
DIDACache: A Deep Integration of Device and Application forFlash based
Key-value Caching

Zhaoyan Shen† Feng Chen‡ Yichen Jia‡ Zili Shao†

†Department of Computing ‡Computer Science & Engineering
Hong Kong Polytechnic University Louisiana State University

Abstract
In recent years, flash-based key-value cache systems
have raised high interest in industry, such as Facebook’s
McDipper and Twitter’s Fatcache. These cache systems
typically use commercial SSDs to store and manage
key-value cache data in flash. Such a practice, though
simple, is inefficient due to the hugesemantic gap
between the key-value cache manager and the underlying
flash devices. In this paper, we advocate to reconsider
the cache system design and directly open device-level
details of the underlying flash storage for key-value
caching. This co-design approach bridges the semantic
gap and well connects the two layers together, which
allows us to leverage both the domain knowledge of
key-value caches and the unique device properties. In
this way, we can maximize the efficiency of key-value
caching on flash devices while minimizing its weakness.
We implemented a prototype, called DIDACache, based
on the Open-Channel SSD platform. Our experiments on
real hardware show that we can significantly increase the
throughput by 35.5%, reduce the latency by 23.6%, and
remove unnecessary erase operations by 28%.

1 Introduction
High-speed key-value caches, such as Memcached [31]
and Redis [37], are the “first line of defense” in today’s
low-latency Internet services. By caching the working
set in memory, key-value cache systems can effectively
remove time-consuming queries to the back-end data
store (e.g., MySQL or LevelDB). Though effective,
the in-memory key-value caches heavily rely on large
amount of expensive and power-hungry DRAM for high
cache hit ratio [19]. As the workload size rapidly grows,
an increasing concern with such memory-based cache
systems is their cost and scalability [2]. Recently, a more
cost-efficient alternative,flash-based key-value caching,
has raised high interest in the industry [13, 45].

NAND flash memory provides a much larger capacity
and lower cost than DRAM, which enables a low Total
Cost of Ownership (TCO) for a large-scale deployment
of key-value caches. Facebook, for example, deploys
a Memcached-compatible key-value cache system based
on flash memory, called McDipper [13]. It is reported
that McDipper allows Facebook to reduce the number of
deployed servers by as much as 90% while still delivering
more than 90% “get responses” with sub-millisecond

latencies [23]. Twitter also has a similar key-value cache
system, called Fatcache [45].

Typically, these flash-based key-value cache systems
directly use commercial flash SSDs and adopt a
Memcached-like scheme to manage key-value cache data
in flash. For example, key-values are organized into
slabs of different size classes, and an in-memory hash
table is used to maintain the key-to-value mapping.
Such a design is simple and allows a quick deployment.
However, it disregards an important fact – the key-value
cache systems and the underlying flash devices both have
very unique properties. Simply treating flash SSDs as
a faster storage and the key-value cache as a regular
application not only fails to exploit various optimization
opportunities but also raises several critical concerns,
namelyredundant mapping, double garbage collection,
and over-overprovisioning. All these issues cause
enormous inefficiencies in practice, which motivated
us to reconsider the software/hardware structure of the
current flash-based key-value cache systems.

In this paper, we will discuss the above-mentioned
three key issues (Section 3) caused by the hugesemantic
gap between the key-value caches and the underlying
flash devices, and further present a cohesive cross-
layer design to fundamentally address these issues.
Through our studies, we advocate to open the underlying
details of flash SSDs for key-value cache systems.
Such a co-design effort not only enables us to remove
the unnecessary intermediate layers between the cache
manager and the storage devices, but also allows us
to leverage the precious domain knowledge of key-
value cache systems, such as the unique access patterns
and mapping structures, to effectively exploit the great
potential of flash storage while avoiding its weakness.

By reconsidering the division between software and
hardware, a variety of new optimization opportunities
can be explored: (1) A single, unified mapping structure
can directly map the “keys” to physical flash pages
storing the “values”, which completely removes the
redundant mapping table and saves a large amount of on-
device memory; (2) An integrated Garbage Collection
(GC) procedure, which is directly driven by the cache
system, can optimize the decision of when and how
to recyclesemantically invalidstorage space at a fine
granularity, which removes the high overhead caused by



the unnecessary and uncoordinated GCs at both layers;
(3) An on-line scheme can determine an optimal size of
Over-Provisioning Space (OPS) and dynamically adapt
to the workload characteristics, which will maximize the
usable flash space and greatly increase the cost efficiency
of using expensive flash devices.

We have implemented a fully functional prototype,
called DIDACache, based on a PCI-E Open-Channel
SSD hardware to demonstrate the effectiveness of this
new design scheme. A thin intermediate library
layer, libssd, is created to provide a programming
interface to facilitate applications to access low-level
device information and directly operate the underlying
flash device. Using the library layer, we developed a
flash-aware key-value cache system based on Twitter’s
Fatcache [45]. Our experiments show that this approach
can increase the throughput by 35.5%, reduce the latency
by 23.6%, and remove erase operations by 28%.

The rest of paper is organized as follows. Section 2
and Section 3 give background and motivation. Section 4
describes the design and implementation. Experimental
results are presented in Section 5. Section 6 gives the
related work. The final section concludes this paper.

2 Background
This section briefly introduces three key technologies,
flash memory, SSDs, and the current flash-based key-
value cache systems.
• Flash Memory. NAND flash memory is a type of
EEPROM device. A flash memory chip consists of
multiple planes, each of which consists of thousands
of blocks (a.k.a. erase blocks). A block is further
divided into hundreds ofpages. Flash memory supports
three main operations, namelyread, write, anderase.
Reads and writes are normally performed in units of
pages. A read is typically fast (e.g., 50µs), while a write is
relatively slow (e.g., 600µs). A constraint is that pages in
a block must be written sequentially, and pages cannot
be overwritten in place, meaning that once a page is
programmed (written), it cannot be written again until the
entire block is erased. An erase is typically slow (e.g.,
5ms) and must be done in block granularity.
• Flash SSDs. A typical flash SSD includes a host
interface logic, an SSD controller, a dedicated buffer,
and flash memory controllers connecting to flash memory
chips via multiple channels. AFlash Translation Layer
(FTL) is implemented in firmware to manage flash
memory. An FTL has three major roles: (1)Logical block
mapping. An in-memory mapping table is maintained in
the on-device buffer to map logical block addresses to
physical flash pages dynamically. (2)Garbage collection.
Due to the erase-before-write constraint, upon a write, the
corresponding logical page is written to a new location,
and the FTL simply marks the old page invalid. A GC

procedure recycles obsolete pages later, which is similar
to a Log-Structured File System [38]. (3)Wear Leveling.
Since flash cells could wear out after a certain number
of Program/Erase cycles, the FTL shuffles read-intensive
blocks with write-intensive blocks to even out writes over
flash memory. A previous work [14] provides a detailed
survey of FTL algorithms.
• Flash-based key-value caches. In-memory key-value
cache systems, such as Memcached, adopt a slab-based
allocation scheme. Due to its efficiency, flash-based
key-value cache systems, such as Fatcache, inherit a
similar structure. Here we use Fatcache as an example;
based on open documents [13], McDipper has a similar
design. In Fatcache, the SSD space is first segmented
into slabs. Each slab is further divided into an array of
slots (a.k.a. chunks) of equal size. Each slot stores a
“value” item. Slabs are logically organized into different
slab classesbased on the slot sizes. An incoming key-
value item is stored into a class whose slot size is the
best fit of its size. For quick access, ahash mapping
table is maintained in memory to map the keys to the
slabs containing the values. Querying a key-value pair
(GET) is accomplished by searching the in-memory hash
table and loading the corresponding slab block from
flash into memory. Updating a key-value pair (SET) is
realized by writing the updated value into a new location
and updating the key-to-slab mapping in the hash table.
Deleting a key-value pair (DELETE) simply removes the
mapping from the hash table. The deleted or obsolete
value items are left for GC to reclaim later.

Despite the structural similarity to Memcached, flash-
based key-value cache systems have several distinctions
from their memory-based counterparts. First, the I/O
granularity is much larger. For example, Memcached can
update the value items individually. In contrast, Fatcache
has to maintain an in-memory slab to buffer small items
in memory first and then flush to storage in bulk later,
which causes a unique “large-I/O-only” pattern on the
underlying flash SSDs. Second, unlike Memcached,
which is byte addressable, flash-based key-value caches
cannot update key-value items in place. In Fatcache, all
key-value updates are written to new locations. Thus,
a GC procedure is needed to clean/erase slab blocks.
Third, the management granularity in flash-based key-
value caches is much coarser. For example, Memcached
maintains an object-level LRU list, while Fatcache uses
a simple slab-level FIFO policy to evict the oldest slab
when free space is needed.

3 Motivation
As shown in Figure 1, in a flash-based key-value cache,
thekey-value cache managerand theflash SSDrun at the
application and device levels, respectively. Both layers
have complex internals, and the interaction between the



Figure 1:Architecture of flash-based key-value cache.

two raises three critical issues, which have motivated the
work presented in this paper.

• Problem 1: Redundant mapping. Modern flash SSDs
implement a complex FTL in firmware. Although a
variety of mapping schemes, such as DFTL [18], exist,
high-end SSDs often still adopt fine-grainedpage-level
mappingfor performance reasons. As a result, for a 1TB
SSD with a 4KB page size, a page-level mapping table
could be as large as 1GB. Integrating such a large amount
of DRAM on device not only raises production cost but
also reliability concerns [18, 53, 54]. In the meantime,
at the application level, the key-value cache system also
manages another mapping structure, an in-memory hash
table, which translates the keys to the corresponding slab
blocks. The two mapping structures exist at two levels
simultaneously, which unnecessarily doubles the memory
consumption.

A fundamental problem is that the page-level mapping
is designed for general-purpose file systems, rather than
key-value caching. In a typical key-value cache, the
slab block size is rather large (in Megabytes), which is
typically 100-1,000x larger than the flash page size. This
means that the fine-grained page-level mapping scheme
is an expensive over-kill. Moreover, a large mapping
table also incurs other overheads, such as the need for
a large capacitor or battery, increased design complexity,
reliability risks, etc. If we could directly map the hashed
keys to the physical flash pages, we can completely
remove this redundant and highly inefficient mapping for
lower cost, simpler design, and improved performance.

• Problem 2: Double garbage collection. GC is the
main performance bottleneck of flash SSDs [3, 8]. In
flash memory, the smallest read/write unit is a page (e.g.,
4KB). A page cannot be overwritten in place until the
entire erase block (e.g., 256 pages) is erased. Thus,
upon a write, the FTL marks the obsolete page “invalid”
and writes the data to another physical location. At a
later time, a GC procedure is scheduled to recycle the
invalidated space for maintaining a pool of clean erase
blocks. Since valid pages in the to-be-cleaned erase block
must be first copied out, cleaning an erase block often
takes hundreds of milliseconds to complete. A key-value
cache system has a similar GC procedure to recycle the
slab space occupied by obsolete key-value pairs.

Running at different levels (application vs. device),
these two GC processes not only are redundant but also
could interfere with one another. For example, from the
FTL’s perspective, it is unaware of the semantic meaning
of page content. Even if no key-value pair is valid (i.e.,
no key maps to any value item), the entire page is still
considered as “valid” at the device level. During the
FTL-level GC, this page has to be moved unnecessarily.
Moreover, since the FTL-level GC has to assume all valid
pages contain useful content, it cannot selectively recycle
or even aggressively invalidate certain pages that contain
semantically “unimportant” (e.g., LRU) key-value pairs.
For example, even if a page contains only one valid key-
value pair, the entire page still has to be considered valid
and cannot be erased, although it is clearly of relatively
low value. Note thatTRIM command [43] cannot address
this issue as well. If we merge the two-level GCs and
control the GC process based on semantic knowledge of
the key-value caches, we could completely remove all the
above-mentioned inefficient operations and create new
optimization opportunities.

• Problem 3: Over-overprovisioning. In order to
minimize the performance impact of GC on foreground
I/Os, the FTL typically reserves a portion of flash
memory, called Over-Provisioned Space (OPS), to
maintain a pool of clean blocks ready for use. High-end
SSDs often reserve 20-30% or even larger amount of flash
space as OPS. From the user’s perspective, the OPS space
is nothing but an expensive unusable space. We should
note that the factory setting for OPS is mostly based on
a conservative estimation for worst-case scenarios, where
the SSD needs to handle extremely intensive write traffic.
In key-value cache systems, in contrast, the workloads are
often read-intensive [5]. Reserving such a large portion
of flash space is a significant waste of expensive resource.
In the meantime, key-value cache systems possess rich
knowledge about the I/O patterns and have the capability
of accurately estimating the incoming write intensity.
Based on such estimation, a suitable amount of OPS
could be determined during runtime for maximizing the
usable flash space for effective caching. Considering
the importance of cache size for cache hit ratio, such a
20-30% extra space could significantly improve system
performance. If we could leverage the domain knowledge
of the key-value cache systems to determine the OPS
management at the device level, we would be able to
maximize the usable flash space for caching and greatly
improve the overall cost efficiency as well as system
performance.

In essence, all the above-mentioned issues stem from
a fundamental problem in the current I/O stack design:
the key-value cache manager runs at the application
level and views the storage abstraction as a sequence
of sectors; the flash memory manager (i.e., the FTL)



Figure 2:The architecture overview of DIDACache.
runs at the device firmware layer and views incoming
requests simply as a sequence of individual I/Os. This
abstraction, unfortunately, creates a hugesemantic gap
between the key-value cache and the underlying flash
storage. Since the only interface connecting the two
layers is a strictly defined block-based interface, no
semantic knowledge about the data could be passed over.
This enforces the key-value cache manager and the flash
memory manager to work individually and prevents any
collaborative optimizations. This motivates us to study
how to bridge this semantic gap and build a highly
optimized flash-based key-value cache system.

4 Design
As an unconventional hardware/software architecture
(see Figure 2), our key-value cache system is highly
optimized for flash and eliminates all unnecessary
intermediate layers. Its structure includes three layers.

• An enhanced flash-aware key-value cache manager,
which is highly optimized for flash memory storage,
runs at the application level, and directly drives the
flash management;

• A thin intermediate library layer, which provides
a slab-based abstraction of low-level flash memory
space and an API interface for directly and easily
operating flash devices (e.g.,read, write, erase);

• A specialized flash memory SSD hardware, which
exposes the physical details of flash memory
medium and opens low-leveldirect access to the
flash memory medium through theioctl interface.

With such a holistic design, we strive to completely
bypass multiple intermediate layers in the conventional
structure, such as file system, generic block I/O,
scheduler, and the FTL layer in SSD. Ultimately,
we desire to let the application-level key-value cache
manager leverage its domain knowledge and directly
drive the underlying flash devices to operate only
necessary functions while leaving out unnecessary ones.
In this section, we will discuss each of the three layers.

4.1 Application Level: Key-value Cache
Our key-value cache manager has four major compo-
nents: (1) aslab management module, which manages
memory and flash space in slabs; (2) aunified direct
mapping module, which records the mapping of key-
value items to their physical locations; (3) anintegrated

GC module, which reclaims flash space occupied by
obsolete key-values; and (4) anOPS management
module, which dynamically adjusts the OPS size.
4.1.1 Slab Management
Similar to Memcached, our key-value cache system
adopts a slab-based space management scheme – the
flash space is divided into equal-sizedslabs; each slab
is divided into an array ofslotsof equal size; each slot
stores a key-value item; slabs are logically organized into
differentslab classesaccording to the slot size.

Despite these similarities to in-memory key-value
caches, caching key-value pairs in flash has to deal with
several unique properties of flash memory, such as the
“out-of-place update” constraint. By directly controlling
flash hardware, our slab management can be specifically
optimized to handle these issues as follows.
• Mapping slabs to blocks: Our key-value cache directly
maps (logical) slabs to physical flash blocks. We divide
flash space into equal-sized slabs, and each slab is
statically mapped to one or several flash blocks. There
are two possible mapping schemes: (1)Per-channel
mapping, which maps a slab to a sequence of contiguous
physical flash blocks in one channel, and (2)Cross-
channel mapping, which maps a slab across multiple
channels in a round-robin way. Both have pros and cons.
The former is simple and allows to directly infer the
logical-to-physical mapping, while the latter could yield
a better bandwidth through channel-level parallelism.

We choose the simpler per-channel mapping for two
reasons. First, key-value cache systems typically have
sufficient slab-level parallelism. Second, this allows us to
directly translate “slabs” into “blocks” at the library layer
with minimal calculation. In fact, in our prototype, we
directly map a flash slab to a physical flash block, since
the block size (8MB) is appropriate as one slab. For flash
devices with a smaller block size, we can group multiple
contiguous blocks in one channel into one slab.
• Slab buffer: Unlike DRAM memory, flash does not
support random in-place overwrite. As so, a key-value
item cannot be directly updated in its original place in
flash. For aSET operation, the key-value item has to be
stored in a new location in flash (appended like a log),
and the obsolete item will be recycled later. To enhance
performance, we maintain anin-memory slabas a buffer
for each slab class. Upon receiving aSET operation,
the key-value pair is first stored in the corresponding in-
memory slab and completion is immediately returned.
When the in-memory slab is full, it is flushed into anin-
flash slabfor persistent storage.

The slab buffer brings two benefits. First, the in-
memory slab works as a write-back buffer. It not only
speeds up accesses but also makes incoming requests
asynchronous, which greatly improves the throughput.
Second, and more importantly, the in-memory slab



merges small key-value slot writes into large slab writes
(in units of flash blocks), which completely removes the
unwanted small flash writes. Our experiments show that
a small slab buffer is sufficient for performance.
• Channel selection and slab allocation: For load
balance considerations, when an in-memory slab is full,
we first select the channel with the lowest load. The load
of each channel is estimated by counting three key flash
operations (read, write, anderase). Once a channel
is selected, a free slab is allocated. For each channel, we
maintain aFree Slab Queueand aFull Slab Queueto
manage clean slabs and used slabs separately. The slabs
in a free slab queue are sorted in the order of their erase
counts, and we always select the slab with the lowest
erase count first for wear-leveling purposes. The slabs
in a full slab queue are sorted in the Least Recently Used
(LRU) order. When running out of free slabs, the GC
procedure is triggered to produce clean slabs, which we
will discuss in more details later.

With the above optimizations, a fundamental effect is,
all I/Os seen at the device level are shaped into large-size
slab writes, which completely removes small page writes
as well as the need for generic GC at the FTL level.
4.1.2 Unified Direct Mapping
In order to address the double mapping problem, a
key change is to remove all the intermediate mappings,
and directly map the SHA-1 hash of the key to the
corresponding physical location (i.e., the slab ID and the
offset) in the in-memory hash table.

Figure 3 shows the structure of the in-memory hash
table. Each hash table entry includes three fields:<md,
sid, offset>. For a given key,md is the SHA-1 digest,
sid is the ID of the slab that stores the key-value item,
and offset is the slot number of the key-value item
within the slab. Upon a request, we first calculate the
hash value of the “key” to locate the bucket in the hash
table, and then use the SHA-1 digest (md) to retrieve the
hash table entry, in which we can find the slab (sid)
containing the key-value pair and the corresponding slot
(offset). The found slab could be in memory (i.e., in
the slab buffer) or in flash. In the former case, the value
is returned in a memory access; in the latter case, the item
is read from the corresponding flash page(s).
4.1.3 Garbage Collection
Garbage collection is a must-have in key-value cache
systems, since operations (e.g.,SET and DELETE) can
create obsolete value items in slabs, which need to be
recycled at a later time. When the system runs out of
free flash slabs, we need to reclaim their space in flash.

With the semantic knowledge about the slabs, we
can perform a fine-grained GC in one single procedure,
running at the application level only. There are two
possible strategies for identifying a victim slab: (1)
Space-based eviction, which selects the slab containing

the largest number of obsolete values, and (2)Locality-
based eviction, which selects the coldest slab for cleaning
based on the LRU order. Both policies are used
depending on the runtime system condition.
• Space-based eviction: As a greedy approach, this
scheme aims to maximize the freed flash space for each
eviction. To this end, we first select a channel with the
lowest load to limit the search scope, and then we search
its Full Slab Queueto identify the slab that contains the
least amount of valid data. As the slot sizes of different
slab classes are different, we use the number of valid key-
value items times their size to calculate the valid data
ratio for a given flash slab. Once the slab is identified,
we scan the slots of the slab, copy all valid slots into the
current in-memory slab, update the hash table mapping
accordingly, then erase the slab and place the cleaned slab
back in theFree Slab Queueof the channel.
• Locality-based eviction: This policy adopts an
aggressive measure to achieve fast reclamation of free
slabs. Similar tospace-based eviction, we first select
the channel with the lowest load. We then select the
LRU slab as the victim slab to minimize the impact to
hit ratio. This can be done efficiently as the full flash
slabs are maintained in their LRU order for each channel.
A scheme, calledquick clean, is then applied by simply
dropping the entire victim slab, including all valid slots.
It is safe to remove valid slots, since our application is
a key-value cache (rather than a key-value store) – all
clients are already required to write key-values to the
back-end data store first, so it is safe to aggressively drop
any key-value pairs in the cache without any data loss.

Comparing these two approaches,space-based evic-
tion needs to copy still-valid items in the victim slab, so it
takes more time to recycle a slab but retains the hit ratio.
In contrast, locality-based evictionallows to quickly
clean a slab without moving data, but it aggressively
erases valid key-value items, which may reduce the cache
hit ratio. To reach a balance between the hit ratio and
GC overhead, we apply these two policiesdynamically
during runtime – when the system is under high pressure
(e.g., about to run out of free slabs), we use the fast but
impreciselocality-based evictionto quickly release free
slabs for fast response; when the system pressure is low,
we usespace-based evictionand try to retain all valid
key-values in the cache for hit ratio.

To realize the above-mentioned dynamic selection
policies, we set two watermarks, low (Wlow) and high
(Whigh). We will discuss how to determine the two
watermarks in the next section. The GC procedure
checks the number of free flash slabs,Sf ree, in the
current system periodically. IfSf ree is between the high
watermark,Whigh, and the low watermark,Wlow, it means
that the pool of free slabs is running low but under
moderate pressure. So we activate the less aggressive



Figure 3:Unified mapping structure. Figure 4:Low and high watermarks Figure 5:M/M/1 queuing model.
space-based evictionpolicy to clean slabs. This process
repeats until the number of free slabs,Sf ree, reaches the
high watermark. IfSf ree is below the low watermark,
which means that the system is under high pressure, the
aggressivespace-based evictionpolicy kicks in and uses
quick cleanto erase the entire LRU slab and discard all
items immediately. This fast-response process repeats
until the number of free slabs in the system,Sf ree, is
brought back toWlow. If the system is idle, the GC
procedure switches to thespace-based evictionpolicy
and continues to clean slabs until reaching the high
watermark. Figure 4 illustrates this process.

4.1.4 Over-Provisioning Space Management

In conventional SSDs, a large portion of flash space
is reserved as OPS, which is invisible and unusable
by applications. In our architecture, we can leverage
the domain knowledge to dynamically adjust OPS and
maximize the usable flash space for caching.

In our system, the two watermarks,Wlow and
Whigh, drive the GC procedure. The two watermarks
effectively determine the available OPS size –Wlow is
the dynamically adjusted OPS size, andWhigh can be
viewed as the upper bound of allowable OPS. We set the
difference between the two watermarks,Whigh − Wlow,
as a constant (15% of the flash space in our prototype).
Ideally, we desire to have the number of free slabs,Sf ree,
fluctuating in the window between the two watermarks.

Our goal is to keep just enough flash space for over-
provisioning. However, it is challenging to appropriately
position the two watermarks and make them adaptive
to the workload. It is desirable to have an automatic,
self-tuning scheme to dynamically determine the two
watermarks based on runtime situation. In our prototype,
we have designed two schemes, afeedback-based
heuristic modeland aqueuing theory based model.

Our heuristic scheme is simple and works as follows:
when the low watermark is hit, which means that
the current system is under high pressure, we lift
the low watermark by doublingWlow to quickly
respond to increasing writes, and the high watermark is
correspondingly updated. As a result, the system will
activate the aggressivequick cleanto produce more free
slabs quickly. This also effectively reserves a large OPS
space for use. When the number of free slabs reaches
the high watermark, which means the current system is
under light pressure, we linearly drop the watermarks.

This effectively returns free slabs back to the usable cache
space (i.e., reduced OPS size). In this way, the OPS space
automatically adapts to the incoming traffic.

The second scheme is based on the well-known
queuing theory, which builds slab allocation and reclaim
processes as a M/M/1 queue. As Figure 5 shows, in
this system, we maintain queues for free flash slabs and
full flash slabs for each channel, separately. The slab
drain process consumes free slabs, and the GC process
produces free slabs. Therefore we can view the drain
process as the consumer process, the GC process as the
producer process, and the free slabs as resources. The
drain process consumes flash slabs at a rateλ , and the
GC process generates free flash slabs at a rateµ . Prior
study [5] shows that in real applications, the incoming
of key-value pairs can be seen as a Markov process, so
the drain process is also a Markov process. For the
GC process, whenSf ree is less thanWlow, the locality-
based eviction policy is adopted. The time consumed
for reclaiming one slab is equal to the flash erase time
plus the schedule time. The flash block erase time is
a constant, and the schedule time can be viewed as a
random number. Thus the locality-based GC process is
also a Markov process with a service rateµ . Based on the
analysis, the process can be modeled as a M/M/1 queue
with arrival rateλ , service rateµ , and one server.

According to Little’s law, the expected number of
slabs waiting for service isλ/(µ − λ ). If we reserve
at least this number of free slabs before the locality-
based GC process is activated, we can always eliminate
the synchronous waiting time. So, for the system
performance benefit, we set

Wlow = λ/(µ −λ ) (1)

In the above equation,λ is the slab consumption rate of
the drain process, andµ is the slab reclaim rate of GC,
which equals 1/(tevict + tother), wheretevict is the block
erase time, andtother is other system time needed for GC.

In Equation 2, the arrival rate is decided by the
incoming rate of key-value pairs and their average size,
which are both measurable. Assuming the arrival rate of
key-values isλKV , the average size isSKV , and the slab
size isSslab, λ can be calculated as follows.

λ =
λKV ×SKV

Sslab
(2)

So, we have

Wlow =
λKV ×SKV × (tevict + tother)

Sslab−λKV ×SKV × (tevict+ tother)
(3)



By using the above-mentioned equations, we can
periodically update the settings of the low and high
watermarks. In this way, we can adaptively tune the OPS
size based on real-time workload demands.

4.1.5 Other Technical Issues

Flash memory wears out after a certain number of
Program/Erase (P/E) cycles. In our prototype, for wear
leveling, when allocating slabs in the drain process and
reclaiming slabs in the GC process, we take the erase
count of each slab into consideration and always use the
block with the smallest erase count. As our channel-
slab selection and slab-allocation scheme can evenly
distribute the workloads across all channels, wears can be
approximately distributed across channels as well. Other
additional wear-leveling measures, such as dynamically
shuffling cold/hot slabs, could also be included to further
even out the wear distribution.

Crash recovery is also a challenge. We may simply
drop the entire cache upon crashes. However, due to the
excessively long warm-up time, it is preferred to retain
the cached data through crashes [52]. In our system, all
key-value items are stored in persistent flash but the hash
table is maintained in volatile memory. There are two
potential solutions to recover the hash table. One simple
method is to scan all the valid key-value items in flash
and rebuild the hash table, which is a time-consuming
process. A more efficient solution is to periodically
checkpoint the in-memory hash table into (a designated
area of) the flash. Upon recovery, we only need to reload
the latest hash table checkpoint into memory and then
apply changes by scanning the slabs written after the
checkpoint. Crash recovery is currently not implemented
in our prototype.

4.2 Library Level: libssd

As an intermediate layer, the library,libssd, connects
the application and device layers. Unlike Liblight-
nvm [16],libssd is highly integrated with the key-value
cache system. It has three main functions: (1)Slab-to-
block mapping, which statically maps a slab to one (or
multiple contiguous) flash memory block(s) in a channel.
In our prototype, it is a range of blocks in a flash LUN
(logic unit number). Such a mapping can be calculated
through a mathematical conversion and does not require
another mapping table. (2)Operation transformation,
which converts key slab operations, namelyread,write,
anderase, to flash memory operations. This allows the
key-value cache system to operate in units of slabs, rather
than flash pages/blocks. (3)Bad block management,
which maintains a list of flash blocks that are detected as
“bad” and ineligible for allocation, and hides them from
the key-value cache.

4.3 Hardware Level: Open-Channel SSD
We use an Open-Channel SSD manufactured by
Memblaze [30]. This hardware is similar to that used in
SDF [35]. This PCIe based SSD contains 12 channels,
each of which connects to two Toshiba 19nm MLC flash
chips. Each chip contains two planes and has a capacity
of 66GB. Unlike SDF [35], our SSD exposes several
key device-level properties: first, the SSD exposes the
entire flash memory space to the upper level. The SSD
hardware abstracts the flash memory space in 192 LUNs,
and an LUN is the smallest parallelizable unit. The
LUNs are mapped to the 12 channels in a sequential
manner, i.e., channel #0 contains LUNs 0-15, channel
#1 contains LUNs 16-31, and so on. Therefore, we
know the physical mapping of slabs on flash memory
and channels. Second, unlike SDF, which presents
the flash space as 44 block devices, our SSD provides
direct access to raw flash memory through theioctl

interface. It allows us to directly operate the target flash
memory pages and blocks by specifying the LUN ID and
page number to compose commands added to the device
command queue. Third, all FTL-level functions, such as
address mapping, wear-leveling, bad block management,
are bypassed. This allows us to remove the device-level
redundant operations and make them completely driven
by the user-level applications.

5 Evaluation
5.1 Prototype System
We have prototyped the proposed key-value cache on the
Open-Channel SSD hardware platform manufactured by
Memblaze [30]. Our implementation of the key-value
cache manager is based on Twitter’s Fatcache [45]. It
includes 1,500 lines of code in the stock Fatcache and
620 lines of code in the library.

In Fatcache, when aSET request arrives, if running out
of in-memory slabs, it selects and flushes a memory slab
to flash. If there is no free flash slab, a victim flash slab is
chosen to reclaim space. During this process, incoming
requests have to wait synchronously. To fairly compare
with a cache system with non-blockingflush and eviction,
we have enhanced the stock Fatcache by adding a drain
thread and a slab eviction thread. The other part remains
unchanged. We have open-sourced our asynchronous
version of Fatcache for public downloading [1]. In our
experiments, we denote the stock Fatcache working in the
synchronous mode as “Fatcache-Sync”, and the enhanced
one working in the asynchronous mode as “Fatcache-
Async”. For each platform, we configure the slab size
to 8 MB, the flash block size. The memory slab buffer is
set to 128MB.

For performance comparison, we also run Fatcache-
Sync and Fatcache-Async on a commercial PCI-E SSD
manufactured by Memblaze. The SSD is built on



the exact same hardware as our Open-Channel SSD
but adopts a typical, conventional SSD architecture
design. This SSD employs a page-level mapping and
the page size is 16KB. Unlike the Open-Channel SSD,
the commercial SSD has 2GB of DRAM on the device,
which serves as a buffer for the mapping table and a
write-back cache. The other typical FTL functions (e.g.,
wear-leveling, GC, etc.) are active on the device.

5.2 Experimental Setup
Our experiments are conducted on a workstation, which
features an Intel i7-5820K 3.3GHZ processor and
16GB memory. An Open-Channel SSD introduced in
Section 4.3 is used as DIDACache’s underlying cache
storage. Since the SSD capacity is quite large (1.5TB),
it would take excessively long time to fill up the entire
SSD. To complete our tests in a reasonable time frame,
we only use part of the flash space, and we ensure the
used space is evenly spread across all the channels and
flash LUNs. For the software, we use Ubuntu 14.04
with Linux kernel 3.17.8. Our back-end database server
is MySQL 5.5 with InnoDB storage engine running
on a separate workstation, which features an Intel
Core 2 Duo processor (3.13GHZ), 8GB memory and a
500GB hard drive. The database server and the cache
server are connected in a 1Gbps local Ethernet network.
Fatcache-Sync and Fatcache-Async use the same system
configurations, except that they run on the commercial
SSD rather than the Open-Channel SSD.

5.3 Overall Performance
Our first set of experiments simulate a production data-
center environment to show the overall performance. In
this experiment, we have a complete system setup with a
workload generator (client simulator), a key-value cache
server, and a MySQL database server in the back-end.

To generate key-value requests to the cache server, we
adopt a workload model presented in prior work [7]. This
model is built based on real Facebook workloads [5],
and we use it to generate a key-value object data set
and request sequences to exercise the cache server. The
size distribution of key-value objects in the database
follows a truncated Generalized Pareto distribution with
location θ = 0, scaleψ = 214.4766, and shapek =
0.348238. The object popularity, which determines
the request sequence, follows a Normal distribution
with meanµt and standard deviationσ , whereµt is a
function of time. We first generate 800 million key-
value pairs (about 250GB data) to populate our database,
and then use the object popularity model to generate
200 million requests. We have run experiments with
various numbers of servers and clients with the above-
mentioned workstation, but due to the space constraint,
we only present the representative experimental results
with 32 clients and 8 key-value cache servers.

We test the system performance by varying the cache
size (in percentage of the data set size). Figure 6
shows the throughput, i.e., the number of operations
per second (ops/sec). We can see that as the cache
size increases from 5% to 12%, the throughput of all
the three schemes improves significantly, due to the
improved cache hit ratio. Comparing the three schemes,
DIDACache outperforms Fatcache-Sync and Fatcache-
Async substantially. With a cache size of 10% of
the data set (about 25GB), DIDACache outperforms
Fatcache-Sync and Fatcache-Async by 9.7% and 9.2%,
respectively. The main reason is that the dynamic
OPS management in DIDACache adaptively adjusts the
reserved OPS size according to the request arrival rate.
In contrast, Fatcache-Sync and Fatcache-Async statically
reserve 25% flash space as OPS, which affects the cache
hit ratio (see Figure 7). Another reason is the reduced
overhead due to the application-driven GC. The effect of
GC policies will be examined in Section 5.4.2.

We also note that Fatcache-Async only outperforms
Fatcache-Sync marginally in this workload. This is
because for this workload, Fatcache-Async adopts the
same static OPS policy as Fatcache-Sync, which leads to
the same cache hit ratio. Figure 7 shows the hit ratios of
these three cache systems. We can see that, as the cache
size increases, DIDACache’s hit ratio ranges from 76.5%
to 94.8%, which is much higher than that of Fatcache-
Sync, ranging from 71.1% to 87.3%.

5.4 Cache Server Performance
In this section we focus on studying the performance
details of the cache servers. In this experiment, we
directly generateSET/GET operations to the cache server.
We create objects with sizes ranging from 64 bytes to
4KB and first populate the cache server up to 25GB
in total. Then we generateSET and GET requests of
various key-value sizes to measure the average latency
and throughput. All experiments use 8 key-value cache
servers and 32 clients.
5.4.1 RandomSET/GET Performance
Figure 8 shows the throughput ofSET operations. Among
the three schemes, our DIDACache achieves the highest
throughput and Fatcache-Sync performs the worst. With
the object size of 64 bytes, the throughput of DIDACache
is 2.48×105 ops/sec, which is 1.3 times higher than that
of Fatcache-Sync and 35.5% higher than that of Fatcache-
Async. The throughput gain is mainly due to our unified
slab management policy and the integrated application-
driven GC policy. DIDACache also selects the least
loaded channel when flushing slabs to flash. Thus, the
SSD’s internal parallelism can be fully utilized, and
with software and hardware knowledge, the GC overhead
is significantly reduced. Compared with Fatcache-
Async, the relative performance gain of DIDACache
is smaller and decreases as the key-value object size



6 8 10 12

5.7x10
4

6.0x10
4

6.3x10
4

6.6x10
4

6.9x10
4

7.2x10
4

7.5x10
4

T
hr

ou
gh

pu
t(

op
s/

se
c)

Cache Size(%)

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 6:Throughput vs. cache size

6 8 10 12
60

70

80

90

100

H
it

R
at

io
(%

)

Cache Size(%)

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 7:Hit ratio vs. cache size.

64B 128B 256B 512B 1KB 2KB 4KB
0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

S
et

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

KV Size

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 8:SET throughput vs. KV size

64B 128B 256B 512B 1KB 2KB 4KB
0

50

100

150

200

250

S
et

La
te

nc
y(

us
)

KV Size

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 9:SET latency vs. KV size
1:0 7:3 5:5 3:7 0:1

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

Th
ro
ug
hp
ut
(o
ps
/s
ec
)

Set/Get Ratio

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 10:Throughput vs.SET/GET ratio.
1:0 7:3 5:5 3:7 0:1

0

50

100

150

200

250

300

350

400

La
te
nc
y(
us
)

Set/Get Ratio

Fatcache-Sync

Fatcache-Async

DIDACache

Figure 11:Latency vs.SET/GET ratio.

increases. As the object size increases, the relative GC
efficiency improves and the valid data copy overhead is
decreased. It is worth noting that the practical systems
are typically dominated by small key-value objects, on
which DIDACache performs particularly well.

Figure 9 gives the average latency forSET operations
with different key-value object sizes. Similarly, it can
be observed that Fatcache-Sync performs the worst, and
DIDACache outperforms the other two significantly. For
example, for 64-byte objects, compared with Fatcache-
Sync and Fatcache-Async, DIDACache reduces the
average latency by 54.5% and 23.6%, respectively.

Figures 10 and 11 show the throughput and latency
for workloads with mixedSET/GET operations. Due
to the space constraint, we only show results for the
case with 256-byte key-value items, and other cases
with different key-value sizes show similar trend. We
can observe that DIDACache outperforms Fatcache-Sync
and Fatcache-Async across the board, but as the portion
of GET operations increases, the related performance
gain reduces. Although we also optimize the path of
processingGET, such as removing intermediate mapping,
the main performance bottleneck is the raw flash read.
Thus, with the workload of 100%GET, the latency and
throughput of the three schemes are nearly the same.
Figure 12 shows the latency distributions for key-value
items of 64 bytes with differentSET/GET ratios.

5.4.2 Memory Slab Buffer

Memory slab buffer enables the asynchronous operations
of the drain and GC processes. To show the effect of
slab buffer size, we vary the slab buffer size from 128MB
to 1GB and test the average latency and throughput with
the workloads generated with the truncated Generalized
Pareto distribution. As shown in Figure 13 and Figure 14,
for both SET and GET operations, the average latency
and throughput are insensitive to the slab buffer size,
indicating that a small in-memory slab buffer size (128M)
is sufficient.

Table 1: Garbage collection overhead.
GC Scheme Key-values Flash Page Erase

DIDACache-Space 7.48GB N/A 4,231
DIDACache-Locality 0 N/A 3,679

DIDACache 2.05GB N/A 3,829
Fatcache-Greedy 7.48GB 5.73GB 5,024
Fatcache-Kick 0 3.86GB 4,122
Fatcache-FIFO 15.35GB 0 5,316

5.4.3 Garbage Collection

Our cross-layer solution also effectively reduces the GC
overhead, such as erase and valid page copy operations.
In our cache-driven system, we can easily count erase
and page copy operations in the library code. However,
we cannot directly obtain these values on the commercial
SSD as they are hidden at the device level. For effective
comparison, we use the SSD simulator (extension to
DiskSim [6]) from Microsoft Research and configure
it with the same parameters of the commercial SSD.
We first run the stock Fatcache on the commercial SSD
and collect traces by usingblktrace in Linux, and
then replay the traces on the simulator. We compare
our results with the simulator-generated results. In our
experiments, we confine the available SSD size to 30GB,
and preload it with 25GB data with workloads generated
with the truncated Generalized Pareto distribution, and
then do SET operations (80 million requests, about
30GB), following the Normal distribution.

Table 1 shows GC overhead in terms of valid
data copies (key-values and flash pages) and block
erases. We compare DIDACache using space-based
eviction only (“DIDACache-Space”), locality-based
eviction only (“DIDACache-Locality”), the adaptively
selected eviction approach (“DIDACache”) with the
stock Fatcache using three schemes (“Fatcache-Greedy”,
“Fatcache-Kick”, and “Fatcache-FIFO”). In Fatcache,
the application-level GC has two options, copying valid
key-value items from the victim slab for retaining hit
ratio or directly dropping the entire slab for speed.
This incurs different overheads of key-value copy



0

100

200

300

A B C

La
te
nc
y(
us
)

0

100

200

300

400

500

A B C

La
te
nc
y(
us
)

0

200

400

600

800

A B C

La
te
nc
y(
us
)

Figure 12: Latency (64-byte KV items)
with differentSET/GET ratios.

0 200 400 600 800 1000
20

30

40

50

60

70

80

Set Latency

Set Throughput

Memory Space (MB)

S
et

La
te

nc
y

(u
s)

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

S
et

T
hr

ou
gh

pu
t(

op
s/

se
c)

Figure 13:Latency and throughput (SET)
with different buffer sizes.

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

Get Latency

Get Throughput

Memory Space (MB)

G
et

La
te

nc
y

(u
s)

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

8x10
4

9x10
4

G
et

T
hr

ou
gh

pu
t(

op
s/

se
c)

Figure 14:Latency and throughput (GET)
with different buffer sizes.

operations, denoted as “Key-values”. In this experiment,
both Fatcache-Greedy and Fatcache-Kick use a greedy
algorithm to find a victim slab, but the former performs
key-value copy operations while the latter does not.
Fatcache-FIFO uses a FIFO algorithm to find the victim
slab and copies still-valid key-values. In the table, the
flash page copy and block erase operations incurred by
the device-level GC are denoted as “Flash Page” and
“Erase”, respectively.

Fatcache schemes show high GC overheads. For
example, both Fatcache-Greedy and Fatcache-FIFO
recycle valid key-value items at the application level,
incurring a large volume of key-value copies. Fatcache-
Kick, in contrast, aggressively drops victim slabs without
any key-value copy. However, since it adopts a greedy
policy (as Fatcache-Greedy) to evict the slabs with least
valid key-value items, erase blocks are mixed with valid
and invalid pages, which incurs flash page copies by the
device-level GC. Fatcache-FIFO fills and erases all slabs
in a sequential FIFO manner, thus, no device-level flash
page copy is needed. All three Fatcache schemes show a
large number of block erases.

The GC process in our scheme is directly driven by
the key-value cache. It performs a fine-grained, single-
level, key-value item-based reclamation, and no flash
page copy is needed (denoted as “N/A” in Table 1). The
locality-based eviction policy enjoys the minimum data
copy overhead, since it aggressively evicts the LRU slab
without copying any valid key-value items. The space-
based eviction policy needs to copy 7.48 GB key-value
items and incurs 4,231 erase operations. DIDACache
dynamically chooses the most appropriate policy at
runtime, so it incurs a GC overhead between the above
two (2.05 GB data copy and 3,829 erases). Compared to
Fatcache schemes, the overheads are much lower (e.g.,
28% lower than Fatcache-FIFO).

5.4.4 Dynamic Over-Provisioning Space

To illustrate the effect of our dynamic OPS management,
we run DIDACache on our testbed that simulates the data
center environment in Section 5.3. We use the same
data set containing 800 million key-value pairs (about
250GB), and the request sequence generated with the
Normal distribution model. We set the cache size as 12%
(around 30GB) of the data set size. In the experiment,
we first warm up the cache server with the generated

Table 2: Effect of different OPS policies.
GC Scheme Hit Ratio GC Latency Throughput

Static 87.7 % 2716 79.95 198,076
Heuristic 94.1 % 2480 64.24 223,146
Queuing 94.8 % 2288 62.41 229,956

data, and then change the request coming rates to test our
dynamic OPS policies.

Figure 15 shows the dynamic OPS and the number of
free slabs with the varying request incoming rates for
three different policies. The static policy reserves 25%
of flash space as OPS to simulate the conventional SSD.
For the heuristic policy, we set the initialWlow with 5%.
For the queuing theory policy, we use the model built
in Equation 3 to determine the value ofWlow at runtime.
We setWhigh 15% higher thanWlow. The GC is triggered
when the number of free slabs drops belowWhigh.

As shown in Figure 15(a), the static policy reserves a
portion of flash space for over-provisioning. The number
of free slabs fluctuates, responding to the incoming
request rate. In Figure 15(b), our heuristic policy
dynamically changes the two watermarks. When the
arrival rate of requests increases, the low watermark,
Wlow, increases to aggressively generate free slabs
by using quick clean. The number of free slabs
approximately follows the trend of the low watermark,
but we can also see a lag-behind effect. Our queuing
policy in Figure 15(c) performs even better, and it can be
observed that the free slab curve almost overlaps with the
low watermark curve. Compared with the static policy,
both heuristic and queuing theory policies enable a much
larger flash space for caching. Accordingly, we can see
in Figure 16 that the two dynamic OPS policies are able
to maintain a hit ratio close to 95%, which is 7% to 10%
higher than the static policy. Figure 17 shows the GC
cost, and we can find that the two dynamic policies incur
lower overhead than the static policy. In fact, compared
with the static policy and the heuristic policy, the queuing
theory policy erases 15.7% and 8% less flash blocks,
respectively. Correspondingly, in Figure 18, it can be
observed that the queuing policy can most effectively
reduce the number of requests with high latencies.

To further study the difference of these three policies,
we also compared their runtime throughput in Table 2.
We can see that the static policy has the lowest throughput
(198,076 ops/sec). The heuristic and queuing theory
policies can deliver higher throughput, 223,146 and
229,956 ops/sec, respectively.



0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

Low WaterMark High WaterMark

Free Slab Number

S
la
b
N
u
m
b
e
r(
%
)

Time

R
e
q
u
e
st
R
a
te
(1
0
^4
)

Time

Request Rate

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

S
la
b
N
u
m
b
e
r(
%
)

Time

Low WaterMark

High WaterMark

Free Slab Nubmer

R
e
q
u
e
st
R
a
te
(1
0
^4
)

Time

Request Rate

0

5

10

15

20

25

30

35

40

45

50

0

5

10

15

20

25

30

S
la
b
N
u
m
b
e
r(
%
)

Time

Low WaterMark

High WaterMark

Free Slab Number

R
e
q
u
e
st
R
a
te
(1
0
^4
)

Time

Request Rate

(a) Static policy. (b) Heuristic policy. (c) Queuing theorypolicy.
Figure 15: Over-provisioning space with different policies.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
it

R
at

io

Time
0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
it

R
at

io
Time

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H
it

R
at

io

Time

(a) Static policy. (b) Heuristic policy. (c) Queuing theorypolicy.
Figure 16: Hit ratio with different OPS policies.

0 500 1000 1500 2000 2500 3000

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

G
C

O
ve

rh
ea

d(
us

)

GC Time
0 500 1000 1500 2000 2500 3000

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

G
C

O
ve

rh
ea

d(
us

)

GC Time
0 500 1000 1500 2000 2500 3000

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

G
C

O
ve

rh
ea

d(
us

)

GC Time

(a) Static policy. (b) Heuristic policy. (c) Queuing theorypolicy.
Figure 17: Garbage collection overhead with different OPS policies.

0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Request

La
te

nc
y(

us
)

0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Request

La
te

nc
y(

us
)

0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Request

La
te

nc
y(

us
)

(a) Static policy. (b) Heuristic policy. (c) Queuing theorypolicy.
Figure 18: Request latency with different OPS policies.

5.5 Overhead Analysis

DIDACache is highly optimized for key-value caching
and moves certain device-level functions up to the
application level. This could raise consumption of host-
side resources, especially memory and CPU.

Memory Utilization : In DIDACache, memory is
mainly used for three purposes. (1) In-memory hash
table. DIDACache maintains a host-side hash table
with 44-byte mapping entries (<md, sid, offset>),
which is identical to the stock Fatcache. (2) Slab
buffer. DIDACache performance is insensitive to the
slab buffer size. We use a 128MB memory for slab
buffer, which is also identical to the stock Fatcache. (3)
Slab metadata. For slab allocation and GC, DIDACache
introduces two additional queues (Free Slab Queueand
Full Slab Queue) for each channel. Each queue entry is 8
bytes, corresponding to a slab. Each slab also maintains
an erase count and a valid data ratio, each requiring 4
bytes. Thus, in total, DIDACache adds 16-byte metadata
for each slab. For a 1TB SSD with a regular slab size
of 8MB, it consumes at most 2MB memory. In our
experiments, we found that the memory consumptions

Table 3: CPU utilization of different schemes.
Scheme SET GET SET/GET (1:1)

DIDACache 47.7% 20.5 % 37.4 %
Fatcache-Async 42.3 % 20 % 33.8 %
Fatcache-Sync 40.1 % 20 % 31.3 %

of DIDACache and Fatcache are almost identical during
runtime. Also note that the device-side demand for
memory is significantly decreased, such as the removed
FTL-level mapping table.

CPU utilization : DIDACache is multi-threaded. In
particular, we maintain 12 threads for monitoring the load
of each channel, one global thread for garbage collection,
and one load-monitoring thread for determining the OPS
size. To show the related computational cost, we compare
the CPU utilization of DIDACache, Fatcache-Async, and
Fatcache-Sync in Table 3. It can be observed that
DIDACache only incurs marginal increase of the host-
side CPU utilization. In the worst case (100%SET),
DIDACache only consumes extra 7.6% and 5.4% CPU
resources over Fatcache-Sync (40.1%) and Fatcache-
Async (42.3%), respectively. Finally it is worth noting
that DIDACache removes much device-level processing,
such as GC, which simplifies device hardware.



Cost implications: DIDACache is cost efficient. As
an application-driven design, the device hardware can
be greatly simplified for lower cost. For example, the
DRAM required for the on-device mapping table can be
removed and the reserved flash space for OPS can be
saved. At the same time, our results also show that the
host-side overhead, as well as the additional utilization of
the host-side resources are minor.

6 Other Related Work
Both flash memory [3, 8–10, 12, 17, 20, 22, 26, 29, 41,
42] and key-value systems [4, 5, 11, 15, 24, 25, 47, 49]
are extensively researched. This section discusses prior
studies most related to this paper.

A recent research interest in flash memory is to
investigate the interaction between applications and
underlying flash storage devices. Yang et al. investigate
the interactions between log-structured applications and
the underlying flash devices [48]. Differentiated Storage
Services [32] proposes to optimize storage management
with semantic hints from applications. Nameless
Writes [50] is a de-indirection scheme to allow writing
only data into the device and let the device choose the
physical location. Similarly, FSDV [51] removes the FTL
level mapping by directly storing physical flash addresses
in the file systems. Willow [40] exploits on-device
programmability to move certain computation from the
host to the device. FlashTier [39] uses a customized
flash translation layer optimized for caching rather than
storage. OP-FCL dynamically manages OPS on SSD to
balance the space needs for GC and for caching [34].
RIPQ [44] optimizes the photo caching in Facebook
particularly for flash by reshaping the small random
writes to a flash-friendly workload. Our solution shares
a similar principle of removing unnecessary intermediate
layers and collapsing multi-layer mapping into only one,
but we particularly focus on tightly connecting key-value
cache systems and the underlying flash SSD hardware.

Key-value cache systems recently show its practical
importance in Internet services [5, 15, 25, 49]. A
report from Facebook discusses their efforts of scaling
Memcached to handle the huge amount of Internet I/O
traffic [33]. McDipper [13] is their latest effort on flash-
based key-value caching. Several prior research studies
specifically optimize key-value store/cache for flash.
Ouyang et al. propose an SSD-assisted hybrid memory
for Memcached in high performance network [36].
This solution essentially takes flash as a swapping
device. NVMKV [27, 28] gives an optimized key-
value store based on flash devices with several new
designs, such as dynamic mapping, transactional support,
and parallelization. Unlike NVMKV, our system is
a key-value cache, which allows us to aggressively
integrate the two layers together and exploit some unique
opportunities. For example, we can invalidate all slots

and erase an entire flash block, since we are dealing with
a cache rather than storage.

Some prior work also leverages Open-Channel SSDs
for domain optimizations. Ouyang et al. present
SDF [35] for web-scale storage. Wang et al. further
present a design of LSM-tree based key-value store on the
same platform, called LOCS [46]. Instead of simplifying
redundant functions at different levels, they focus on
enabling applications to take use of internal parallelism
of flash channels through using Open-Channel SSD. Lee
et al. [21] also propose an application-managed flash for
file systems. We share the common principle of bridging
the semantic gap and aim to deeply integrate device and
key-value cache management.

7 Conclusions
Key-value cache systems are crucial to low-latency
high-throughput data processing. In this paper, we
present a co-design approach to deeply integrate the
key-value cache system design with the flash hardware.
Our solution enables three key benefits, namely a
single-level direct mapping from keys to physical flash
memory locations, a cache-driven fine-grained garbage
collection, and an adaptive over-provisioning scheme.
We implemented a prototype on real Open-Channel SSD
hardware platform. Our experimental results show that
we can significantly increase the throughput by 35.5%,
reduce the latency by 23.6%, and remove unnecessary
erase operations by 28%.

Although this paper focuses on key-value caching,
such an integrated approach can be generalized and
applied to other semantic-rich applications. For example,
for file systems and databases, which have complex
mapping structures in different levels, our unified direct
mapping scheme can also be applied. For read-
intensive applications with varying patterns, our dynamic
OPS approach would be highly beneficial. Various
applications may benefit from different policies or
different degrees of integration with our schemes. As
our future work, we plan to further generalize some
functionality to provide fine-grained control on flash
operations and allow applications to flexibly select
suitable schemes and reduce development overheads.

Acknowledgments
We thank our shepherd, Gala Yadgar, and the anonymous
reviewers for their constructive comments. This work
is partially supported by National Natural Science
Foundation of China (Project 61373049), Research
Grants Council of Hong Kong (GRF 152736/16E and
GRF 15222315/15E),Hong Kong Polytechnic University
(4-BCBB), Louisiana Board of Regents LEQSF(2014-
17)-RD-A-01, and U.S. National Science Foundation
(CCF-1453705, CCF-1629291).



References

[1] Fatcache-Async. https://github.com/polyu-
szy/Fatcache-Async-2017.

[2] Whitepaper: memcached total
cost of ownership (TCO).
https://davisfields.files.wordpress.com/2011/06/gear6
white papertco.pdf.

[3] AGRAWAL , N., PRABHAKARAN , V., WOBBER,
T., DAVIS , J. D., MANASSE, M., AND PANI -
GRAHY, R. Design tradeoffs for SSD performance.
In USENIX Annual Technical Conference (ATC 08)
(2008).

[4] A NAND , A., MUTHUKRISHNAN, C., KAPPES,
S., AKELLA , A., AND NATH , S. Cheap and
large CAMs for high performance data-intensive
networked systems. InUSENIX Symposium on
Networked Systems Design and Implementation
(NSDI 10)(2010).

[5] ATIKOGLU , B., XU, Y., FRACHTENBERG, E.,
JIANG , S., AND PALECZNY, M. Workload
analysis of a large-scale key-value store. InACM
SIGMETRICS Performance Evaluation Review
(SIGMETRICS 12)(2012).

[6] BUCY, J., SCHINDLER, J., SCHLOSSER,
S., AND GANGER, G. DiskSim 4.0.
http://www.pdl.cmu.edu/DiskSim/.

[7] CARRA, D., AND M ICHIARDI , P. Memory
partitioning in Memcached: an experimental
performance analysis. InInternational Conference
on Communications (ICC 14)(2014).

[8] CHEN, F., KOUFATY, D. A., AND ZHANG,
X. Understanding intrinsic characteristics and
system implications of flash memory based solid
state drives. InInternational Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS 09)(2009).

[9] CHEN, F., LEE, R., AND ZHANG, X. Essential
roles of exploiting internal parallelism of flash
memory based solid state drives in high-speed data
processing. InInternational Symposium on High
Performance Computer Architecture (HPCA 11)
(2011).

[10] CHEN, F., LUO, T., AND ZHANG, X. CAFTL:
a content-aware flash translation layer enhancing
the lifespan of flash memory based solid state
drives. InUSENIX Conference on File and Storage
Technologies (FAST’11)(2011).

[11] DEBNATH, B., SENGUPTA, S., AND L I , J.
SkimpyStash: RAM space skimpy key-value
store on flash-based storage. InACM SIGMOD
International Conference on Management of Data
(SIGMOD 11)(2011).

[12] DIRIK , C., AND JACOB, B. The performance
of PC solid-state disks (SSDs) as a function of
bandwidth, concurrency, device, architecture, and
system organization. InInternational Symposium
on Computer Architecture (ISCA 09)(2009).

[13] FACEBOOK. McDipper: a key-
value cache for flash storage.
https://www.facebook.com/notes/facebook-
engineering/mcdipper-a-key-value-cache-for-
flash-storage/10151347090423920.

[14] GAL , E., AND TOLEDO, S. Algorithms and data
structures for flash memories. InACM Computing
Survey (CSUR)(2005), vol. 37:2.

[15] GOKHALE , S., AGRAWAL , N., NOONAN, S.,AND

UNGUREANU, C. KVZone and the search for
a write-optimized key-value store. InUSENIX
Workshop on Hot Topics in Storage and File
Systems (HotStorage 10)(2010).

[16] GONZÁLEZ , J., BJØRLING, M., LEE, S., DONG,
C., AND HUANG, Y. R. Application-driven flash
translation layers on Open-Channel SSDs.

[17] GRUPP, L. M., CAULFIELD , A. M., COBURN,
J., SWANSON, S., YAAKOBI , E., SIEGEL,
P. H., AND WOLF, J. K. Characterizing flash
memory: anomalies, observations, and applications.
In International Symposium on Microarchitecture
(Micro 09) (2009).

[18] GUPTA, A., K IM , Y., AND URGAONKAR, B.
DFTL: a flash translation layer employing demand-
based selective caching of page-level address
mappings. In International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS 09)(2009).

[19] HU, X., WANG, X., L I , Y., ZHOU, L., LUO, Y.,
DING, C., JIANG , S., AND WANG, Z. LAMA:
optimized locality-aware memory allocation for
key-value cache. InUSENIX Annual Technical
Conference (ATC 15)(2015).

[20] KLIMOVIC , A., KOZYRAKIS, C., THEREKSA,
E., JOHN, B., AND KUMAR , S. Flash
storage disaggregation. InThe Eleventh European
Conference on Computer Systems (EuroSys 16)
(2016).



[21] LEE, S., LIU , M., JUN, S., XU, S., KIM , J.,
ET AL . Application-managed flash. InUSENIX
Conference on File and Storage Technologies (FAST
16) (2016).

[22] LEVENTHAL , A. Flash storage memory. In
Communications of the ACM(2008), vol. 51(7),
pp. 47–51.

[23] L ILLY , P. Facebook ditches
DRAM, flaunts flash-based McDipper.
http://www.maximumpc.com/facebook-ditches-
dram-flaunts-flash-based-mcdipper.

[24] L IM , H., FAN , B., ANDERSEN, D. G., AND

KAMINSKY, M. SILT: a memory-efficient, high-
performance key-value store. InACM Symposium
on Operating Systems Principles (SOSP 11)(2011).

[25] LU, L., PILLAI , T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. WiscKey:
separating keys from values in SSD-conscious
storage. InUSENIX Conference on File and Storage
Technologies (FAST 16)(2016).

[26] MARGAGLIA , F., YADGAR, G., YAAKOBI , E., LI ,
Y., SCHUSTER, A., AND BRINKMANN , A. The
devil is in the details: implementing flash page reuse
with WOM codes. InUSENIX Conference on File
and Storage Technologies (FAST 16)(2016).

[27] M ÁRMOL , L., SUNDARARAMAN , S., TALAGALA ,
N., AND RANGASWAMI , R. NVMKV: a scalable
and lightweight, FTL-aware key-value store. In
USENIX Annual Technical Conference (ATC 15)
(2015).

[28] M ÁRMOL , L., SUNDARARAMAN , S., TALAGALA ,
N., RANGASWAMI , R., DEVENDRAPPA, S.,
RAMSUNDAR, B., AND GANESAN, S. NVMKV:
a scalable and lightweight flash aware key-value
store. In USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 15)(2015).

[29] MARSH, B., DOUGLIS, F., AND KRISHNAN, P.
Flash memory file caching for mobile computers.
In Hawaii Conference on Systems Science(1994).

[30] MEMBLAZE. Memblaze.
http://www.memblaze.com/en/.

[31] MEMCACHED. Memcached: a distributed memory
object caching system. http://www.memcached.org.

[32] MESNIER, M. P., AKERS, J., CHEN, F., AND

LUO, T. Differentiated storage services. InACM
Symposium on Operating System Principles (SOSP
11) (2011).

[33] NISHTALA , R., FUGAL , H., GRIMM , S.,
KWIATKOWSKI , M., LEE, H., LI , H. C.,
MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB , P., STAFFORD, D., TUNG, T., AND

VENKATARAMANI , V. Scaling memcache at
facebook. InUSENIX Symposium on Networked
Systems Design and Implementation (NSDI 13)
(2013).

[34] OH, Y., CHOI, J., LEE, D., AND NOH, S. H.
Caching less for better performance: balancing
cache size and update cost of flash memory cache
in hybrid storage systems. InUSENIX Conference
on File and Storage Technologies (FAST 12)(2012).

[35] OUYANG , J., LIN , S., JIANG , S., HOU, Z.,
WANG, Y., AND WANG, Y. SDF: software-defined
flash for web-scale internet storage systems. InIn-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 14)(2014).

[36] OUYANG , X., ISLAM , N. S., RAJACHAN-
DRASEKAR, R., JOSE, J., LUO, M., WANG, H.,
AND PANDA , D. K. SSD-assisted hybrid memory
to accelerate memcached over high performance
networks. InInternational Conference for Parallel
Processing (ICPP 12)(2012).

[37] REDIS. http://redis.io/.

[38] ROSENBLUM, M., AND OUSTERHOUT, J. K. The
design and implementation of a log-structured file
system. InACM Transactions on Computer Systems
(TC 92)(1992), vol. 10(1):26-52.

[39] SAXENA , M., SWIFT, M. M., AND ZHANG, Y.
Flashtier: a lightweight, consistent and durable
storage cache. InThe European Conference on
Computer Systems (EuroSys 12)(2012).

[40] SESHADRI, S., GAHAGAN , M., BHASKARAN , S.,
BUNKER, T., DE, A., JIN , Y., L IU , Y., AND

SWANSON, S. Willow: a user-programmable
SSD. InUSENIX Symposium on Operating Systems
Design and Implementation (OSDI 14)(2014).

[41] SHAFAEI , M., DESNOYERS, P., AND FITZ-
PATRICK, J. Write amplification reduction in
flash-based SSDs through extent-based temperature
identification. InUSENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 16)(2016).

[42] SOUNDARARAJAN, G., PRABHAKARAN , V.,
BALAKRISHNAN , M., AND WOBBER, T. Extend-
ing SSD lifetimes with disk-based write caches.
In USENIX Conference on File and Storage
Technologies (FAST 10)(2010).



[43] T13. T13 documents referring to TRIM.
http://t13.org/Documents/MinutesDefault.aspx?
keyword=trim.

[44] TANG, L., HUANG, Q., LLOYD , W., KUMAR , S.,
AND L I , K. RIPQ: advanced photo caching on flash
for facebook. InUSENIX Conference on File and
Storage Technologies (FAST 15)(2015).

[45] TWITTER. Fatcache.
https://github.com/twitter/fatcache.

[46] WANG, P., SUN, G., JIANG , S., OUYANG , J., LIN ,
S., ZHANG, C., AND CONG, J. An efficient design
and implementation of LSM-tree based key-value
store on Open-Channel SSD. InThe European
Conference on Computer Systems (EuroSys 15)
(2015).

[47] WU, X., XU, Y., SHAO, Z., AND JIANG , S. LSM-
trie: an LSM-tree-based ultra-large key-value store
for small data items. InUSENIX Annual Technical
Conference (ATC 15)(2015).

[48] YANG, J., PLASSON, N., GILLIS , G., TALAGALA ,
N., AND SUNDARARAMAN , S. Don’t stack your
log on my log. InWorkshop on Interactions of
NVM/Flash with Operating Systems and Workloads
(INFLOW 14)(2014).

[49] ZHANG, H., DONG, M., AND CHEN, H. Efficient
and available in-memory KV-store with hybrid
erasure coding and replication. InUSENIX
Conference on File and Storage Technologies (FAST
16) (2016).

[50] ZHANG, Y., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. De-indirection for flash-
based SSDs with nameless writes. InUSENIX
Conference on File and Storage Technologies (FAST
12) (2012).

[51] ZHANG, Y., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Removing the costs
and retaining the benefits of flash-based SSD
virtualization with FSDV. In International
Conference on Massive Storage Systems and
Technology (MSST 15)(2015).

[52] ZHANG, Y., SOUNDARARAJAN, G., STORER,
M. W., BAIRAVASUNDARAM , L. N., SUBBIAH ,
S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Warming up storage-level caches
with bonfire. InUSENIX Conference on File and
Storage Technologies (FAST 13)(2013).

[53] ZHENG, M., TUCEK, J., HUANG, D., QIN , F.,
L ILLIBRIDGE , M., YANG, E. S., ZHAO, B. W.,
AND SINGH, S. Torturing databases for fun
and profit. InUSENIX Symposium on Operating
Systems Design and Implementation (OSDI 14)
(2014).

[54] ZHENG, M., TUCEK, J., QIN , F., AND

L ILLIBRIDGE , M. Understanding the robustness of
SSDs under power fault. InUSENIX Conference on
File and Storage Technologies (FAST 13)(2013).


