gv denotes the subgraph of G containing the vertices and edges

of G that are reachable from v.

D̂[exit] = �f :

�
1 f � F
0 otherwise

8 e; D̂[e] = �f :D̂[tgt(e)](f + (freq(tgt(e))� freq(e)))

8 v; v 6= exit ; D̂[v] = �f :
P

e2out(v)
D̂[e](f)

Figure 3: Equational de�nition of D̂ at every vertex v and
edge e. Recall that F = freq(exit).

MD̂[exit] := [F 7! 1]
for v 2 V � fexitg in reverse topological order do

for e 2 out(v) do
fs := freq(tgt(e))� freq(e)
MD̂[e] :=

U
(f 7!�)

2M
D̂
[tgt(e)]

(f > fs ? [(f � fs) 7! �] : [])

od
MD̂[v] :=

U
e2out(v)

MD̂[e]

od

Figure 4: An e�cient realization of D̂[v], using a multiset
MD̂[v].

Example 3.8 Consider path lll in graph g2 from Figure 1.
The minimum edge frequency in this path is 40. There-
fore, lll's frequency can never exceed 40 in an admissible
assignment. There is an admissible assignment to all paths
in which lll has frequency 40, since subtracting 40 from the
three edges of lll leaves an edge pro�le which conserves ow
at each vertex.

It follows from Theorem 3 that the steps of P̂ [v] can only
occur at frequencies in the set

ffreq(e) j e 2 E such that e is reachable from vg

Therefore, even though every path in a DAG can have a
maximal non-zero potential frequency (which was not the
case with de�nite frequencies) and the number of paths in a
DAG is exponential (in the worst case), the number of steps

of P̂ [v] is linear in the size of the DAG.

3.3 De�nitely Hot Paths: Algorithms

An equational de�nition of D̂[v] is given in Figure 3. The
number of de�nitely hot paths from v to exit is de�ned in-
ductively. For the exit vertex and any frequency less than or
equal to F , there is one path of that frequency (since there
is trivially a path from exit to exit of frequency F). The

function D̂[e] is de�ned solely in terms of D̂[tgt (e)], based
on Theorem 1. The edge e shifts the frequency of the steps

of the function D̂[tgt(e)] down by (freq(tgt(e))�freq(e)), the
amount of ow that paths that join at tgt (e) can steal from
paths containing edge e. At any vertex v other than exit ,

D̂[v] is simply the sum of D̂[e], for all e in out(v).

5

+

+

+

[100->1]

[50->1][30->1]

[50->1, 30->1]

[45->1, 25->1]

90

40 60

95 5

10

95 5

40 60

90 10

v1

v2

v3

v4

g
2

[10->1][90->1]

[90->1, 10->1]

[]

[45->1, 25->1]

U

U

U

Sparse computation of
 steps of MD

Figure 5: Results of the M
D̂

algorithm from Figure 4 on graph g2.

100500
0

4
[90->1, 10->1]

10 90

2

100500
0

4
[30->1]

30

2

100500
0

4
[50->1]

2

1000
0

4
[50->1, 30->1]

5030

2

+U

shift by -60 shift by -40

v3

v2

Figure 6: Illustration of the manipulation of the M
D̂

map on graph g2. See text for further explanation.

6

Because the graph is acyclic, the set of equations is not
recursive. In fact, the dependence graph of the set of equa-
tions is isomorphic to the original DAG. The equations triv-

ially yield a demand-driven algorithm for computing D̂[v](f),
given a vertex v and frequency f . However, this does not

yield an e�cient algorithm for computing D̂[v] for all v.
We now provide a sparse realization of the equational

de�nition in which the step frequencies and step magnitudes
for the function D̂[v] are accumulated in a partial function
(or multiset or map) MD̂[v]. That is,

(f 7! �) 2MD̂[v] () � = D̂[v](f)� D̂[v](f + 1) > 0

so that
D̂[v](f) =

X
(g 7!�) 2 M

D̂
[v]

g � f

�

Recall that the numbers of steps is bounded by the number
of edges in the graph.

Figure 4 presents an e�cient algorithm for computing
MD̂[v] for all v. The algorithm uses a multiset union oper-
ator (]) which adds the ranges (magnitudes) of steps with
identical frequencies. For example,

[40 7! 1; 10 7! 1]] [60 7! 1; 10 7! 1]
= [40 7! 1; 60 7! 1; 10 7! 2]

The algorithm works as follows. The multiset for the exit
vertex is initialized to [F 7! 1]. Vertices are then visited in
reverse topological order so that a vertex v is considered only
after all of its successors have been visited. The algorithm
�rst computes MD̂[e] for all outgoing edges e of v and then
computes MD̂[v] using these maps. To create MD̂[e] the
algorithm shifts the function MD̂[tgt(e)] down by fs. To
do so, it considers each (f 7! �) in MD̂[tgt(e)] and adds
(f � fs) 7! � to MD̂[e] when f is greater than fs.

Example 3.9 Figure 5 shows the iterations of the sparse
MD̂ algorithm for the graph g2 from Figure 1. The graph g2
is repeated on the left. The diagram to the right of g2 shows
the maps owing upward through the vertices and edges of
the graph, where each step is represented by a pair (f 7! �).

Figure 6 illustrates how MD̂[v2] is computed in greater
detail. The chart on the bottom simultaneously represents
D̂[v3] and MD̂[v3]. The x-axis represents frequency and the

y-axis represents the value of D̂[v3]. The steps are denoted
by the bold arrows. The magnitude of a step is represented
by the magnitude of the arrow. The chart on the left rep-
resents the map for the left outgoing edge of v2, obtained
by shifting MD̂[v3] by �60 (that is, �(100� 40)), while the
chart on the right represents the map for the right outgoing
edge of v2, obtained by shifting MP̂ [v3] by �40. The chart
on the top represents the multiset union of the two edge
maps.

3.4 Potentially Hot Paths: Algorithms

An equational de�nition of P̂ [v] is given in Figure 7, based

on Theorem 3. Note the similarity to the de�nition of D̂[v]
in Figure 3. In fact, the only change is in the de�nition
of the edge function. In this case, the edge e masks the

frequency of steps in P̂ [tgt(e)] that are greater than freq(e).

That is, an edge e has P̂ [e](f) = P̂ [tgt(e)](f) paths if f does
not exceed freq(e) and zero paths otherwise.

P̂ [exit] = �f :

�
1 f � F
0 otherwise

8 e; P̂ [e] = �f :

�
P̂ [tgt(e)](f) f � freq(e)
0 otherwise

8 v; v 6= exit ; P̂ [v] = �f :
P

e2out(v)
P̂ [e](f)

Figure 7: Equational de�nitions of P̂ at every vertex v and
edge e.

MP̂ [exit] := [F 7! 1]
for v 2 V � fexitg in reverse topological order do

for e 2 out(v) do
MP̂ [e] :=

U
f 7!�2

M
P̂
[tgt(e)]

[min(f; freq(e)) 7! �]

od
MP̂ [v] :=

U
e2out(v)

MP̂ [e]

od

Figure 8: An e�cient realization of P̂ [v], using multiset
union.

Figure 8 presents the e�cient algorithm for computing
MP̂ [v], which has nearly identical structure to that forMD̂[v].
Again, the crucial di�erence is in the edge computation.
MP̂ [e] simply masks out all elements of MP̂ [tgt(e)] with fre-
quency greater than freq(e). This is achieved by a multi-
set union over the elements of MP̂ [tgt(e)], using the min
function to perform the masking. This copies through ele-
ments (from MP̂ [tgt(e)] to MP̂ [e]) with frequency less than
freq(e) and accumulates the magnitudes of steps with fre-
quency greater than or equal to freq(e) to form the correct
step magnitude at freq(e).

Example 3.10 Figure 9 shows the iterations of the MP̂

algorithm for the graph g2 from Figure 1. The graph g2 is
repeated on the left. The diagram to the right of g2 shows
the maps owing upward through the vertices and edges of
the graph.

Figure 10 illustrates how MP̂ [v2] is computed in greater

detail. As before, the charts simultaneously represent P̂ and
MP̂ , with the bottom chart representing the map MP̂ [v3].
The left chart represents the map for the left outgoing edge
of v2, obtained by maskingMP̂ [v3] at frequency 40, while the
chart on the right represents the map for the right outgoing
edge of v2, obtained by masking MP̂ [v3] at frequency 60.
The chart on the top represents the multiset union of the
two edge maps.

3.5 Enumerating the Paths

Figure 11 presents an algorithm that enumerates the de�-
nitely or potentially hot paths in descending order of fre-
quency, using the vertex and edge maps computed by the

7

+

+

+

[100 -> 1]

[10->1]

[90->1, 10->1]

[60->1, 10->1][40->1, 10->1]

[60->1, 40->1,
 10->2]

90

40 60

95 5

10

95 5

40 60

90 10

v1

v2

v3

v4

g
2

[90->1]

[5->4][60->1, 40->1,
 10->2]

[60->1, 40->1, 10->2, 5->4]

U

U

U

Sparse computation of
 steps of MP

Figure 9: Results of the M
P̂
algorithm from Figure 8 on graph g2.

100500
0

4
[40->1, 10->1]

4010

2

100500
0

4
[60->1, 40->1,10->2]

4010 60

2

100500
0

4
[60->1, 10->1]

10 60

2

100500
0

4
[90->1, 10->1]

10 90

2

+U

mask at 40 mask at 60

v3

v2

Figure 10: Illustration of the manipulation of the M
P̂
[v] map on graph g2. See text for explanation.

8

algorithms of the previous sections. This algorithm enumer-
ates the paths in time proportional to the number of paths
requested.

The procedure main accepts a map, either MD̂ or MP̂ ,
and returns a set of the de�nitely or potentially hot paths
(respectively) whose frequency is greater than cuto� . The
algorithm can be easily modi�ed to return the top n paths,
rather than those meeting a frequency threshold.

To understand the operation of the algorithm, consider
a call to procedure enumerate. This procedure is passed the
current vertex v, the path pre�x p constructed so far, the fre-
quency f of the path (which is simply passed down through
successive calls to enumerate) and �, the number of paths
with frequency f to be enumerated from v onwards. If v is
the exit vertex, then the recursion bottoms out, recording
the path. Otherwise, the algorithm distributes the � paths
onto the outgoing edges of v. The construction of the maps
MD̂ and MP̂ guarantees that the � paths can be consumed
by the outgoing edges of v.

Example 3.11 Consider the operation of the enumeration
algorithm on the maps in Figure 9. Suppose that cuto� is
30. The algorithm will �rst call enumerate with f = 60 and
� = 1. The algorithm consults the maps for the outgoing
edges of v1 and �nds that (60 7! 1) is the only step that
could permit this path. So, enumerate is recursively called
with f = 60 and � = 1, appending the left outgoing edge
of v1 to the path p. At v2 it picks the step (60 7! 1) of the
right edge and at v3 it picks the step (90 7! 1) from the left
edge. Thus, the path lrl with frequency 45 is enumerated.
The next top level call to enumerate will pass in f = 40 and
� = 1. In this case, the path lll will be enumerated. The
left edge leaving v2 will be chosen because 40 is the smallest
frequency greater than or equal to f in the maps of edges
leaving v2.

4 Experimental Results

We used the Ball-Larus instrumentation tool (PP) to exam-
ine the prediction of hot paths from edge pro�les [BL96]. PP
pro�les intraprocedural control ow paths that start either
at procedure entry or a loop backedge and end at proce-
dure exit or a loop backedge. We ran PP on the SPEC95
benchmarks. Each instrumented benchmark was run on
one input and a path pro�le was collected. An edge pro-
�le was computed from the path pro�le by counting how
many times each edge appeared in the executed paths (see
De�nition 3.3).

A cyclic control ow graph is transformed an acyclic
graph (DAG) as follows: for each backedge v ! w, remove
it from the graph and in its place add two edges: entry ! v
and w ! exit . The frequency of the backedge v ! w in
the edge pro�le is assigned to its replacement edges, thus
conversing ow at v and w.

4.1 Benchmark Characterization

The SPEC95 benchmarks consist of eighteen programs, nine
written in FORTRAN and nine written in C. Table 1 lists
summary data for each benchmark: the number of paths ex-
ecuted (# Paths); the total ow for the benchmark (that is,
the sum of the frequencies of all paths executed, in millions{
Total Flow); the number of paths whose frequency is greater
than 0.125% of the total ow, and the percentage of total

procedure main(M : map; cuto� : integer)
var Paths := �
procedure enumerate(v : vertex; p : path; f;� : integer)
var �0 := �

used := �
begin

if v = exit then
Paths := Paths [f(p; f)g

else
while �0 > 0 do

let e 2 out(v) and
(g 7! �g) 2M [e] s.t.
g is minimal, g � f and (e; g) 62 used

debit = min(�0;�g)
in

enumerate(tgt(e), append(p; e), f , debit)
used := used [f(e; g)g
�0 := �0 � debit

ni
od

�
end enumerate
begin

for each (f 7! �) 2M [entry] s.t. f � cuto� ,
in decreasing order of f do

enumerate(entry, [], f , �)
od
return Paths

end main

Figure 11: A procedure to enumerate hot paths in decreasing
order of frequencies.

ow these paths contribute in aggregate; the percentage of
paths whose frequency is greater than one percent of the to-
tal ow, and the percentage of total ow they contribute. In
most benchmarks, a relatively small number of paths (com-
pared to the total executed) contribute to a large amount of
the total ow.

4.2 De�nite and Potential Flow

Our �rst experiment determines the amount of de�nite and
potential ow in each benchmark from the edge pro�le. For
each procedure, the amount of de�nite ow is

X
(f 7!�) 2 M

D̂
[entry]

f ��

which is simply the integral of the function D̂[entry]. The
amount of de�nite ow for the whole benchmark is the sum
of the de�nite ow integrals for all procedures, which is less
than the total ow for the benchmark. A similar compu-
tation was done using MP̂ [entry] to compute the potential
ow integral for each benchmark.

Figure 12(a) presents the ratio of the de�nite ow inte-
gral to the total ow for each benchmark. The benchmarks
are presented in two groups, the FORTRAN codes on the
left and the C programs on the right. The benchmarks are
sorted within each group by the ratio. Note that there is a
substantial amount of de�nite ow in all benchmarks, even

9

Num. Total 0.125% Cuto� 1.0% Cuto�
Benchmark Paths Flow (M) # paths % ow # paths % ow
applu 572 1,735.5 61 99.2 32 84.9
apsi 1,040 599.0 80 92.9 23 70.5
fpppp 521 291.9 51 98.6 17 82.9
hydro2d 1,033 599.9 40 97.4 27 92.1
mgrid 570 994.8 32 98.7 4 89.0
su2cor 837 530.1 64 99.0 22 87.4
swim 370 163.3 13 98.8 3 95.9
tomcatv 407 375.7 23 96.1 5 92.9
turb3d 667 2,952.7 70 98.4 19 77.5

compress 248 3,015.7 41 99.6 19 91.1
gcc 9,375 9.7 66 64.3 5 48.7
go 11,671 779.7 105 75.2 21 49.3
ijpeg 1,068 1,155.9 48 95.5 16 85.7
li 796 3,357.9 70 97.0 32 81.7
m88ksim 1,053 4,772.4 61 95.4 15 81.6
perl 1,339 1,137.0 104 92.1 24 54.5
vortex 2,161 3,573.9 43 92.5 14 81.0
wave5 863 579.3 51 94.6 20 84.7

Table 1: Summary of the SPEC95 benchmarks. The FORTRAN benchmarks are listed on top while the C benchmarks are listed below.
See text for further explanation.

for a benchmark with complex control ow such as gcc. This
represents a huge amount of execution frequency that can
be assigned de�nitively (via the enumeration algorithm) to
a �xed set of paths.

Figure 12(b) presents the ratio of the total ow to the
potential ow integral for each benchmark, using the order-
ing of benchmarks from Figure 12(a). The potential ow is
in the denominator since it will always be greater than or
equal to the total ow. At �rst, one might expect this ratio
to be close to one when the de�nite ratio is also close to one.
However, if a benchmark executes a large number of paths
there may be exponentially many paths with non-zero po-
tential frequency. As a result, the potential integral can be
much large than the total ow even when the de�nite inte-
gral is close to the total ow. Benchmarks such as hydro2d,
and gcc exhibit such behavior.

4.3 Edge Pro�les vs. Path Pro�les

We now measure how well three di�erent hot path predictors
(based on edge pro�les) perform compared to an actual path
pro�le. The three predictors are:

� De�nite predictor: enumeration of de�nitely hot paths
in decreasing order of frequency (that is, the enumer-
ation algorithm of Figure 11 applied to map MD̂).

� Potential predictor: enumeration of potentially hot
paths in decreasing order of frequency.

� Greedy predictor: this predictor �rst marks all edges
\unvisited"; as long as there is an unvisited edge, the
algorithm picks an unvisited edge e of maximal fre-
quency, and constructs a path (from entry to exit)
by going forward from the tgt(e) and backward from
src(e) in the DAG, always choosing an outgoing (in-
coming) edge with maximal frequency, regardless of
whether or not it is marked \visited"; all edges in the
newly generated path are then marked \visited". The

order in which paths are generated reects their hot-
ness.

In order to examine how good the algorithms are at
picking the hot paths globally over an entire benchmark,
we construct a supergraph for each benchmark from the
set of DAGs representing the procedures in the benchmark.
The supergraph for benchmark B simply connects a unique
entry vertex entryB for the benchmark to the entry ver-
tices of all DAGs in the benchmark, and connects the exit
vertices of all DAGs to a unique exit vertex exitB . The
edges entryB ! entryP and exitP ! exitB are assigned the
frequency freq(entryP), where entryP (exitP) is the entry
(exit) vertex of procedure P 's DAG. The edge frequencies
for all other edges have already been determined by the edge
pro�le for each procedure. As the supergraph is clearly a
DAG, we can run the MD̂ and MP̂ algorithms on this graph
and use the three predictors to pick hot paths over the entire
benchmark, rather than on a per-procedure basis.

We use Wall's weight matching scheme [Wal91] to com-
pare the paths picked by the three predictors to paths in the
actual path pro�le. First, the executed paths (over all pro-
cedures) are totally ordered by their frequency in the actual
path pro�le. A hot path in the actual pro�le is one whose
frequency is greater than a certain percentage q of the total
ow. A particular threshold q will select a set Aq of hot
paths in the actual pro�le. The ow represented by these
paths is X

p2Aq

pfreq(p)

We then run each of the three predictors to get the top jAqj
paths for that algorithm.4 Let the paths generated by the

4The de�nite and greedy predictors may not be able to pick jAqj
hot paths, as the de�nite enumeration algorithm can enumerate at
most width(G) paths, while the greedy algorithm can enumerate at
most jEj paths. Note that the potential algorithm can enumerate as
many paths as in the graph.

10

ap
pl

u
tu

rb
3d

fp
pp

p
ap

si
m

gr
id

su
2c

or
to

m
ca

tv
hy

dr
o2

d
sw

im go li pe
rl

co
m

pr
es

s
gc

c
m

88
ks

im
ijp

eg
vo

rte
x

w
av

e5

0.0

0.2

0.4

0.6

0.8

1.0

Definite Flow/Total Flow

0.0

0.2

0.4

0.6

0.8

1.0

ap
pl

u
tu

rb
3d

fp
pp

p
ap

si
m

gr
id

su
2c

or
to

m
ca

tv
hy

dr
o2

d
sw

im go li pe
rl

co
m

pr
es

s
gc

c
m

88
ks

im
ijp

eg
vo

rte
x

w
av

e5

0.0

0.2

0.4

0.6

0.8

1.0

Total Flow/Potential Flow

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 12: The ratio of de�nite ow to total ow in the SPEC95 benchmarks (a). The grey bars show the ratio for the total amount of
de�nite ow in a benchmark, while the black bars show the ratio for the de�nite ow accounted for by procedures that executed exactly
one path. The bar chart on the right (b) shows the ratio of the total ow to the potential ow integral, using the same ordering of
benchmarks as in (a).

ap
pl

u
tu

rb
3d

fp
pp

p
ap

si
m

gr
id

su
2c

or
to

m
ca

tv
hy

dr
o2

d
sw

im go li pe
rl

co
m

pr
es

s
gc

c
m

88
ks

im
ijp

eg
vo

rte
x

w
av

e5

0.0

0.2

0.4

0.6

0.8

1.0

Path Selection Algorithms (0.125% Cutoff)

0.0

0.2

0.4

0.6

0.8

1.0

Definite
Potential
Greedy

ap
pl

u
tu

rb
3d

fp
pp

p
ap

si
m

gr
id

su
2c

or
to

m
ca

tv
hy

dr
o2

d
sw

im go li pe
rl

co
m

pr
es

s
gc

c
m

88
ks

im
ijp

eg
vo

rte
x

w
av

e5

0.0

0.2

0.4

0.6

0.8

1.0

Path Selection Algorithms (1.0% Cutoff)

0.0

0.2

0.4

0.6

0.8

1.0

Definite
Potential
Greedy

(a) (b)

Figure 13: Results of weight matching the three hot path predictors (de�nite, potential, and greedy) for q cuto�s of 0.125% (a) and
1.0%. The y-axis represents the ratio RQ (see text for explanation). A ratio close to 1.0 means that the predictor is picking the same
hot paths as in the actual path pro�le.

11

de�nite, potential and greedy predictors be denoted by Dq ,
Pq , and Gq, respectively. Then the score for a particular set
of paths Q with respect to Aq is the ratio:

RQ =
X

p2(Aq\Q)

pfreq(p) =
X
p2Aq

pfreq(p)

This weighted ratio represents how well a particular predic-
tor does at picking the paths in Aq. A predictor is penalized
(indirectly) by picking paths outside of Aq.

We ran this experiment for values of q set to 0.125% and
1.0%, the same values used in Table 1. Figure 13 presents
the results for the ratios RDq (De�nite), RPq (Potential),
and RGq (Greedy). The benchmarks are presented in the
same order as in Figure 12. Both plots show that all three
algorithms perform very well over all benchmarks. As ex-
pected, the de�nite predictor is handicapped by its inabil-
ity to pick more than a sub-linear number of paths (note
the similarity between the shape of the plot for the de�-
nite predictor and the shape of the plot in Figure 12(a)).
The potential and greedy predictors perform very well: over
both cuto�s, they typically exceed a 90% hit rate and only
once dip slightly below 80%. The potential and greedy pre-
dictors have poorer performance when there is less de�nite
ow in a benchmark, although they still perform remark-
ably well for some benchmarks with low de�nite ow (such
as applu, turb3d, go and li). In general, we have found that
the larger the q cuto�, the better the predictors do, which
is very encouraging: they are picking the top hot paths very
accurately.

5 Related Work

There is a very strong connection between our work and
algorithms for linear programming and network ow, which
we address �rst.

5.1 Linear Programming

By formulating ow equations that relate edge frequencies
to path frequencies, one can �nd exact bounds for the fre-
quency of a single path or a set of simultaneous paths us-
ing linear programming, as described below. In some sense
this is more general than our result, which �nd bounds for
single paths rather than sets of paths. Unfortunately, lin-
ear programming requires that the set of paths be explicitly
encoded in the equations. Since the number of paths is ex-
ponential in the size of the DAG, the resulting system of
equations can be enormous. However, once we have selected
a subset of hot paths using our algorithms, linear program-
ming can be used to get achieve better lower and upper
bounds for sets of selected paths because it is able to �nd
bounds on the ow achievable simultaneously by a set of
paths.

Consider a set of acyclic paths P . Each path p 2 P
has a variable xp, which represents the frequency of p. We
have already seen that given a set of acyclic paths P , each
edge generates a constraint equation of the form freq(e) =P

p2P (e)
xp. The set of edge equations can expressed in the

form A �x = b, where: A is a matrix of 0s and 1s coe�cients
in which each column represents an xp and each row repre-
sents an edge's equation; x is a vector representing the path
variables; and b is a vector representing the edge frequen-
cies in an edge pro�le. The de�nite frequency for a path

xp is found by minimizing the objective function c � x sub-
ject to A � x = b, where c is a vector containing a 1 at the
entry corresponding to xp and 0 everywhere else. This cor-
responds exactly to our computation of de�nite frequencies.
Maximizing the objective function corresponds to �nding
potential frequencies. By setting multiple entries of the c
vector to 1, one can �nd lower/upper bounds on the total
ow achievable simultaneously by a set of paths.

5.2 Network Flow

The interpretation of the the control ow graphs under con-
sideration here is clearly similar to that underlying network
ow optimization. There are, however, some important dif-
ferences in assumptions and objectives.

In traditional network ow problems the edge weights
are interpreted as ow bounds (capacities), and the objec-
tive is to maximize overall ow (or to �nd a feasible ow, in
the case where lower bounds are applied). In our problem,
on the other hand, it is assumed that the weights have been
generated by a feasible ow, and satisfy ow conservation at
the vertices. The maximum ow is known, and the objective
is to obtain information about ows along individual paths.
Path-constrained maximum ow [GJ79], in which optimiza-
tion applies to a subset of the paths of a graph, could be
applied to each path, but this is unlikely to be e�cient; nor
does it take advantage of ow conservation at vertices.

The problems considered here are most similar to the
closely related path optimization problems, where the edge
weights are often interpreted not as ow bounds, but as
lengths or costs. The single-source bottleneck path problem
is to �nd the path from source to sink that maximizes the ca-
pacity of the lowest-capacity edge in the path (or minimizes
the length of the longest edge in the path). This problem can
be solved by suitably modifying a shortest path algorithm
[EK72]. The potential frequency problem is a generalization
of the bottleneck problem, where information about multi-
ple paths is added. The algorithm itself can be thought of
as a generalization of the bottleneck algorithm for an acyclic
graph.

The de�nite frequency problem can be posed with an in-
terpretation of the edge weights as ow lower bounds. How-
ever, since it makes a universal rather than an existential
claim, there is no obviously related path optimization prob-
lem. Moreover, for the algorithm given here to be correct,
it is important that the edge weights represent a feasible
ow rather than arbitrary ow bounds. Though it may be
possible to generalize the algorithm, we do not pursue this
case here.

5.3 Other Related Work

Ball and Larus [BL96] compare paths chosen by path pro�l-
ing with those chosen by a greedy algorithm using an edge
pro�le [CMH91]. We take this work a step further by show-
ing how to determine when an edge pro�le is a good pre-
dictor for hot paths and when it is not, which can indicate
when the greedy algorithm or other hot path selection al-
gorithms (such as the de�nitely and potentially hot path
enumeration) will have good accuracy

Recent work by Tebaldi and West has addressed how to
use Bayesian inference techniques to estimate path counts
from link count data [TW96]. They use a linear algebraic

12

formulation of the problem identical to that for linear pro-
gramming (see above). However, the similarity ends there:
they do not make use of lower or upper bounds in their work
and require very expensive statistical computations.

Other related work shows to estimate vertex pro�les via
static analysis of the control ow graph [Wal91, WMGH94].
In contrast, we are estimating path pro�les from existing
edge pro�les. Our results might be improved by performing
static analysis as well. We could also apply our techniques to
the vertex pro�les estimated via static analysis, or collected
by other techniques (such as PC sampling [ABD+97]), in
order to �nd hot paths.

6 Conclusions

We have provided a theoretical and algorithmic basis for
characterizing the power of edge pro�les to predict hot paths.
This is captured in a simple dynamic programming algo-
rithm that computes the amount of de�nite or potential ow
in a graph, and an algorithm for enumerating de�nitely and
potentially hot paths. If a program has a large amount of
de�nite ow relative to its total ow, then hot path pre-
dictors such as the potentially hot path predictor and even
greedy predictors will perform very well, as shown by our
experimental results. On the other hand, if there is a small
amount of de�nite ow, the behavior of such predictors is
much more variable and path pro�ling may be needed to
determine the hot paths precisely.

For the SPEC95 benchmarks, edge pro�les are excellent
predictors of hot paths, even for programs with complex con-
ditional control ow. Further experimentation with other
benchmarks is clearly needed to determine if our results gen-
eralize to other classes of programs.

Acknowledgments

Thanks to Audris Mockus and Ken Cox for many helpful dis-
cussions. Thanks also to Mark Staskauskas, Satish Chandra,
and Jim Larus for their comments.

References

[ABD+97] J. Anderson, L. M. Berc, J. Dean, S. Ghe-
mawat, M. R. Henzinger, S-T. Leung, R. L.
Sites, M. T. Vandevoorde, C. A. Waldspurger,
and W. E. Weihl. Continuous pro�ling: Where
have all the cycles gone? In Proceedings of the
16th Symposium on Operaing Systems Princi-
ples, October 1997.

[ABL97] G. Ammons, T. Ball, and J.R. Larus. Exploit-
ing hardware performance counters with ow
and context sensitive pro�ling. ACM SIGPLAN
Notices, 32(5):85{96, June 1997. Proceedings of
the SIGPLAN '97 Conference on Programming
Language Design and Implementation.

[BL93] T. Ball and J. R. Larus. Branch prediction for
free. ACM SIGPLAN Notices, 28(6):300{13,
June 1993. Proceedings of the ACM SIGPLAN
'93 Conference on Programming Language De-
sign and Implementation.

[BL94] T. Ball and J. R. Larus. Optimally pro�ling and
tracing programs. ACM Transactions on Pro-
gramming Languages and Systems, 16(4):1319{
1360, July 1994.

[BL96] T. Ball and J. R. Larus. E�cient path pro�l-
ing. In Proceedings of MICRO 96, pages 46{57,
December 1996.

[CMH91] P. P. Chang, S. A. Mahlke, and W-M. W. Hwu.
Using pro�le information to assist classic code
optimizations. Software{Practice and Experi-
ence, 21(12):1301{1321, December 1991.

[CmWH88] P. Chang and Wen mei W. Hwu. Trace selec-
tion for compiling large c application programs
to microcode. In Proceedings of the 21st An-
nual WOrkshop on Microprogramming and Mi-
croarchitectures, pages 21{29, San Diego, CA,
November 1988.

[Dan63] G. B. Dantzig. Linear Programming and Exten-
sions. Princeton University Press, Princeton,
N.J., 1963.

[EK72] K. Edmonds and R. M. Karp. Theoretical
improvements in algorthmic e�ciency for net-
work ow problems. J. Assoc. Comput. Mach.,
19:248{264, 1972.

[FF92] J. A. Fisher and S. M. Freudenberger. Pre-
dicting conditional branch directions from pre-
vious runs of a program. ACM SIGPLAN No-
tices, 27(9):85{95, October 1992. Proceedings
of the 5th International Conference on Archi-
tectural Support for Programmming Languages
and Operating Systems.

[Fis81] J. A. Fisher. Trace scheduling: A technique
for global microcode compaction. IEEE Trans-
actions on Computers, C-30(7):478{490, July
1981.

[GJ79] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco,
1979.

[GKM83] S. L. Graham, P. B. Kessler, and M. K.
McKusick. An execution pro�ler for modular
programs. Software{Practice and Experience,
13:671{685, 1983.

[KS73] D. E. Knuth and F. R. Stevenson. Opti-
mal measurement points for program frequency
counts. BIT, 13:313{322, 1973.

[LS84] J. K. F. Lee and A. J. Smith. Branch predic-
tion strategies and branch target bu�er design.
IEEE Computer, 17(1):6 { 22, January 1984.

[PSR92] S-T. Pan, K. So, and J. T. Rahmeh. Improv-
ing the accuracy of dynamic branch prediction
using branch correlation. ACM SIGPLAN No-
tices, 27(9):76{84, September 1992. Proceed-
ings of the 5th International Conference on Ar-
chitectural Support for Programmming Lan-
guages and Operating Systems.

13

[Smi81] J. E. Smith. A study of branch prediction
strategies. SIGARCH Newsletter, 9(3):135{
148, May 1981. Proceedings of the 4th Annual
International Symposium on Computer Archi-
tecture.

[Tar83] R. E. Tarjan. Data Structures and Network
Algorithms. Society for industrial and applied
mathematics, Philadelphia, PA, 1983.

[TW96] Claudia Tebaldi and Mike West. Bayesian in-
ference on network tra�c using link count data.
Technical report, Institute of Statistics and De-
cision Sciences Working Paper 16, Duke Uni-
versity, 1996.

[Wal91] D. W. Wall. Predicting program behavior us-
ing real or estimated pro�les. ACM SIGPLAN
Notices, 26(6):59{70, June 1991. Proceedings
of the 1991 ACM Conference on Programming
Language Design and Implementation.

[WMGH94] T. A. Wagner, V. Maverick, S. L. Graham, and
M. A. Harrison. Accurate static estimators for
program optimization. ACM SIGPLAN No-
tices, 29(6), June 1994. Proceedings of the SIG-
PLAN '94 Conference on Programming Lan-
guage Design and Implementation.

A Proof of Theorem 1: De�nite Paths

Theorem 1 A path p 2 P (Gv); v 2 V has non-zero de�nite
frequency f if and only if

f � BD(p) = F �
X
e2p

X
e02join(e)

freq(e0)

Proof: Fix v and p throughout this proof. The theorem
will hold if it can be shown that maxfBD(p); 0g is an exact
lower bound on the frequency of p over all possible admis-
sible frequency assignments. For an admissible frequency
assignment pfreq ,

F =
X

q2P (G)

pfreq(q)

and

freq(e0) =
X

q2P (e)

pfreq(q)

so that

BD(p) =
X

q2P (G)

pfreq(q)�
X
e2p

X
e02join(e)

X
q2P (G)

e02q

pfreq(q)

=
X

q2P (G)

pfreq(q) (1� J(p; q))

where

J(p; q) =
��f(e; e0) j e 2 p; e0 2 q; e0 2 join(e)g

��

is the number of times that q joins p. Since terms for
which J(p; q) = 1 disappear from the above equation, we
can rewrite it as:

BD(p) =
X

q2P (G)
J(p;q)=0

pfreq(q)�
X

q2P (G)
J(p;q)>1

pfreq(q) (J(p; q)� 1)

For p 2 P (Gv) and q 2 P (G), J(p; q) is zero only when p is
a su�x subpath of q. The frequency of the path p is the sum
of the assigned frequencies of all paths in P (G) of which it
is a su�x:

subpfreq(p) =
X

q2P (G)
J(p;q)=0

pfreq(q)

= BD(p) +
X

q2P (G)
J(p;q)>1

pfreq(q) (J(p; q)� 1)(1)

This expression may be used to prove the two lemmas
below, which together show that maxfBD(p); 0g is indeed
an exact lower bound.

Lemma A.1 For any admissible frequency assignment pfreq,

subpfreq(p) � maxfBD(p); 0g

2

Proof: Trivial from expression (1).

Lemma A.2 For any ow-conserving edge pro�le freq, an
admissible frequency assignment pfreq exists for which

subpfreq(p) = maxfBD(p); 0g

2

Proof: It immediately follows from expression (1) that

subpfreq (p) = BD(p) () 8q 2 P (G); J(p; q) > 1
) pfreq(q) = 0

To prove the lemma, it su�ces to show that some pfreq exists
that satis�es either

8q 2 P (G); J(p; q) > 1) pfreq(q) = 0

or
subpfreq(p) = 0

This may be demonstrated by the following iterative con-
struction. Let the assigned frequencies at any stage of the
construction be given by pfreq(q); q 2 P (G), and de�ne
residual edge frequencies

freq(e) = freq(e)�
X

q2P (e)

pfreq(q)

Note that the residual edge frequencies satisfy ow conser-
vation. This means that for any edge with non-zero residual
frequency, a path exists from entry to exit containing that
edge, consisting only of edges with non-zero residual fre-
quency. Initialize the assigned frequencies (pfreq) to zero,
then apply the iterative procedure Reduce:

(Reduce)

14

1. If any edge in p has zero residual frequency, stop.
2. If all edges joining p have zero residual frequency, stop.
3. Pick an edge �e joining p for which freq(�e) > 0, and

construct a path �q 2 P (G) that joins p exactly once,
by �nding
� a su�x subpath of p that begins at tgt(�e) (and
ends at exit)

� a subpath from entry to src(�e) that doesn't join
p (though it may include a pre�x subpath of p)

Such subpaths can always be found, because of ow
conservation and availability of p edges.

4. Increment pfreq(�q) by one, and repeat.

Now apply procedure Complete to the residual con�g-
uration:

(Complete)

1. If all edges have zero residual frequency, stop.
2. Pick any path �q 2 P (G) such that all the edges in �q

have non-zero residual frequency.
3. Increment pfreq(�q) by one, and repeat.

Reduce assigns frequencies only to paths �q such that
J(p; �q) = 1. If Reduce terminates at step 1, Complete
assigns frequencies only to paths such that J(p; �q) > 0,
since no path containing p can ever be chosen; in this case,
no path containing p ever has its frequency incremented,
so subpfreq(p) = 0. Conversely, if Reduce terminates at
step 2, Complete assigns frequencies only to paths such
that J(p; �q) = 0. In this case, no path joining p more than
once ever has its frequency incremented. Since Reduce
must terminate in one of these two ways, the frequency as-
signment constructed satis�es at least one of the requisite
properties, and the lemma is established.

The result stated in the theorem immediately follows. 2

B Proof of Theorem 2: Number of De�nite

Paths with Non-zero Frequency

For a given edge pro�le, let the set of paths from vertex v
to exit having non-zero de�nite frequencies be Pdef (Gv) �
P (Gv). Then Theorem 2 may be restated as

Theorem 2
jPdef (Gv)j � width(Gv)

Proof: First observe that the paths in Pdef (Gv) have some
special structure:

Lemma B.1 Any two distinct paths p1; p2 2 Pdef (Gv) sat-
isfy J(p1; p2) = 1. 2

Proof: Since p1 and p2 both start at v and end at exit , but
are distinct, J(p1; p2) 6= 0. Assume that J(p1; p2) > 1. Since
p1 has a non-zero de�nite frequency, a frequency assignment
exists under which all paths q 2 P (G) containing p2 have
zero frequency, since J(p1; q) > 1 for all such paths. This
contradicts the assumption that p2 2 Pdef (Gv). 2

This result allows the following lemma to be established,
from which the theorem follows. Let Gdef be the directed
subgraph of Gv de�ned by edges contained in paths in Pdef (Gv).

vJ

ecut "maximal" cut
 size = 3

new maximal cut
 size = 5

p
2

p
1

Figure 14: Possible con�gurations for paths p1 and p2 sharing an
edge ecut in Ecut. Dotted lines represent paths while solid lines
represent edges. No edges other than ecut can leave the subpath
from vJ to the source of edge ecut, delineated by the box.

Lemma B.2 Given any maximal cut of Gdef , let the set of
edges crossing the cut be Ecut. Then

jEcutj = jPdef (Gv)j

2

Proof: By de�nition of the cut, each path in Pdef (Gv) has
exactly one edge in Ecut, and each edge in Ecut is a mem-
ber of at least one path in Pdef (Gv). The lemma is estab-
lished if no edge in Ecut is a member of more than one path.
Assume that an edge ecut 2 Ecut is shared by two paths
p1; p2 2 Pdef (Gv). From the result above, p1 and p2 join
exactly once. Since they share ecut, either they join at some
vertex vJ that occurs no later than src(ecut) in their com-
mon subpath, or they diverge at some vertex vD that occurs
no earlier than tgt(ecut).

Consider the former case (see Figure 14): no third path
in Pdef (Gv) can diverge from the common subpath at any
vertex between vJ and src(ecut), inclusive, because such a
path would join at least one of p1; p2 in two places. But this
means the cut is not maximal, since it can be modi�ed to
pass on the other side of vJ , increasing the number of edges
in the cut set by at least one (more than one if there are
joining edges at vertices between vJ and src(ecut)). Like-
wise, in the latter case (not shown), no third path can join
at any vertex between tgt(ecut) and vD, inclusive. Again,
the cut is not maximal, since it can be modi�ed to pass on
the other side of vD, increasing the number of edges in the
cut set. Thus the original assumption is incorrect, and no
edge is a member of more than one path. 2

Since the width of the reduced graph is, by de�nition,
the cardinality of a maximal cut edge set,

jPdef (Gv)j = width(Gdef) � width(Gv): 2

15

Action Transformation:

An Application of Sort Inference

by Kent D. Lee

University of Iowa

Advisor: Ken Slonneger

1

Overview

� Introduction to Action Semantics

� Automated Compiler Generation

� Example Calculator Language

� Action Transformations

2

Action Semantics

� Created by Peter Mosses with collaboration

of David Watt

� De�nes the action as the basic unit of com-

putation

3

What's the Purpose of an action?

� Actions manipulate three structures

� Transients - Represented as tuples of

data

� Bindings - Represented as a map of iden-

ti�ers to bindable data

� Storage - Represented as a map of cells

to storable data

� Actions compute new transients, bindings,

and storage from existing transients, bind-

ings, and storage.

� Incoming transients, bindings, and stor-

age

� Outgoing transients, bindings, and stor-

age

4

Example Actions

� allocate a cell

� sets aside a new cell in storage and gives

it as a transient

� bind �M� to 5

� produces the new binding in the outgo-

ing bindings

� store 6 in the given cell

� stores 6 by mapping the given cell to

the value 6.

5

Yielders

� Sometimes we want to access the incoming

transients, bindings, or storage.

� bind �M� to the given cell

� given s is a yielder that accesses the

�rst datum in the incoming transients

and insists that it is a subsort of sort s

� given s#n accesses the nth datum of the

incoming transients

� s bound to id accesses the datum that id

maps to in the incoming bindings

� s stored in c accesses the datum mapped

to by the cell c

6

Data

� Action Semantics uses a sort system in-

stead of a type system.

� Sorts of data are partially ordered by the

subsort relation (�)

� datum is a sort that contains all individuals

� Other sorts include integers, truth-values,

reals, 4, 5, true|false (i.e. truth-value),

integer&truth-value, nothing, and data

� s1js2 is the sort of the join of s1 and s2

� s1&s2 is the sort of the meet of s1 and s2

7

Combinators

� Simple Actions can be combined to create

complex or compound actions

� Combinators serve two purposes

� They are the glue for tying actions to-

gether

� They dictate how the incoming and out-

going transients, bindings, and storage

of the subactions will be combined in

the composite action

8

Combinator Example

allocate a cell then bind �M� to the
given cell

� then is a combinator that passes the out-

going transients of the �rst sub-action to
the incoming transients of the second sub-

action

� There are many ways of propogating tran-
sients, bindings, and storage among the
subactions of an action.

� If we restrict ourselves to deterministic ac-
tions, then storage is single threaded and
can be treated as a global store

� To understand combinators we can look at
how the transients and bindings are pro-
pogated

9

Combinator Diagrams

Devised by Ken Slonneger, they help us visual-

ize how transients and bindings are propogated

between the sub-actions of a combinator

transients

bindingsbindings

transients

B

A

A then B

complete

Execution proceeds from the upper left to the

lower right

10

Overview Notes

Slow Down.

In this picture sub-action A receives the tran-

sients of the combined action. A's outgoing

transients become B's incoming transients.

B's outgoing transients are the outgoing tran-

sients of the combined action

The bindings passed to the combined action

are passed on to the subactions.

The bindings produced by A and B are merged

to produce the bindings of the combined ac-

tion.

10-1

Some Other Combinators

bindings bindings

A

B

A and B

transients

transients

k

3-kk
A or A

A

fail

A
3-k

transients

bindings

bindings

transients transients

bindings

11

Action Semantic De�nitions

� Like other semantic formalisms we wish

to construct a mapping from the concrete

syntax of a language to its semantics (ac-

tions).

� My implementation skips the abstract syn-

tax representation

� Action Semantic Descriptions are modular.

� They are easier to extend than say a deno-

tational description

12

Put up the calculator asd

12-1

Automated Compiler Generation

Using an Action Semantic Description (ASD)

it's straightforward to write a parser generator

that given an ASD and a source program will

map the program to it's action

P Translator

ASD Translator

JVM Program

ASD

ML-Yacc

P language

ASD Lexical
Specification

tokens

tokens

ASD

transformed ASD

transformed action

action

ML-Lex

Action Compiler

Action Transformer

Input to

Function

Output from

Specification
P GrammarP Lexical

P Program P Scanner

Specification

ASD Scanner

ML-Yacc

ASD Compiler Generator

ASD Transformer

ML-Lex

Key

File

Functional

ASD Grammar
Specification

 Compostion

13

Calculator Program

� For example, consider the program 4+5=

� It can be mapped to its action using the

ASD above.

� Its action is:

14

Put up the slide on the 4+5= program

14-1

Problem

� We want to generate e�cient code from

the program action

� Actions require bindings and transients to

be passed from action to action

� Passing transients and bindings at run-time

would be costly

� Traditional compilers for statically bound

languages don't pass transients or bindings

at run-time

� How should we eliminate transients and bind-

ings from actions of statically bound lan-

guages?

15

Two Approaches

1. We could make the code generator very

smart and have it work at eliminating the

transients and bindings. This approach was

used by Peter Orbaek in his compiler gen-

erator, Oasis.

2. Or we could take the approach put forward

by Watt, Brown, and Moura. They per-

form sort inference on the program's ac-

tion and use the information obtained to

eliminate the transients and bindings.

16

Action Sort Inference

� Based on Record Type Inference described

by David Schmidt and Susan Even.

� Deryck Brown extended it to work in his

Actress Compiler Generator

� Records are maps from identi�ers to sorts

� Four records, one for each of the incom-

ing and outgoing transients and bindings,

describe the sort of an action.

� Storage is ignored since it's domain can't

be known statically

� Brown de�nes �ve operators on Records

that together implement sort inference over

all action combinators

17

Record Sort Operations

� Distribute, Merge, Switch, Select, and Over-

lay are the operators Brown proposes. These

operators correspond to the operations shown

in the combinator diagrams above.

Distribute Tuple Concatenation Merge Overlay

� The Actress Compiler Generator implements

a dialect of Action Semantics that forces

you to give transients in an odd way

� The Tuple Concatenation operator enables

my compiler generator to represent Actions

as described by Mosses in his text on the

subject.

18

Sort Inference Example

� A complete example would be too tedious

to cover here

� It should be su�cient to say this is one of

those �left as an exercise for the reader�

problems.

� After applying sort inference to our exam-

ple above (i.e. 4+5=) we get the anno-

tated action found here

19

Put up test0.sorts

19-1

Action Transformations

� By applying sort inference carefully it is

possible to use the sort information to re-

move all transients and bindings from stat-

ically bound languages.

� In the example �0; �4, and �5 appear where

ever the cell bound to �M�, 4, or 5 appear

respectively

� Moura describes these transformations in

his thesis

20

Transient Elimination

� Transients can be eliminated by using sort

information to rewrite yielders that give

values based on the incoming transients.

� For instance, the action

(give 4 and then give 5)

then

give sum(given integer#1,given integer#2)

� Can be rewritten as

give sum(4,5)

21

Transient Elimination Algorithm

� Transient Elimination is achieved by replac-

ing all give actions with the null action -

complete

� Replace all given yielders with their actual

values

(complete and then complete)

then

given sum(4,5)

� Utilize algebraic identities of actions to sim-

plify

complete and then a2 = a2

complete then a2 = a2

22

Binding Elimination

� Binding elimination is performed the same

way transient elimination is performed

� Bind actions are replaced with complete

� Bound to yielders are replaced with their

actual values

� Algebraic Identities involving complete are

used to reduce the action

23

Conclusion

� Once Transient and Binding elimination have

been performed, code generation is rela-

tively easy.

� In fact, the actions that result from apply-

ing transient and binding elimination look

a lot like assembly language code.

� Future work includes applying sort infer-

ence to Action Semantic Descriptions to

validate and simplify descriptions of pro-

gramming languages in addition to apply-

ing sort inference to each individual pro-

gram's action

24

Lee-test0.action.txt

||allocate [integer]cell
|then
||bind "M" to the (given [integer]cell) [[integer]cell]
hence
|||give the 4
||and then
|||give the 5
|then
||give the sum (given integer#1, given integer#2)

Page 1

Lee-test0.sorts.txt

||allocate [integer]cell
||: Action ({},{}) -> ({1:theta_0},{})
|then
||bind "M" to the (given [integer]cell) [[integer]cell]
||: Action ({1:theta_0},{}) -> ({},{M:theta_0})
|: Action ({},{}) -> ({},{M:theta_0})
hence
|||give the 4
|||: Action ({},{M:theta_0}) -> ({1:theta_4},{})
||and then
|||give the 5
|||: Action ({},{M:theta_0}) -> ({1:theta_5},{})
||: Action ({},{M:theta_0}) -> ({1:theta_4,2:theta_5},{})
|then
||give the sum (given integer#1, given integer#2)
||: Action ({1:theta_4,2:theta_5},{M:theta_0}) -> ({1:theta_10},{})
|: Action ({},{M:theta_0}) -> ({1:theta_10},{})
: Action ({},{}) -> ({1:theta_10},{})

Page 1

Action Transformation:

An Application of Sort Inference

Kent D. Lee

May 30, 1998

Abstract

Action Semantics is a formal method of de�ning pro-
gramming language semantics in which actions de-
scribe the manipulation of three entities: transients,
bindings, and the store. Due to the high-level na-
ture of Action Semantics, actions cannot be directly
translated into e�cient code in an Action Semantics-
based compiler. However, by applying sort inference
to an action, it is possible to transform it to a low-

level action that can be translated into e�cient code.
This paper briey introduces Action Semantics. The
problem of Action Semantics-directed compilation is
then demonstrated through an example. Finally, sort
inference is applied to an action and it is subsequently
transformed to an action more suitable for compila-
tion.

1 Introduction

Action Semantics is a formal method of de�ning pro-
gramming languages developed by Peter Mosses[9,
10] in collaboration with David Watt[15]. Action Se-
mantics is based on Denotational Semantics. But Ac-
tion Semantics, unlike Denotational Semantics, is de-
signed to be both modular and readable by average
programmers. A modular language speci�cation is
one that can be extended to introduce new language
constructs with little or no rewriting of the existing
description[10].

Another semantic method with similarities to De-
notational Semantics is Monadic Semantics. Monadic
Semantics exhibits modularity like Action Semantics.

Monad Transformers allow the language designer to
develop modular language descriptions that, through
the use of partial evaluation, may be used to develop
both modular interpreters and compilers[6, 7, 8].
However, Monadic descriptions are not suitable as
language descriptions for the average programmer
since an in depth knowledge of category theory is a
prerequisite[10].
Compiler generation based on Action Semantics

su�ers from many of the same problems as compilers
based on Monad Transformers. Actions, the compu-
tational entity of Action Semantics, are very high-
level and not easily translated into a low-level form
like assembly language. One approach to this prob-
lem is to make the code generator very complex and
perform optimizations on the target program to sim-
plify it. This is the approach taken in [13]. How-
ever, through the use of sort inference, an action
may be simpli�ed to a form that resembles assembly
language[12, 11]. The same e�ect has been achieved
through the use of partial evaluation[3, 4] and by the
de�nition of a special low-level compilation semantics
in the context of Monad Transformers[6].
This paper describes the problem of translating an

action to a form suitable to be used in code genera-
tion in a compiler. In particular, this paper focuses
on code generation for statically bound languages.
Section 1.1 contains a brief introduction to Action
Semantics. The reader familiar with Action Seman-
tics can skim this section while paying careful atten-
tion to the description of combinators. For a more
thorough introduction see[14]. Mosses has also writ-
ten a de�nitive text on Action Semantics[10]. Sec-
tion 2 presents an Action Semantic description and

1

describes a compiler generator called Genesis based
on Action Semantics. Section 3 describes the sort in-
ference algorithm used in Genesis. Section 4 shows
how the sort inference information may be used to
eliminate transients and bindings from a program's
action. Section 5 concludes and describes areas of
future research in the Genesis project.

1.1 Action Semantics

In Action Semantics the action is the basic unit of
computation. An action manipulates one or more
of three entities: transients, bindings, and the store.
Transients are intermediate results of computation.
Bindings are the usual de�nition, a mapping of iden-
ti�ers to values or locations within the store. The
store is a mapping of locations, called cells, to val-
ues. In the language of Action Semantics, actions
give transients, produce bindings, and store data.
Transients, bindings, and storage are all ways of or-

ganizing data. Action Semantics uses a sort system
instead of a type system. Sorts are partially ordered
by the subsort operator (i.e. �) with the special sort
nothing as the least sort. In a sort system there is no
distinction between an individual and the sort con-
taining just that individual. For example, 6 and the
sort of 6 are the same thing. Datum is the sort of all
individual sorts. Data is another name for the sort
of tuples of datum.
In this paper integers and cells are used, but other

sorts are de�ned in Action Semantics and more can
be added. Standard Action Semantics includes sorts
such as truth-value, real, character, and map. Un-
like standard Action Semantics, the Genesis com-
piler generator quali�es cells (a map from natural to
storable) according to the datum they may contain.
So instead of a cell, Genesis calls a generic cell a [da-
tum]cell. A cell that must hold an integer is called
an [integer]cell. This distinction is important to e�-
ciently generate code for a given action.
Actions may give transients. For example,

allocate a cell

is an action that dynamically allocates a cell and gives
it as a transient. The action

bind \M" to 5

is another action that produces a new binding of M
to 5. Actions can also store values as in

store 6 in the given cell

This action stores 6 in the cell that's given to the
action. Actions not only give transients, produce
bindings, and store values, but their performance can
depend on the given transients, produced bindings,
or stored values. In other words, an action's per-
formance may depend on incoming transients, bind-
ings, and storage. Every action creates some outgoing
transients and bindings and may a�ect the contents
of the store.
Actions that depend on the incoming transients,

bindings, and storage contain yielders. The action

store 6 in the given cell

contains the yielder given S which examines the in-
coming transients and yields the datum, d, contained
in it such that d � S. To access the nth element of
the incoming transients the yielder given S#nmay be
used. Other yielders allow actions to access bindings
and the store. The yielder S bound to id yields the d
that's bound to id in the incoming bindings provided
d � S. The yielder S stored in c yields d provided
d � S and d is stored in cell c.
Actions and yielders which use transients or give

transients are said to be part of the functional facet
of Action Semantics. Actions and yielders which pro-
duce or receive bindings are said to be part of the
declarative facet of Action Semantics. Finally, actions
and yielders which store or depend on the contents of
the store are said to be part of the imperative facet
of Action Semantics.
For actions to be interesting, we must be able to

combine them into complex or compound actions.
Combinators serve as constructors for complex ac-
tions. While storage is single threaded through ac-
tions (assuming no non-determinism, which isn't rel-
evant in relation to compiler generation), transients
and bindings may be propagated from one action to
another in several di�erent ways. For example, the
action

2

bindings bindings

transients

transients

A then B

B

A

Figure 1: then combinator diagram

transients

transients

B

A

bindings

bindings

A hence B

Figure 2: hence combinator diagram

allocate a cell
then
bind \M" to the given cell

contains the then combinator. A then B is an action
that passes the outgoing transients of subaction A to
the incoming transients of subaction B. The outgo-
ing transients of B are the outgoing transients of the
combined action. The incoming transients to A then
B become the incoming transients to A.

To better understand combinators it is helpful to
graphically see how di�erent combinators propagate
transients and bindings. Ken Slonneger [14] uses
combinator diagrams to depict the nature of com-

bindings bindings

transients

transients

A and then B

B

A

Figure 3: and then combinator diagram

binators. For instance, the then combinator is graph-
ically depicted in �gure 1. The bindings and tran-
sients are propagated as shown. The dashed line indi-
cates that subaction A is performed before subaction
B (i.e. stores performed in A will be visible to B).
Some other combinators of interest are hence and and
then depicted in Figures 2 and 3.
The action complete is the action that produces no

bindings and gives no transients. It is of interest be-
cause it is a unit for and then and is used in algebraic
identities involving the combinators then and hence.

2 A Semantic Description

To illustrate sort inference it's useful to have an ex-
ample language. The calculator language will serve
this purpose. The calculator is the language of ex-
pressions over integers with the addition of a memory
location and the ability to store a value in it and re-
call its value. The language is de�ned via an Action
Semantic description which is given in the appendix.
Action Semantic descriptions are analogous to De-

notational descriptions. Semantic equations map
syntax to semantics. However, the Genesis com-
piler generator disposes of abstract syntax and maps
concrete syntactic phrases directly to their action
phrases. The structure of Genesis is shown in �g-
ure 4. It generates a compiler that consists of a front
end that compiles a source program to its action, and

3

P Grammar
Specification

P Lexical
Specification

P ScannerP Program

Action Transformer

Action Compiler

Input to Output from

FunctionFile

Key

Functional
 Compostion

Specification
ASD Grammar

ML-Lex ML-Yacc

ASD Scanner

ASD Transformer

ASD Compiler Generator

ML-Lex ML-Yacc

ASD
P language

Specification
ASD Lexical

JVM Program

ASD Translator

P Translator

tokens

tokens

action

transformed action

transformed ASD

ASD

Figure 4: Genesis compiler generator

a back end that compiles an action to a target pro-
gram. Initially the target program will be a Java
assembly language program. However, the compiler
generator can be retargeted easily by writing a back
end for other target languages.
The front end generated by Genesis depends on

the source language. It consists of a parser based on
the concrete syntax derived from the Action Seman-
tic description of the language. The parser translates
a source program to its action. The back end is the
same for every Genesis generated compiler. It con-
sists of an Action Transformer that performs bind-
ing and transient elimination on the program action.
The Action Transformer is responsible for the action
transformations described in section 4.

The calculator semantics begins by allocating a cell
and binding it to the identi�er M . After transform-
ing actions of the calculator language, theM binding
will be eliminated and the residual action will consist
of low-level actions that can be easily translated into
assembly language. However, before transforming an
action, it is necessary and useful to perform sort in-
ference over the action. Sort inference over actions is
the topic of the next section.

3 Sort Inference

Performing sort inference on actions means examin-
ing the incoming and outgoing transients and bind-
ings to verify that they are consistent according with
the meaning of the action combinators used in the
action. An action's sort is the collection of these
four sorts: the sorts of the incoming and outgoing
transients and bindings for the action. The imper-
ative facet is not considered in sort inference since
the domain of the store cannot generally be known
statically.

Each of the incoming and outgoing transients and
bindings are described by a record. Transients are
represented as a record that maps natural numbers
to sorts. For bindings, the record maps identi�ers to
sorts. Sort inference on actions was �rst described by
Even and Schmidt in [5] and was extended by Brown
and Watt in [1, 2]. Watt, Brown, and Moura do not
implement transients as a tuple in their compiler gen-

4

erator, called Actress. As a result they introduce a
dialect of Action Semantics that treats transients as
a binding of natural numbers to datum. The net re-
sult of this is that their dialect of Action Semantics is
less modular than the original de�nition. This paper
extends the sort inference algorithm of [5] and [2] to
properly treat transients as tuples of datum.
Consider the action

allocate a cell
then
bind \M" to the given cell

After applying sort inference, this action has sort

(fg; fg)! (fg; fM : [datum]cellg)

The action takes no incoming transients or bindings
and produces one binding.
Record sorts are extended to record sort schemes

for the purpose of sort inference. Record sort schemes
consist of a (possible) row variable and a collection
of �elds that map the record domain to its range.
Field schemes may either be absent, present and rep-
resented as a sort scheme, or undetermined (repre-
sented as a �eld variable) to be resolved to present or
absent later. Finally, sort schemes are either a sub-
sort of datum or represented as a sort variable. For
instance, assume the subaction

bind \M" to the given cell

is annotated with the sort scheme

(f1 : �1g3; fg4)! (fg; fg)

where the constraint �1&[datum]cell 6= nothing

holds. 3 and 4 are row variables and �1 is a sort
variable. Assume the action

allocate a cell

is annotated with the sort scheme

(fg1; fg2)! (f1 : [datum]cellg; fg)

To �nd the sort of the entire action, the outgo-
ing transients of the allocate action must be uni�ed
with the incoming transients of the bind action. The

Distribute

Concat

Merge

Overlay

Figure 5: Derived Sort Inference Operators

transients passed to the entire action (i.e. the empty
transients) must be uni�ed with the transients passed
to the allocate action. The outgoing transients of the
entire action are the same as the outgoing transients
of the bind action.

The incoming bindings of the entire action (i.e. the
empty bindings) must be uni�ed with each of the
incoming bindings of the subactions. The outgoing
bindings of the two subactions must be merged to-
gether. All this information is contained in the fact
that the then combinator is used to combine the two
subactions.

5

Underlying the combinators used in Action Se-
mantics are a set of derived sort inference opera-
tions which are used in the uni�cation of record
sort schemes. These derived operations are actually
hinted at in the combinator diagrams of Slonneger
[14]. Brown names some of these operations in [1].
The operations of interest in this paper are in �g-
ure 5. There are two other derived operations that
are not described here that are needed in conjunction
with the or combinator. The or combinator isn't used
by the calculator language and so is omitted because
of space constraints.
One derived operation is named in this paper that

was avoided by Brown in [1] because of his treatment
of transients. The concat operation is used to con-
catenate the outgoing transients of two subactions
combined by the and then combinator. For instance,
consider the actions

give 6

with sort scheme

(fg1; fg2)! (f1 : 6g; fg)

and

give 5

with sort scheme

(fg3; fg3)! (f1 : 5g; fg)

Combining these two actions with the and then
combinator causes their outgoing transients to be
concatenated as in

concat(f1 : 6g; f1 : 5g) = f1 : 6; 2 : 5g

The concatenation operator insists that the �rst
record sort scheme be exactly known. So, concat(f1 :
6g; f1 : 5g) is de�ned whereas concat(f1 : 6gi; f1 :
5g) would not be de�ned. This means that some
polymorphic actions like

give the given data
and then
give 5

allocate [integer]cell
: (fg; fg)! (f1 : �35g; fg)

then
bind \M" to the given cell
: (f1 : �35g; fg)! (fg; fM : �35g)

: (fg; fg)! (fg; fM : �35g)
hence

give the 6
: (fg; fM : �35g)! (f1 : �6g; fg)

and then
give the 5
: (fg; fM : �35g)! (f1 : �7g; fg)

then
store the given integer in
the cell bound to \M"
: (f1 : �7g; fM : �35g)! (fg; fg)

and then
give the given integer
: (f1 : �7g; fM : �35g)! (f1 : �7g; fg)

: (f1 : �7g; fM : �35g)! (f1 : �7g; fg)
: (fg; fM : �35g)! (f1 : �7g; fg)

: (fg; fM : �35g)! (f1 : �6; 2 : �7g; fg)
then
give the (sum (given integer#1,
given integer#2)) [giving integer]
: (f1 : �6; 2 : �7g; fM : �35g)! (f1 : �20g; fg)

: (fg; fM : �35g)! (f1 : �20g; fg)
and then
give the integer stored in the cell bound to \M"
: (fg; fM : �35g)! (f1 : �33g; fg)

: (fg; fM : �35g)! (f1 : �20; 2 : �33g; fg)
then
give the (product (given integer#1,
given integer#2)) [giving integer]
: (f1 : �20; 2 : �33g; fM : �35g)! (f1 : �32g; fg)

: (fg; fM : �35g)! (f1 : �32g; fg)
: (fg; fg)! (f1 : �32g; fg)

Figure 6: Calculator action for (6 + 5S) �R =

6

result in sort inference failure in the Genesis compiler
generator. However, this type of action doesn't arise
in practice and so the restriction of the derived concat
operation doesn't seem to pose a problem.

Unifying record sort schemes is complex and
is covered in detail in [1]. However, combining
record sort schemes A = ffieldsAgrowA and B =
ffieldsBgrowB can be briey summarized as follows

1. Let fieldsA0 = fieldsB � fieldsA and
fieldsB0 = fieldsA � fieldsB.

2. Extend A and B into two new record sort
schemes A0 = ffieldsA@fieldsA0growA0 and
B0 = ffieldsB@fieldsB0growB0 whose �eld do-
mains are identical. Instantiate the row vari-
ables of A and B to the newly created records
(i.e. [rowA 7! ffieldsA0growA0 ; rowB 7!
ffieldsB0growB0])

3. Unify A0 and B0 according to the speci�ed de-
rived sort inference operation (i.e. Distribute,
Concat, Merge, Overlay, Switch, or Select).

Sort inference in Genesis, like that of the Actress
Compiler Generator[2], is carried out by the algo-
rithm described above. At the end of sort inference,
action sort schemes are reduced to a normalized form.
A sort scheme is normalized if it is either a sort vari-
able bound to a sort (not a sort scheme!) or a sort
variable bound to a sort constructor applied to a nor-
malized sort scheme. Normalization results in an ac-
tion that is annotated with sort variables. For in-
stance, after sort inference was performed, the calcu-
lator expression (6 + 5S) � R = results in the anno-
tated action found in �gure 6 with the sort variable
substitution

[�6 7! 6; �7 7! 5; �20 7! integer;

�32 7! integer; �33 7! integer; �35 7! [�33]cell]

As might be expected the annotated action in �g-
ure 6 and the substitution given above contain valu-
able information that will be used in the next section.

allocate [integer]cell
then
bind \M" to the given cell

hence
complete

and then
complete

then
store 5 in the cell bound to \M"

and then
complete

then
give the (sum (6, 5)) [giving integer]

and then
give the integer stored in
the cell bound to \M"

then
give the (product (given integer#1,
given integer#2)) [giving integer]

Figure 7: After eliminating �6 and �7

4 Transformation

While the action presented in �gure 6 is correctly
sorted, it is not suitable for e�cient code generation.
Fortunately, the action can be simpli�ed by using the
sort information just gathered[12]. For instance, the
sort variable �6 is mapped to the value 6. Any yielder
that yields the individual mapped by �6 may be re-
placed by 6. Similarly, any yielder that yields the
datum mapped by �7 may be replaced by 5.
Once all dependence on �6 and �7 has been re-

moved, all actions that give �6 or �7 may be replaced
by the action complete. At this point the action has
been simpli�ed to the point shown in �gure 7. This
transformation is analogous to constant propagation
found in most conventional compilers.
Since �gure 7 includes complex actions involving

complete it can be further simpli�ed. The action
complete is a unit for the and then combinator. In
addition complete then A = A and complete hence
A = A are both algebraic identities.
Applying the unit for and then and the algebraic

identity involving then the action is further simpli�ed

7

allocate [integer]cell
then
bind \M" to the given cell

hence
store 5 in the cell bound to \M"

then
give the (sum (6, 5)) [giving integer]

and then
give the integer stored in
the cell bound to \M"

then
give the (product (given integer#1,
given integer#2)) [giving integer]

Figure 8: Simpli�cation of subactions involving com-
plete

bind \M" to [integer]cell0
hence

store 5 in [integer]cell0
then
give the (sum (6, 5)) [giving integer]

and then
give the integer stored in [integer]cell0

then
give the (product (given integer#1,
given integer#2)) [giving integer]

Figure 9: Reduced by static allocation of the memory
cell

to that shown in �gure 8.

The subaction allocate a cell doesn't occur in a dy-
namic context (i.e. allocation is not within a loop).
Therefore, the cell can be allocated statically. By ex-
tending Action Semantics to allow cells to be named,
we can replace all references to the allocated cell
with a named cell. We'll designate the cell's name
as [integer]cell0 and replace all yielders that yield the
cell with the named cell. Then any actions that give
the cell may be replaced by complete. After sim-
plifying subactions involving complete the action is
further reduced to the one found in �gure 9.

Notice there are no bound to yielders left in the

store 5 in [integer]cell0
then
give the (sum (6, 5)) [giving integer]

and then
give the integer stored in [integer]cell0

then
give the (product (given integer#1,
given integer#2)) [giving integer]

Figure 10: After binding elimination

action. If there were, the source language and pro-
gram would not be statically bound! Since there are
no bound to yielders left, any occurrences of bind to
actions may be replaced by complete and the appro-
priate identities may be used to reduce the action
once again. In this example that results in the action
found in �gure 10.
The action in �gure 10 is suitable for e�cient

code generation. The subactions resemble assem-
bly language instructions. The transients that are
left (�20, �32, and �33 in the annotated action) rep-
resent the contents of the operand stack in a stack-
oriented machine or the contents of symbolic registers
in a register-oriented machine. Code generation is a
straightforward translation of these low-level actions
into the target language.

5 Conclusion

This paper has shown that sort inference can be ap-
plied to actions to eliminate transients and bindings
from statically bound languages. Additionally, the
concat derived sort inference operation is presented
to support record sort inference over tuples. An ex-
ample of action transformation is presented, demon-
strating that transformed actions are, in a sense, low-
level actions that can be directly translated into e�-
cient code of the target language.
Future work in this area includes studying the

mapping of residual transients, those transients left
after transient elimination, to symbolic registers in a
register-oriented machine. Another topic of research
is applying sort inference to Action Semantics de-

8

scriptions of language for veri�cation and possible
simpli�cation of language descriptions.

A Calculator Action Semantics

A.1 Sorts

(1) bindable = [integer]cell

A.2 Semantic Equations

� calc :: Program ! Act

(1) calc [[E:Expr \="]] =
allocate an [integer]cell

then
bind \M" to the given cell

hence
evaluateExpr E .

� evaluateExpr :: Expr ! Act

(2) evaluateExpr [[E:Expr \+" T :Term]] =
evaluateExpr E

and then
evaluateTerm T

then
give the (sum of (the given integer#1,
the given integer#2)) [giving an integer]

(3) evaluateExpr [[E:Expr \-" T :Term]] =
evaluateExpr E

and then
evaluateTerm T

then
give the (di�erence of (the given integer#1,
the given integer#2)) [giving an integer]

(4) evaluateExpr [[T :Term]] =
evaluateTerm T

� evaluateTerm :: Term ! Act

(5) evaluateTerm [[T :Term *" F :Factor]] =
evaluateTerm T

and then
evaluateFactor F

then
give the (product of (the given integer#1,
the given integer#2)) [giving an integer]

(6) evaluateTerm [[T :Term \/" F :Factor]] =
evaluateTerm T

and then
evaluateFactor F

then
give the (quotient of (the given integer#1,
the given integer#2)) [giving an integer]

(7) evaluateTerm [[F :Factor]] =
evaluateFactor F

� evaluateFactor :: Factor ! Act

(8) evaluateFactor [[G:Storable \S"]] =
evaluateStorable G

then
store the given integer
in the cell bound to \M"

and then
give the given integer

(9) evaluateFactor [[G:Storable]] =
evaluateStorable G

� evaluateStorable :: Storable ! Act

(10) evaluateStorable [[\R"]] =
give the integer
stored in the cell bound to \M"

(11) evaluateStorable [[N :Integer]] =
give N

(12) evaluateStorable [[\(" E:Expr \)"]] =
evaluateExpr E

References

[1] D.F. Brown. Sort Inference in Action Semantic

Speci�cations. PhD thesis, Department of Com-
puter Science, University of Glasgow, 1994.

9

[2] D.F. Brown and D.A. Watt. Sort inference in
the actress compiler generator. In Proceedings

of the First International Workshop on Action

Semantics, Edinburgh, Scotland, 1994. BRICS.

[3] O. Danvy. Type-directed partial evaluation. In
Proceedings of the ACM Conference on the Prin-

ciples of Programming Languages, 1996.

[4] O. Danvy and R. Vestergaard. Semantics-based
compiling: A case study in type-directed partial
evaluation. In Eighth International Symposium

on Programming Language Implementation and

Logic Programming, pages 182{497, 1996.

[5] S. Even and D.A. Schmidt. Type inference for
action semantics. In ESOP '90, 3rd European

Symposium on Programming, volume 432 of Lec-

ture Notes in Computer Science, pages 118{133,
Berlin, Germany, 1990. Springer-Verlag.

[6] William L. Harrison and Samuel N. Kamin.
Modular compilers based on monad trans-
formers. In Proceedings of the 1998 Inter-

national Conference on Computer Languages.
IEEE Computer Society, 1998.

[7] S. Liang. A modular semantics for compiler gen-
eration. Technical Report TR-1067, Yale Univer-
sity Department of Computer Science, 1995.

[8] S. Liang, P. Hudak, and M. Jones. Monad trans-
formers and modular interpreters. In Proceedings
of the ACM Conference on the Principles of Pro-

gramming Languages, 1995.

[9] Peter Mosses. An introduction to action seman-
tics. Technical Report DAIMI PB-370, Aarhus
University, Copenhagen, Denmark, 1991.

[10] Peter Mosses. Action Semantics: Cambridge

Tracts in Theoretical Computer Science 26.
Cambridge University Press, 1992.

[11] H. Moura and D.A. Watt. Action transforma-
tions in the actress compiler generator. In Com-

piler Construction - 5th International Confer-

ence CC'94, 1994.

[12] Hermano Moura. Action Notation Transforma-

tions. PhD thesis, Department of Computer Sci-
ence, University of Glasgow, 1993.

[13] Peter �rb�k. Analysis and Optimization
of Actions. M.Sc. dissertation, Com-
puter Science Department, Aarhus Uni-
versity, Denmark, September 1993. URL:
ftp://ftp.daimi.aau.dk/pub/empl/poe/index.html.

[14] Kenneth Slonneger and Barry L. Kurtz. For-

mal Syntax and Semantics of Programming Lan-

guages. Adisson Wesley Publishing Company,
Inc., New York, NY, 1995.

[15] David Watt. Programming Language Syntax

and Semantics. Prentice-Hall, Inc., Englewoods
Cli�s, New Jersey 07632, 1991.

10

Representations, Tools, and Techniques for the Complete

Integration of Software Development Documents

Ethan V. Munson

July 22, 1998

Note: This document is an abridged version of the original proposal for NSF CAREER Grant
CCR-9734102.

Proposal Summary

The proposed research will identify the document representations, software tools, and
user interface services needed for the complete integration of all documents produced by the
software development process. This work will provide models and tools that make the logical
relationships between software documents explicit, thereby allowing them to be queried and
analyzed. The proposed research will also bring program source code out of the dated world
of eight-bit character streams by allowing multimedia documentation to be embedded within
source code documents. This research is signi�cant because it will break down the barriers
that currently exist between program source code and the natural language documents that
motivate, evaluate, and explain it. These barriers hinder software development by making
it di�cult to determine whether related documents conform to each other and by restricting
in-line documentation of program source code to comments in typewriter-style text.

To meet the aims of this proposal, the investigator will address the following research
issues:

� The design of document representations that support the complete interoperability
of software documents, regardless of their medium, so that any software document
(including source code) can include material in any medium or any relevant fragment
of any other software document.

� The design of representations for the logical relationships between software documents
that help developers determine whether the contents of related documents are in con-
formance.

� The design of analytic, visualization and user interface tools that help developers main-
tain and understand the relationships between their software documents and the extent
to which these documents conform to each other.

The success of the research will be evaluated through the implementation of these designs
in a development environment for Java programs and all their associated documents. This
environment will use World-Wide Web technology to connect the documents but will supple-
ment the standard document and link structure with �ne-grained revision control, specialized

1

link semantics, and tools for analyzing and visualizing the entire document set. The envi-
ronment will used in its own development and will also be deployed in undergraduate and
graduate software engineering courses. Opportunities for deployment in industrial settings
will be actively sought.

The proposal's education plan describes a set of activities which will increase enrollment
and success of students from traditionally under-represented groups and will improve the
university's computer science program at both the undergraduate and graduate levels. The
plan includes an innovative curriculum for the GEST Summer Program for middle-school and
high-school students based on the World-Wide Web, outreach activities, and new course o�er-
ings in software engineering. It integrates recent research results into graduate coursework, as
well as using the environment developed by the proposed research at both the undergraduate
and graduate levels. In addition, the education plan proposes to enhance the department's
graduate program with a complete curriculum on software and systems.

Career Development Plan

I. Research Plan

1 Introduction

The proposed research will identify the document representations, software tools, and user
interface services needed for the complete integration of all documents produced by the
software development process. This work will provide models and tools that make the logical
relationships between software documents explicit, thereby allowing them to be queried and
analyzed. The proposed research will also bring program source code out of the dated world
of eight-bit character streams by allowing multimedia documentation to be embedded within
source code documents. This research is signi�cant because it will break down the barriers
that currently exist between program source code and the natural language documents that
motivate, evaluate, and explain it. These barriers hinder software development by making
it di�cult to determine whether related documents conform to each other and by restricting
in-line documentation of program source code to comments in typewriter-style text.

The results of this research will be applicable to any software development project that
uses a formal process and produces a range of software documents. The growing adoption of
software quality standards (such as ISO/FDIS 9000-3) means that the importance of docu-
ments in software development will only increase. It is of critical importance that improved
tools for managing these documents and the logical relationships between them be developed
and adopted. Such tools will also be applicable in any environment where collections of in-
terrelated documents must be maintained and reasoned about, such as large engineering or
business projects. Software development is an obvious starting point, but the problem is of
general importance.

Programming environments have made great strides in recent years, so that software
developers now expect close coordination between tools for editing, compiling, and debugging
source code. However, programming environments do not interoperate with the o�ce software
suites that are commonly used to produce requirements and design documents, testing and
bug reports, and user manuals. Recent research is closing the gap between requirements,
design, and source documents through the use of formal speci�cations, but it remains clear

2

that less-formal documents will be important parts of the software development process for
the foreseeable future. Thus, it is important to �nd ways to better integrate these documents
and to help software developers understand and maintain the relationships between them.

To meet the aims of this proposal, the investigator will address the following research
issues:

� The design of document representations that support the complete interoperability
of software documents, regardless of their medium, so that any software document
(including source code) can include material in any medium or any relevant fragment
of any other software document.

� The design of representations for the logical relationships between software documents
that help developers determine whether the contents of related documents are in con-
formance.

� The design of analytic, visualization and user interface tools that help developers main-
tain and understand the relationships between their software documents and the extent
to which these documents conform to each other.

This research builds on the principal investigator's prior work on document presentation
services [28, 29, 30] and software development environments [10]. The work on document
presentation services has produced a portable style sheet system based on a simple and
powerful speci�cation language [28] and a model of media that is used to recon�gure this
system for applications supporting di�erent media [29]. The principal investigator was one
of the architects of the Ensemble integrated software development environment. Ensemble
supports both multimedia and program source code documents and has served as a testbed for
incremental program analysis techniques [20, 39] and for document presentation services [11,
15, 25, 31]. Ensemble uses a model-view-controller architecture [30, Chapter 3] that allows
an arbitrary number of views of the same document and allows non-source-code documents
to include other documents, regardless of type. The proposed research will extend this work
so that program source code interoperates freely with documents in any medium and the
relationships between these documents can be explicitly speci�ed, analyzed, and queried.

Evaluation of the project will be based on testing with end-user populations (primarily
students), runtime performance, and technical correctness. The grant project will develop
a prototype environment for developing software documents, speci�cally Java programs and
multimedia documents represented using XML [4, 5]. This environment will be tool-based,
rather than monolithic, which should ease deployment and testing and will make extensive use
of World-Wide Web technology. The primary test population will be students in undergrad-
uate and graduate software engineering courses, who will use the tools in group development
projects that require good documentation practices. The tools will also be tested on them-
selves, as the project will use them in its own development e�orts. Finally, the grant project
will strive to produce tools that are robust and powerful enough to justify experimental
deployment in local industry.

2 Speci�c Objectives

The proposed research aims to integrate the diverse set of documents produced in developing
software. This broad goal requires that the research produce new document representations

3

that improve the interoperability of software documents and make the relationships between
the ideas in these documents explicit. Using these new representations, the research must also
develop tools and services that make it possible to maintain and understand the relationships
between the documents and insure that the contents of the documents are in conformance
with each other. These research goals give rise to a number of speci�c objectives.

The achievement of complete interoperability of software development documents implies
that any document can include fragments of any other document, no matter what types of
documents are involved. Program source code is the obvious stumbling block, since editors
and environments still represent programs as simple text streams. What is needed is a new
representation for program source code that allows

� Inclusion of fragments of other documents.

� Active inclusions, which change when the source document changes, and

� The binding of inclusions and multimedia documentation to sections of source code
without interfering with the integrated program analysis services (lexing, parsing, static
semantic analysis) of the editor or environment.

Given such a representation, new program presentation tools will be required that give pro-
grammers exible control over the way that they view their source code so that the embedded
documentation doesn't distract from the development task.

Interoperability between formal and informal documents also requires a uniform model of
revision control. While the value of revision control tools for source code is well understood,
such tools are not generally available for informal documents, especially non-text documents.

Software development documents have many logical relationships, which may be described
by cross-references in the documents' content, but just as often are only implicit. Further-
more, these documents change over time and their logical relationships can also change as
a result. The proposed research will develop representations, based on earlier research on
hypertext [13, 14, 18], that allow developers to make these relationships (or links) explicit.
This goal gives rise to the following objectives:

� A taxonomy of the types of logical relationships between software documents.

� A representation allowing bi-directional, typed links between particular versions of soft-
ware documents that is compatible with World-Wide Web technology or an enhance-
ment thereof. This representation must be amenable to e�cient querying and analysis.

Once it is possible to represent these logical relationships, the proposed research will
investigate the tools and services needed to analyze, visualize, and maintain them. Some of
the subtasks that this research will accomplish are:

� User interface services that ease the de�nition of document relationships, so that soft-
ware developers do not hesitate to specify them.

� Tools which analyze collections of software documents and their relationships for pos-
sible conformance problems.

� Visualization tools that help developers understand the level of conformance in a system
and locate likely problem areas.

4

Figure 1: This screen dump of the Ensemble system illustrates how embedded multimedia
documentation could be used to clarify complex algorithms, such as the rotations used to
balance AVL trees. A section of Java source code is documented by a 2D graphic showing the
rotation along with an explanatory paragraph. While Ensemble has in the past had support
for video, this screen dump simulates an explanatory video clip with an included image.

� User interface services that aid in the correction of conicts between documents.

The research will be evaluated by deploying its tools in undergraduate and graduate soft-
ware engineering projects and by using the tools in their own development. Other deployment
opportunities (in local industry, for example) will be actively sought.

3 Background

3.1 Software documents

The many documents produced by the software development process can be broadly divided
into two categories: formal and informal.

Formal documents include program source code and formal speci�cations. Their common
characteristic is that their syntactic and semantic structure can be determined by analysis of
a text stream (with the obvious exception of visual programs). Formal documents are written
using ASCII text editors or specialized environments. Even the advanced environments (for
example, Ada-Assured [12]) are restricted to text, albeit with font and color variations, and
do not support documentation in other media or connections with other software documents.
The limitation to textual documentation can prevent programmers from expressing important
ideas about their code that are better expressed in other media. Figure 3.1 shows an example
where an embedded graphic �gure clari�es an algorithm. The fact that programmers cannot
link their source code to its supporting documents is just as serious a limitation, since the
code is often a direct expression of ideas in those other documents.

5

All other software documents are informal. Any syntactic or semantic structure they have
is either speci�ed directly by the user, obtained from a shared template or form, or is implicit
in the natural language content of the document. Examples include requirements documents,
design documents, testing and bug reports, and user documentation. Informal documents
are commonly produced using commercial o�ce software suites, such as Microsoft O�ce [23].
MS O�ce provides extensive interoperability between the di�erent types of documents it
supports: any document can include active fragments of other documents. Furthermore, MS
O�ce documents can import a wide variety of multimedia objects. However, these inclusions
are not marked with information about their semantics.

3.2 Interoperability

In practice, formal and informal documents do not interoperate. The central problem is that,
in formal documents, the text stream is used both for analysis and for presentation [37]. The
lexical analysis phase of program analysis requires that the text stream adhere to the language
speci�cation, which allows only textual comments. Thus, it is not possible to embed objects
composed of arbitrary byte streams (such as compressed images) inside program source code.
It is possible to conceive of program editors that search for special comments pointing to
pieces of non-text documentation held externally, but there are no examples of such an
editor. Such an editor would require a special formatting model to correctly display the
non-text documentation.

This is not to say that program presentation has been ignored. In fact, there is a large
literature on program pretty-printing. Early work focused on pretty-printing standards for
particular languages (see Baecker and Marcus for a summary [1, p. 18]) and on line-breaking
algorithms for program statements [17, 24, 32, 33, 40]. More recent work has emphasized
speci�cation languages for pretty-printing, such as PPML [16]. All of this work has focused
entirely on program source code.

The PI's dissertation research [30] investigated a more general approach to presentation.
This research showed there exists a core set of presentation services which can be shared
by independent modules for di�erent media within a larger system. This work produced
a portable style sheet system, Proteus [11, 28] that can be con�gured to support di�erent
media (text, graphics, video) and is also suitable for program source code. Con�guration of
Proteus for a new medium (or another application) is performed by writing a speci�cation of
the medium's primitive types, dimensions, and presentation attributes [29]. Proteus is also
designed to support multiple simultaneous views of the same document in di�erent styles, a
mechanism that can be exploited for the production of novel user interfaces without requiring
separate formatting services for each view. Proteus is portable and has been used by two
systems: the Ensemble software development and multimedia document environment [10]
and Multiple Presentation Mosaic [19], a multiple-view browser for the World-Wide Web.1

3.3 Document Relationships and Conformance

There are many types of relationships between software development documents. Without
claiming to present a complete taxonomy, these are some examples:

1Examples of the output of Multiple Presentation Mosaic can be seen on the principle investigator's Web

page at http://www.cs.uwm.edu/faculty/munson. These demonstrate some of the uses of multiple-view

technology.

6

� The requirements motivate the design.

� The design requires the implementation.

� A test report evaluates the implementation.

� A bug report complains about a mismatch between the requirements and the implemen-
tation.

� A change to the implementation responds to a bug report.

� The user manual documents the design and implementation.

In general, these relationships are persistent, lasting days, weeks, or years, but they are not
necessarily permanent. Because the documents in a system are dynamic and can be created,
altered, and removed, the set of active relationships in a system is also likely to change over
time.

Let us consider an imaginary software system whose documents are in perfect harmony
with each other. We might say that its documents are conformant, because they conform to
each other. If we then alter a requirement, such as the number of users to be supported, but
make no other change, it becomes possible that the system does not meet its requirements.
We might then say that the system's documents are non-conformant, because the system's
design does not conform to its requirements.

Barring major advances in natural language processing research, completely automatic
testing for conformance between software documents will not be possible. However, if the
relationships between software documents were explicitly recorded, it might be possible to
automate detection of possible non-conformance. Such automated detection could be used to
guide developers to potential problems.

It is important to note that similar relationships exist among source code and speci�ca-
tion documents. Programming languages have commands like \include" or \require" that
describe a dependency between pairs of �les. The di�erence is that these relationships be-
tween formal documents can be found, without any ambiguity, by automated analyses. In
fact, relationships like these are an important information source for re-engineering tools [26].

Each of the above document relationships carries with it an implied logical ordering of
its documents. For example, testing and bug reports cannot be produced until an imple-
mentation is available, and while it is not necessarily the case that requirement documents
will be written before designs, there is certainly a logical relationship between them that
makes design depend on requirements. Ordered relationships like these have been used for
many years to automate e�cient compilation [6, 8]. However, these techniques have yet to
be applied to informal software documents.

4 Methodology

4.1 Interoperability

The proposed research will develop representations that provide for interoperability among
formal and informal documents. The proposed representations will:

7

� Allow any document to include any fragment of any other document. The included
fragment may be from a particular version or may be active, changing as the source
document changes.

� Allow the binding of bi-directional, typed relationships to any pair of document frag-
ments.

� Support a uniform model of �ne-grained revision control.

� Allow program analysis and compilation services to operate without major modi�cation.

The approach taken by the proposed research will begin with a uniform tree-structured
representation for informal documents, such as XML [4, 5], an emerging standard for World-
Wide Web documents. Interoperability between tree-structured informal documents is well-
understood and can be found in Ensemble [22] and the Grif/Thot system [34].

Then, as proposed in the investigator's earlier work on interoperability [27], a representa-
tion that intermixes sections of source code with other sections that contain informal material
will be designed. The informal material may either be embedded documentation or may be
an inclusion of part of another relevant document. This representation will maintain a clear
separation between the source code and informal sections of the document so that program
analysis need only traverse the source code sections. The representation will allow the per-
sistent binding of the informal material to the relevant section of the source code, so that
the connection between them continues from one editing session to another. Furthermore,
it will provide for the de�nition of persistent selections [14] that will serve as end-points for
document relationships.

The proposed representation for source code documents will require the development of a
novel formatting model that properly integrates the formal and informal material. The central
problem is that automatic pretty-printers operate not from lines of text, but rather from an
abstract syntax tree [1, 16]. But in the proposed representation, the leaves of the abstract
syntax tree will be intermixed with some other tree-based representation for the informal
material. No existing formatter or editor must coordinate between two tree representations,
so a new formatting model will be required.

The proposed research will also design a uniform, �ne-grained revision control model for
software documents, because revision control is a critical element of the software document
environments envisioned by the investigator. Figure 2 illustrates how apparent cycles in
the relationship graph of software documents are broken when the relationships are de�ned
between versions of the documents.

This work will build on research by Magnusson, Asklund, and Min�or [21] on version trees
for tree-structured text documents. They showed that version trees are more exible and
semantically correct than the line-oriented revision systems widely used for program source
code [35, 36] and are better suited for collaborative software development. Wagner extended
this work to integrate version management with program editing and analysis operations
in the Ensemble environment [38], but did not provide a persistent representation of the
versions. The proposed research will apply version trees to multimedia documents and will
provide the persistence missing from Wagner's work.

8

Source Code
Revision k

Source Code
Bug Report

Source Code
Revision k-1

Bug Report

complains about

responds to

responds to

complains about

editing
changes

(a) (b)

Figure 2: In (a), the relationships between a source code document and a bug report form a
cycle, because the code is both cause of the bug report and the response to it. However, the
addition of version information in (b) breaks this cycle by making clear that the bug report
is complaining about a problem in the version k � 1 of the source code, while version k of
the source code has been edited and responds to the bug report.

4.2 Software Document Relationships

Section 3.3 listed several types of relationships that may exist between software documents.
The list is not claimed to be complete, exhaustive, or minimal; it is simply a set of examples.

The proposed research will study relationships between software documents in order to
de�ne a taxonomy for them. The types of relationships identi�ed by the taxonomy will then
be used to mark links between software documents.

It might be argued that a taxonomy of relationships is unnecessary, that it would be
su�cient to simply mark the existence of dependencies between documents without any
information about the type of relationship. This argument is misguided because relationship
types can convey important information about the semantics of the connection between two
documents. Suppose that complains about and comments on are two relationship types. The
fact that A comments on B is essentially neutral. In contrast, when C complains about
D, it is clear that a problem exists. In most systems, complaints require a response, while
comments do not.

Using the taxonomy of document relationships, the proposed research will design a rep-
resentation for links between documents that makes these relationships explicit. This repre-
sentation will have the following characteristics:

� Links will connect parts of document, rather than entire documents, so that relation-
ships can be de�ned on a �ne-grained basis.

� Since changes to document elements alter their relationships, links will connect speci�c
versions of document elements. This will allow the network of relationships to reect
the dynamic nature of software documents.

� Since a developer may want to follow a link in either direction, the link representation
will support traversal in both directions.

9

� At the same time, the link representation will be compatible with the World-Wide Web
convention of embedding links in the source document (which normally makes them
uni-directional).

� The representation must allow developers to state whether or not the documents in the
relationship are conformant. The simple fact that requirements have changed does not
necessarilymean that the design is inadequate. It simply means that a developer needs
to inspect both documents to determine whether there is a problem.

� The representation must be readily accessible for querying and analysis.

4.3 Analysis, Visualization, and User Interface Services

Once the document and relationship representations have been de�ned, the proposed research
will design and implement services that help developers maintain and understand the rela-
tionships between their software development documents. This work will rely on and enhance
the experimental testbed described in the next section.

The proposed user interface services will allow the creation, inspection, and removal of
links between documents. Developers will also be able to mark links with information about
conformance of the documents that each link connects. Other interface services will allow the
user to construct queries for types of relationships and levels of conformance. For example, a
user may want to �nd all pairs of non-conforming documents having the requires relationship.
The responses to these queries can either be reported to the user via a textual interface or
by highlighting matching document sections.

In contrast to the user interface services, which will primarily provide information about
local relationships, the analysis services will compute properties of the graph of relationships
as a whole. Because this information may be complex and hard to understand, visualization
tools will be designed and developed, building build on prior research on graphical presen-
tations of large software systems using graphs [26] and compact visual summaries of source
code �les [2, 7].

The analysis and visualization services will allow developers to answer questions like the
following:

� If requirement R is changed, which other documents may require changes?

� When requirement R changed, what changes to other documents had to be made?

� What features of the design have been complained about three or more times?

� How often are design and requirements changes made in response to bug reports?

� How often do bug reports complain about documents that test reports also complained
about?

4.4 Evaluation

The concepts explored by the proposed research will be evaluated by implementation in
an experimental testbed: an environment for Java programs and their associated informal
documents. The environment will use a tool-based design, rather than trying to create a

10

monolithic program, but will include a fairly large editor supporting all types of documents.
Furthermore, the environment will be implemented in Java itself, so that over time, the
researchers will be able to use and evaluate the tools they are creating.

The Java language will be used because it has a clean syntactic design that eases program
analysis and because of its importance to the WWW. Focusing on a single programming
language will simplify the system by allowing the use of special-purpose code to handle any
tricky problems with incremental program analysis.

Informal documents will be represented using XML [5], an evolving standard for WWW
documents. Unlike the HTML standard [3], which de�nes a single type of document, XML
provides a mechanism for de�ning new types of documents. Furthermore, XML's design is
intended to support bi-directional links, but this part of its design is not yet complete [4].
Unlike SGML [9], on which it is based, XML is designed for use in interactive systems.

The core of the environment will be an editor for Java programs and XML documents.
The editor's features will include:

� Full interoperability between all document types,

� Integrated parsing and type-checking of Java programs,

� User interface features for managing document relationships,

� World-Wide Web compatibility, and

� Integration with the environment's revision control system.

All other tools and services, including revision control, relationship analysis, and relationship
visualization, will be implemented as independent programs.

The experimental testbed will be used for group projects in undergraduate and graduate
software engineering classes. Students using the tools will be surveyed about the tools useful-
ness and usability. More detailed evaluation information will be obtained through debrie�ngs
of selected students in these courses and through usability studies with small groups of users.
Deployment of the experimental testbed in industrial settings is also planned and will use
similar evaluation methods.

Other sources of evaluative information will be:

� Systematic use of mock-up situations to evaluate the design of document and link
representations and the taxonomy of document relationships.

� The use of test suites to evaluate the correctness of the environment's tools.

� Performance testing of tools.

11

References

[1] Ronald M. Baecker and Aaron Marcus. Human Factors and Typography for More Read-
able Programs. Addison-Wesley, Reading, Massachusetts, 1990.

[2] Thomas Ball and Stephen G. Eick. Software visualization in the large. Computer,
29(4):33{43, April 1996.

[3] T. Berners-Lee and D. Connolly. Hypertext Markup Language | 2.0. World Wide Web
Consortium and MIT, June 1995. Internet Draft available from www.w3c.org.

[4] Tim Bray and Steve DeRose. Extensible markup language (xml): Part 1. linking. Avail-
able on the World Wide Web at http://www.w3.org/TR/WD-xml-link, April 1997.

[5] Tim Bray and C. M. Sperberg-McQueen. Extensible markup language (xml): Part 1.
syntax. Available on the World Wide Web at http://www.w3.org/TR/WD-xml-lang,
June 1997.

[6] Geo�rey Clemm and Leon Osterweil. A mechanism for environment integration. ACM
Transactions of Programming Languages and Systems, 12(1):1{25, January 1990.

[7] Stephen G. Eick, Michael C. Nelson, and Je�ery D. Schmidt. Graphical analysis of
computer log �les. CACM, 37(12):50{56, December 1994.

[8] Stuart I. Feldman. Make | a program for maintaining computer programs. Software:
Practice and Experience, 9:255{265, 1979.

[9] Charles F. Goldfarb, editor. Information Processing | Text and O�ce Systems |
Standard Generalized Markup Language (SGML). International Organization for Stan-
dardization, Geneva, Switzerland, 1986. International Standard ISO 8879.

[10] Susan L. Graham. Language and document support in software development environ-
ments. In Proceedings of the Darpa '92 Software Technology Conference, Los Angeles,
April 1992.

[11] Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus presen-
tation system. In Proceedings of the ACM SIGSOFT Fifth Symposium on Software
Development Environments, pages 130{138, Tyson's Corner, VA, December 1992. ACM
Press.

[12] Inc. Grammatech. Ada-assured home page. Accessible at http://www.grammatech.com,
1997.

[13] Bernard J. Haan, Paul Kahn, Victor A. Riley, James H. Combs, and Norman K. Mey-
rowitz. IRIS hypermedia services. CACM, 35(1):36{51, January 1992.

[14] Frank Halasz and Mayer Schwartz. The dexter hypertext reference model. CACM,
37(2):30{39, February 1994.

[15] Michael A. Harrison and Vance Maverick. Presentation by tree transformation. In IEEE
COMPCON '97, February 1997.

12

[16] INRIA: Centaur Project, Sophia-Antipolis, France. The PPML Manual, February
1994. For Version 1.3 of Centaur. Available by ftp from babar.inria.fr in directory
pub/croap/bertot.

[17] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Software|
Practice & Experience, 11(11):1119{1184, November 1982.

[18] John J. Leggett and John L Schnase. Viewing dexter with open eyes. CACM, 37(2):76{
86, February 1994.

[19] Hong Liu. Multiple Presentation Mosaic. Master's thesis, University of Wisconsin-
Milwaukee, May 1996.

[20] William Harry Maddox, III. Incremental Static Semantic Analysis. PhD thesis, Univer-
sity of California, Berkeley, January 1997.

[21] Boris Magnusson, Ulf Asklund, and Sten Min�or. Fine-grained revision control for collab-
orative software development. In Proceedings of the First ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 33{41. ACM Press, December 1993.

[22] Vance Maverick. Presentation by Tree Transformation. PhD thesis, University of Cali-
fornia, Berkeley, 1997.

[23] Microsoft, Inc., Redmond, Washington, USA. Microsoft O�ce 4.2, 1995.

[24] Martin Mikelsons. Prettyprinting in an interactive programming environment. Technical
Report RC 8756, IBM Research Division, Thomas J. Watson Research Center, Yorktown
Heights, NY, March 1981.

[25] Alok Mittal. SHILP�E: A presentation system for ensemble. Master's thesis, University
of California, Berkeley, California, December 1995.

[26] H. A. M�uller, S. R. Tilley, M. A. Orgun, B. D. Corrie, and N. H. Madhavji. A reverse
engineering environment based on spatial and visual software interconnection models.
In Proceedings of the ACM SIGSOFT Fifth Symposium on Software Development Envi-
ronments, pages 88{98, Tyson's Corner, VA, December 1992. ACM Press.

[27] Ethan V. Munson. Interoperability of software documents. In Workshop on Software
Engineering and Human-Computer Interaction: Joint Research Issues, pages 153{162,
May 1994. Workshop pre-prints.

[28] Ethan V. Munson. A new presentation language for structured documents. Electronic
Publishing: Origination, Dissemination, and Design, 8:125{138, September 1995. Orig-
inally presented at EP96, the Sixth International Conference on Electronic Publishing,
Document Manipulation, and Typography, Palo Alto, CA, September 1996.

[29] Ethan V. Munson. Toward an operational theory of media. In Proceedings of the Third
International Workshop on Principles of Document Processing. Springer-Verlag, Palo
Alto, CA, September 1996. To be published as part of the Lecture Notes in Computer
Science series.

13

[30] Ethan Vincent Munson. Proteus: An Adaptable Presentation System for a Software
Development and Multimedia Document Environment. PhD dissertation, University of
California, Berkeley, December 1994. Also available as UC Berkeley Computer Science
Technical Report UCB/CSD-94-833.

[31] Kannan Muthukkaruppan. SPINE, a synthesizer for practical incremental evaluators.
Master's thesis, University of California, Berkeley, CA, May 1994.

[32] Derek C. Oppen. Prettyprinting. ACM Transactions on Programming Languages and
Systems, 2(4):465{483, October 1980.

[33] William W. Pugh and Steven J. Sinofsky. A new language-independent prettyprinting
algorithm. Technical Report TR 87-808, Dept. of Computer Science, Cornell University,
Ithaca, NY, January 1987.

[34] Vincent Quint and Ir�ene Vatton. Combining hypertext and structure documents in grif.
In D. Lucarella, editor, Proceedings of ECHT '92, pages 23{32, Milan, December 1992.
ACM Press.

[35] M. J. Roekind. The source code control system. IEEE Transactions on Software Engi-
neering, SE-1(4):364{370, December 1975.

[36] W. F. Tichy. RCS | a system for revision control. Software: Practice and Experience,
15(7):637, July 1985.

[37] Michael L. Van De Vanter, Susan L. Graham, and Robert A. Ballance. Coherent user
interfaces for language-based editing systems. International Journal of Man-Machine
Studies, 37:431{466, 1992.

[38] Tim A. Wagner and Susan L. Graham. Integrating incremental analysis with version
management. In Proceedings of the Fifth European Software Engineering Conference,
1995.

[39] Tim A. Wagner and Susan L. Graham. Incremental analysis of real programming lan-
guages. In Proceedings of the 1997 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 31{43, June 1997.

[40] Richard C. Waters. XP: A Common Lisp pretty printing system. A.I. Memo 1102a,
MIT Arti�cial Intelligence Laboratory, Cambridge, Massachusetts, August 1989. Also
appears in edited form as Chapter 27 of Common Lisp: The Language, second ed.

14

