DIDACache: A Deep Integration of Device and Application for Flash based
Key-value Caching

Zhaoyan Shen Feng Chen Yichen Jid Zili Shad
TDepartment of Computing ~ *Computer Science & Engineering
Hong Kong Polytechnic University Louisiana State Univigrsi
Abstract latencies [23]. Twitter also has a similar key-value cache

In recent years, flash-based key-value cache systerggstem, called Fatcache [45].

have raised high interest in industry, such as Facebook’s Typically, these flash-based key-value cache systems
Mcpipper and Twitter’s _Fatcache. These cache systeMgrectly use commercial flash SSDs and adopt a
typically use commercial SSDs to store and managgiemcached-like scheme to manage key-value cache data
key-value cache data in flash. Such a practice, though flash. For example, key-values are organized into
simple, is inefficient due to the hugsemantic gap gjaps of different size classes, and an in-memory hash
between'Fhe key-vall_Je cache manager and the underl_yirtlgme is used to maintain the key-to-value mapping.
flash devices. In this paper, we advocate to re<_:on3|dguch a design is simple and allows a quick deployment.
the cache system design and directly open device-levgloyever, it disregards an important fact — the key-value
details of the underlying flash storage for key-valu€ache systems and the underlying flash devices both have
caching. This co-design approach bridges the semantifary unique properties Simply treating flash SSDs as
gap and well connects the two layers together, whicly faster storage and the key-value cache as a regular
allows us to leverage both the domain knowledge ofpplication not only fails to exploit various optimization
key-value caches and the unique device properties. Igpportunities but also raises several critical concerns,
this way, we can maximize the efficiency of key'Va|Uenamerredundant mappingdouble garbage collectign
caching on flash devices while minimizing its weaknessgng over-overprovisioning All these issues cause
We implemented a prototype, called DIDACache, basednormous inefficiencies in practice, which motivated
on the Open-Channel SSD platform. Our experiments OfJs to reconsider the software/hardware structure of the
real hardware show that we can significantly increase thg rent flash-based key-value cache systems.

throughput by 35.5%, reduce the latency by 23.6%, and |, hig paper, we will discuss the above-mentioned

remove unnecessary erase operations by 28%. three key issues (SeCtion 3) caused by the I'ﬂﬂyﬂantic
1 Introduction gap between the key-value caches and the underlying
High-speed key-value caches, such as Memcached [3flash devices, and further present a cohesive cross-
and Redis [37], are the “first line of defense” in today’slayer design to fundamentally address these issues.
low-latency Internet services. By caching the workingThrough our studies, we advocate to open the underlying
set in memory, key-value cache systems can effectivelgfetails of flash SSDs for key-value cache systems.
remove time-consuming queries to the back-end datguch a co-design effort not only enables us to remove
store (e.g., MySQL or LevelDB). Though effective, the unnecessary intermediate layers between the cache
the in-memory key-value caches heavily rely on larggnanager and the storage devices, but also allows us
amount of expensive and power-hungry DRAM for highto leverage the precious domain knowledge of key-
cache hit ratio [19]. As the workload size rapidly grows,value cache systems, such as the unique access patterns
an increasing concern with such memory-based cacrd mapping structures, to effectively exploit the great
systems is their cost and scalability [2]. Recently, a mor@otential of flash storage while avoiding its weakness.
cost-efficient alternativelash-based key-value caching By reconsidering the division between software and
has raised high interest in the industry [13, 45]. hardware, a variety of new optimization opportunities
NAND flash memory provides a much larger capacitycan be explored: (1) A single, unified mapping structure
and lower cost than DRAM, which enables a low Totalcan directly map the “keys” to physical flash pages
Cost of Ownership (TCO) for a large-scale deploymenstoring the “values”, which completely removes the
of key-value caches. Facebook, for example, deploysedundant mapping table and saves a large amount of on-
a Memcached-compatible key-value cache system baséddvice memory; (2) An integrated Garbage Collection
on flash memory, called McDipper [13]. It is reported (GC) procedure, which is directly driven by the cache
that McDipper allows Facebook to reduce the number ofystem, can optimize the decision of when and how
deployed servers by as much as 90% while still deliveringo recyclesemantically invalidstorage space at a fine
more than 90% “get responses” with sub-millisecondyranularity, which removes the high overhead caused by

the unnecessary and uncoordinated GCs at both layersocedure recycles obsolete pages later, which is similar
(3) An on-line scheme can determine an optimal size ofo a Log-Structured File System [38]. (8)ear Leveling
Over-Provisioning Space (OPS) and dynamically adapbince flash cells could wear out after a certain number
to the workload characteristics, which will maximize theof Program/Erase cycles, the FTL shuffles read-intensive
usable flash space and greatly increase the cost efficienbiocks with write-intensive blocks to even out writes over
of using expensive flash devices. flash memory. A previous work [14] provides a detailed
We have implemented a fully functional prototype,survey of FTL algorithms.
called DIDACache based on a PCI-E Open-Channele Flash-based key-value cachedn-memory key-value
SSD hardware to demonstrate the effectiveness of thisache systems, such as Memcached, adopt a slab-based
new design scheme. A thin intermediate libraryallocation scheme. Due to its efficiency, flash-based
layer, 1ibssd, is created to provide a programming key-value cache systems, such as Fatcache, inherit a
interface to facilitate applications to access low-levekimilar structure. Here we use Fatcache as an example;
device information and directly operate the underlyingoased on open documents [13], McDipper has a similar
flash device. Using the library layer, we developed alesign. In Fatcache, the SSD space is first segmented
flash-aware key-value cache system based on Twitteriato slabs Each slab is further divided into an array of
Fatcache [45]. Our experiments show that this approactlots (a.k.a. chunks) of equal size. Each slot stores a
can increase the throughput by 35.5%, reduce the latentyalue” item. Slabs are logically organized into different
by 23.6%, and remove erase operations by 28%. slab classedased on the slot sizes. An incoming key-
The rest of paper is organized as follows. Section alue item is stored into a class whose slot size is the
and Section 3 give background and motivation. Section #est fit of its size. For quick access,hash mapping
describes the design and implementation. Experimentédble is maintained in memory to map the keys to the
results are presented in Section 5. Section 6 gives tr&abs containing the values. Querying a key-value pair
related work. The final section concludes this paper. (GET) is accomplished by searching the in-memory hash
table and loading the corresponding slab block from
2 Background flash into memory. Updating a key-value pa$Et) is
This section briefly introduces three key technologiesiealized by writing the updated value into a new location
flash memory, SSDs, and the current flash-based kegnd updating the key-to-slab mapping in the hash table.
value cache systems. Deleting a key-value paiDELETE) simply removes the
e Flash Memory. NAND flash memory is a type of mapping from the hash table. The deleted or obsolete
EEPROM device. A flash memory chip consists ofvalue items are left for GC to reclaim later.
multiple planes each of which consists of thousands Despite the structural similarity to Memcached, flash-
of blocks (a.k.a. erase blocks). A block is further based key-value cache systems have several distinctions
divided into hundreds gbages Flash memory supports from their memory-based counterparts. First, the 1/0
three main operations, namelgad, write, anderase. granularity is much larger. For example, Memcached can
Reads and writes are normally performed in units ofipdate the value items individually. In contrast, Fatcache
pages. A read is typically fast (e.g., 50us), while a write id1as to maintain an in-memory slab to buffer small items
relatively slow (e.g., 600ps). A constraint is that pages inn memory first and then flush to storage in bulk later,
a block must be written sequentially, and pages canngthich causes a unique “large-1/O-only” pattern on the
be overwritten in place, meaning that once a page ignderlying flash SSDs. Second, unlike Memcached,
programmed (written), it cannot be written again until thewhich is byte addressable, flash-based key-value caches
entire block is erased. An erase is typically slow (e.g.¢annot update key-value items in place. In Fatcache, all
5ms) and must be done in block granularity. key-value updates are written to new locations. Thus,
e Flash SSDs A typical flash SSD includes a host @ GC procedure is needed to clean/erase slab blocks.

interface logic, an SSD controller, a dedicated bufferThird, the management granularity in flash-based key-
and flash memory controllers connecting to flash memoryalue caches is much coarser. For example, Memcached
chips via multiple channels. Alash Translation Layer Maintains an object-level LRU list, while Fatcache uses
(FTL) is imp|emented in firmware to manage flasha simple slab-level FIFO pOllcy to evict the oldest slab
memory. An FTL has three major roles: (Igical block when free space is needed.

mapping An in-memory mapping table is maintained in L

the on-device buffer to map logical block addresses tg’ Motivation

physical flash pages dynamically. @arbage collection As shown in Figure 1, in a flash-based key-value cache,
Due to the erase-before-write constraint, upon a write, ththe key-value cache managend theflash SSDun at the
corresponding logical page is written to a nhew locationapplication and device levels, respectively. Both layers
and the FTL simply marks the old page invalid. A GChave complex internals, and the interaction between the

KV Cache Manager Running at different levels (application vs. device),
[KIVMapping | | Slab Allocation | [Slab Reclamation] these two GC processes not only are redundant but also
| Cache Replacement | | Others | could interfere with one another. For example, from the
Operating System FTL's perspective, it is unaware of the semantic meaning
[Page Cache | [/O Scheduler | [Device Driver | of page content. Even if no key-value pair is valid (i.e.,
Flash SSD no key maps to any value item), the entire page is still
\ Page Mapping \ \ Seage ‘ ‘ Wear Leveling ‘ considered as “valid” at the device level. During the
‘ Bd ;?nC:nt ‘ ‘Over-g;’zvcizioning‘ ‘ Others ‘ FTL-level GC, this page has to be moved unnecessarily.

) Moreover, since the FTL-level GC has to assume all valid
Figure 1:Architecture of flash-based key-value cache. pages contain useful content, it cannot selectively recycl
two raises three critical issues, which have motivated thgr even aggressively invalidate certain pages that contain
work presented in this paper. semantically “unimportant” (e.g., LRU) key-value pairs.
e Problem 1: Redundant mapping Modern flash SSDs For example, even if a page contains only one valid key-
implement a complex FTL in firmware. Although a value pair, the entire page still has to be considered valid
variety of mapping schemes, such as DFTL [18], existand cannot be erased, although it is clearly of relatively
high-end SSDs often still adopt fine-grainpdge-level low value. Note thaTRIM command [43] cannot address
mappingfor performance reasons. As a result, for a 1TBthis issue as well. If we merge the two-level GCs and
SSD with a 4KB page size, a page-level mapping tableontrol the GC process based on semantic knowledge of
could be as large as 1GB. Integrating such a large amoutite key-value caches, we could completely remove all the
of DRAM on device not only raises production cost butabove-mentioned inefficient operations and create new
also reliability concerns [18, 53, 54]. In the meantime optimization opportunities.

at the application level, the key-value cache system alsp problem 3: Over-overprovisioning. In order to
manages another mapping structure, an in-memory hashinimize the performance impact of GC on foreground
table, which translates the keys to the corresponding slafos, the FTL typically reserves a portion of flash
blocks. The two mapping structures exist at two levelsnemory, called Over-Provisioned Space (OPS), to
simultaneously, which unnecessarily doubles the memomaintain a pool of clean blocks ready for use. High-end
consumption. SSDs often reserve 20-30% or even larger amount of flash
A fundamental problem is that the page-level mappingpace as OPS. From the user’s perspective, the OPS space
is designed for general-purpose file systems, rather thas nothing but an expensive unusable space. We should
key-value caching. In a typical key-value cache, thenote that the factory setting for OPS is mostly based on
slab block size is rather large (in Megabytes), which isa conservative estimation for worst-case scenarios, where
typically 100-1,000x larger than the flash page size. Thithe SSD needs to handle extremely intensive write traffic.
means that the fine-grained page-level mapping schenhe key-value cache systems, in contrast, the workloads are
is an expensive over-kill Moreover, a large mapping often read-intensive [5]. Reserving such a large portion
table also incurs other overheads, such as the need fofflash space is a significant waste of expensive resource.
a large capacitor or battery, increased design complexitin the meantime, key-value cache systems possess rich
reliability risks, etc. If we could directly map the hashedknowledge about the 1/0 patterns and have the capability
keys to the physical flash pages, we can completelgf accurately estimating the incoming write intensity.
remove this redundant and highly inefficient mapping foBased on such estimation, a suitable amount of OPS
lower cost, simpler design, and improved performance. could be determined during runtime for maximizing the
e Problem 2: Double garbage collection GC is the usable flash space for effective caching. Considering
main performance bottleneck of flash SSDs [3, 8]. Irthe importance of cache size for cache hit ratio, such a
flash memory, the smallest read/write unit is a page (e.g20-30% extra space could significantly improve system
4KB). A page cannot be overwritten in place until theperformance. If we could leverage the domain knowledge
entire erase block (e.g., 256 pages) is erased. Thu@f the key-value cache systems to determine the OPS
upon a write, the FTL marks the obsolete page “invalid"management at the device level, we would be able to
and writes the data to another physical location. At gnaximize the usable flash space for caching and greatly
later time, a GC procedure is scheduled to recycle thénprove the overall cost efficiency as well as system
invalidated space for maintaining a pool of clean eras@erformance.
blocks. Since valid pages in the to-be-cleaned erase block In essence, all the above-mentioned issues stem from
must be first copied out, cleaning an erase block oftea fundamental problem in the current I/O stack design:
takes hundreds of milliseconds to complete. A key-valu¢he key-value cache manager runs at the application
cache system has a similar GC procedure to recycle tHevel and views the storage abstraction as a sequence
slab space occupied by obsolete key-value pairs. of sectors; the flash memory manager (i.e., the FTL)

KV Cache Manager GC module which reclaims flash space occupied by
‘ Slab Manager HKey/SIabMapplngH Integrated GC ‘ b | k | i d
‘OPS ManagementH Cache Manager H Others ‘ obsolete ey'Va ues' an (4) a@PS management
: : module which dynamically adjusts the OPS size.
Library (libssd)
Bad Block Slab/Flash Operation 4.1.1 Slab Management
‘ Management ‘ ‘ Translation ‘ ‘ Conversion ‘ L.
Similar to Memcached, our key-value cache system
Operating System
[Page Cache | [/0 Scheduing | [Devies Diiver | adopts a slab-based space management scheme — the
Open-channel D flash space is divided into equal-sizeldps each slab
\ Flash Operations | is divided into an array o$lots of equal size; each slot
Figure 2:The architecture overview of DIDACache. stores a key-value item; slabs are logically organized into

runs at the device firmware layer and views incominglifferentslab classesccording to the slot size.
requests simply as a sequence of individual 1/0s. This Despite these similarities to in-memory key-value
abstraction, unfortunately, creates a hsgenantic gap caches, caching key-value pairs in flash has to deal with
between the key-value cache and the underlying flasBeveral unique properties of flash memory, such as the
storage. Since the only interface connecting the twoout-of-place update” constraint. By directly controliin
layers is a strictly defined block-based interface, ndlash hardware, our slab management can be specifically
semantic knowledge about the data could be passed oveptimized to handle these issues as follows.
This enforces the key-value cache manager and the flasiVlapping slabs to blocks Our key-value cache directly
memory manager to work individually and prevents anymaps (logical) slabs to physical flash blocks. We divide
collaborative optimizations. This motivates us to studyflash space into equal-sized slabs, and each slab is
how to bridge this semantic gap and build a highlystatically mapped to one or several flash blocks. There
optimized flash-based key-value cache system. are two possible mapping schemes: @gr-channel
4 Design mapping which maps a slab to a sequence of contiguous
hysical flash blocks in one channel, and @)oss-
hannel mappingwhich maps a slab across multiple
oo L ¥hannels in a round-robin way. Both have pros and cons.
ppt|m|zec_i for flash and el|m|r!ates al UNNECESSalyha former is simple and allows to directly infer the
intermediate layers. Its structure includes three layers. logical-to-physical mapping, while the latter could yield
* An enhanced flash-aware key-value cache managey petter handwidth through channel-level parallelism.
whichis highly optimized for flash memory storage, \ye choose the simpler per-channel mapping for two
runs at the application level, and directly drives thereasons. First, key-value cache systems typically have
flash management; _ _ sufficient slab-level parallelism. Second, this allowsaus t
* A thin intermediate library layerwhich provides giractly transiate “slabs” into “blocks” at the library ley
a slab-based abstraction of low-level flash memory i, minimal calculation. In fact, in our prototype, we
space and an API interface for directly and €asilyyiractly map a flash slab to a physical flash block, since
operating flash devices (e.ggad, write, erase); o piock size (8MB) is appropriate as one slab. For flash
* A specialized flash memory SSD hardwasich eyices with a smaller block size, we can group multiple
exposes the physical details of flash memory.,niiguous blocks in one channel into one slab.
medium and opens low-levelirect access to the , giap puffer: Unlike DRAM memory, flash does not
flash memory medium through thectl interface. g, nnort random in-place overwrite. As so, a key-value
With such a holistic design, we strive to completelyjtem cannot be directly updated in its original place in
bypass multiple intermediate layers in the conventionadash. For aSET operation, the key-value item has to be
structure, such as file system, generic block 1/Ogtored in a new location in flash (appended like a log),
scheduler, and the FTL layer in SSD. Ultimately,and the obsolete item will be recycled later. To enhance
we desire to let the application-level key-value CaCh%erformance,we maintain an-memory slakas a buffer
manager leverage its domain knowledge and directlyy, each slab class. Upon receivingsaT operation,
drive the underlying flash devices to operate onljthe key-value pair is first stored in the corresponding in-
necessary functions while leaving out unnecessary onésemory slab and completion is immediately returned.
In this section, we will discuss each of the three layers. \when the in-memory slab is full, it is flushed into am
4.1 Application Level: Key-value Cache flash slabfor persistent storage.
Our key-value cache manager has four major compo- The slab buffer brings two benefits. First, the in-
nents: (1) aslab management modulehich manages memory slab works as a write-back buffer. It not only
memory and flash space in slabs; (2uaified direct speeds up accesses but also makes incoming requests
mapping modulewhich records the mapping of key- asynchronous, which greatly improves the throughput.
value items to their physical locations; (3) emtegrated Second, and more importantly, the in-memory slab

As an unconventional hardware/software architectur
(see Figure 2), our key-value cache system is highl

merges small key-value slot writes into large slab writeshe largest number of obsolete values, andL@ality-
(in units of flash blocks), which completely removes thebased evictiopwhich selects the coldest slab for cleaning
unwanted small flash writes. Our experiments show thdtased on the LRU order. Both policies are used
a small slab buffer is sufficient for performance. depending on the runtime system condition.
e Channel selection and slab allocation For load e Space-based eviction As a greedy approach, this
balance considerations, when an in-memory slab is fulscheme aims to maximize the freed flash space for each
we first select the channel with the lowest load. The loa@viction. To this end, we first select a channel with the
of each channel is estimated by counting three key flaslowest load to limit the search scope, and then we search
operations fead, write, anderase). Once a channel its Full Slab Queudo identify the slab that contains the
is selected, a free slab is allocated. For each channel, ieast amount of valid data. As the slot sizes of different
maintain aFree Slab Queuand aFull Slab Queuego slab classes are different, we use the number of valid key-
manage clean slabs and used slabs separately. The slghfie items times their size to calculate the valid data
in a free slab queue are sorted in the order of their erasatio for a given flash slab. Once the slab is identified,
counts, and we always select the slab with the loweske scan the slots of the slab, copy all valid slots into the
erase count first for wear-leveling purposes. The slabsurrent in-memory slab, update the hash table mapping
in a full slab queue are sorted in the Least Recently Usegccordingly, then erase the slab and place the cleaned slab
(LRU) order. When running out of free slabs, the GCback in theFree Slab Queuef the channel.
procedure is triggered to produce clean slabs, which wg | ocality-based eviction This policy adopts an
will discuss in more details later. aggressive measure to achieve fast reclamation of free
With the above optimizations, a fundamental effect isglabs. Similar tospace-based evictigrwe first select
all I/0Os seen at the device level are shaped into large-sizge channel with the lowest load. We then select the
slab writes, which completely removes small page write$ RU slab as the victim slab to minimize the impact to
as well as the need for generic GC atthe FTL level. it ratio. This can be done efficiently as the full flash
4.1.2 Unified Direct Mapping slabs are maintained in their LRU order for each channel.
In order to address the double mapping problem, & scheme, calledjuick clean is then applied by simply
key change is to remove all the intermediate mappingsiropping the entire victim slab, including all valid slots.
and directly map the SHA-1 hash of the key to thelt is safe to remove valid slots, since our application is
corresponding physical location (i.e., the slab ID and tha key-value cache (rather than a key-value store) — all
offset) in the in-memory hash table. clients are already required to write key-values to the
Figure 3 shows the structure of the in-memory haslback-end data store first, so it is safe to aggressively drop
table. Each hash table entry includes three fielkdsl, any key-value pairs in the cache without any data loss.
sid, offset>. For a given keynd is the SHA-1 digest, Comparing these two approachepace-based evic-
sid is the ID of the slab that stores the key-value itemtion needs to copy still-valid items in the victim slab, so it
and offset is the slot number of the key-value item takes more time to recycle a slab but retains the hit ratio.
within the slab. Upon a request, we first calculate then contrast, locality-based evictionallows to quickly
hash value of the “key” to locate the bucket in the hasltlean a slab without moving data, but it aggressively
table, and then use the SHA-1 digesd) to retrieve the erases valid key-value items, which may reduce the cache
hash table entry, in which we can find the slalid) hit ratio. To reach a balance between the hit ratio and
containing the key-value pair and the corresponding slatC overhead, we apply these two policiigmamically
(offset). The found slab could be in memory (i.e., in during runtime — when the system is under high pressure
the slab buffer) or in flash. In the former case, the valuge.g., about to run out of free slabs), we use the fast but
is returned in a memory access; in the latter case, the itefpreciselocality-based evictiorto quickly release free

is read from the corresponding flash page(s). slabs for fast response; when the system pressure is low,
4.1.3 Garbage Collection we usespace-based evictioand try to retain all valid
Garbage collection is a must-have in key-value cachkey-values in the cache for hit ratio.

systems, since operations (e.§ET and DELETE) can To realize the above-mentioned dynamic selection

create obsolete value items in slabs, which need to heolicies, we set two watermarks, lowMg,) and high
recycled at a later time. When the system runs out ofWhgn). We will discuss how to determine the two
free flash slabs, we need to reclaim their space in flash.watermarks in the next section. The GC procedure
With the semantic knowledge about the slabs, wehecks the number of free flash slalf e, in the
can perform a fine-grained GC in one single proceduresurrent system periodically. B e is between the high
running at the application level only. There are twowatermarkWgn, and the low watermarkoy, it means
possible strategies for identifying a victim slab: (1)that the pool of free slabs is running low but under
Space-based evictipmvhich selects the slab containing moderate pressure. So we activate the less aggressive

A Drain Process GC Process
»KV Index|—»{KV Index 1y No GG A o bl

ngn

slab Flush _|

Space-based GC D
OPS

Slab Slot [md]sidloffse
D

Bucket| ([T THIL
+ | [IDOODOTD T i asea o :

. Flash slabs . Time . Free slabs Full slabs
Figure 3:Unified mapping structure. Figure 4:Low and high watermarks Figure 5:M/M/1 queuing model.

space-based evictigmolicy to clean slabs. This process This effectively returns free slabs back to the usable cache
repeats until the number of free slalSe, reaches the space (i.e., reduced OPS size). In this way, the OPS space
high watermark. [fStee is below the low watermark, automatically adapts to the incoming traffic.
which means that the system is under high pressure, theThe second scheme is based on the well-known
aggressivepace-based evictigmolicy kicks in and uses queuing theory, which builds slab allocation and reclaim
quick cleanto erase the entire LRU slab and discard allprocesses as a M/M/1 queue. As Figure 5 shows, in
items immediately. This fast-response process repeatisis system, we maintain queues for free flash slabs and
until the number of free slabs in the systeByee, is full flash slabs for each channel, separately. The slab
brought back toWMq,. If the system is idle, the GC drain process consumes free slabs, and the GC process
procedure switches to thgpace-based evictiopolicy produces free slabs. Therefore we can view the drain
and continues to clean slabs until reaching the higlprocess as the consumer process, the GC process as the
watermark. Figure 4 illustrates this process. producer process, and the free slabs as resources. The
L drain process consumes flash slabs at a Aatand the

4.1.4 Over-Provisioning Space Management GC process generates free flash slabs at apratBrior
In conventional SSDs, a large portion of flash spacetudy [5] shows that in real applications, the incoming
is reserved as OPS, which is invisible and unusablef key-value pairs can be seen as a Markov process, so
by applications. In our architecture, we can leveragehe drain process is also a Markov process. For the
the domain knowledge to dynamically adjust OPS an@C process, whefee is less thary, the locality-
maximize the usable flash space for caching. based eviction policy is adopted. The time consumed

In our system, the two watermarkdMo, and for reclaiming one slab is equal to the flash erase time
Whigh, drive the GC procedure. The two watermarksplus the schedule time. The flash block erase time is
effectively determine the available OPS siz&Mgy, IS a constant, and the schedule time can be viewed as a
the dynamically adjusted OPS size, aWgn can be random number. Thus the locality-based GC process is
viewed as the upper bound of allowable OPS. We set thalso a Markov process with a service rateBased on the
difference between the two watermarkshigh — Wow, analysis, the process can be modeled as a M/M/1 queue
as a constant (15% of the flash space in our prototypeyith arrival rateA, service rateu, and one server.
Ideally, we desire to have the number of free slé&hge, According to Little’s law, the expected number of
fluctuating in the window between the two watermarks. slabs waiting for service id /(4 —A). If we reserve

Our goal is to keep just enough flash space for overat least this number of free slabs before the locality-
provisioning. However, it is challenging to appropriatelybased GC process is activated, we can always eliminate
position the two watermarks and make them adaptivéhe synchronous waiting time. So, for the system
to the workload. It is desirable to have an automaticperformance benefit, we set
self-tuning scheme to dynamically determine the two Wow=A/(U—=A) 1)

watermarks ba_sed on runtime situation. In our prototypg,, the above equation, is the slab consumption rate of
we have designed two schemes, feedback-based o grain process, and is the slab reclaim rate of GC,
heuristic modeand aqueuing theory based model which equals (tevict + torner), Wheretevict is the block

Our heuristic scheme is si.mplg and \(vorks as followsg ase time, antner is other system time needed for GC.
when the low watermark is hit, which means that |, gquation 2, the arrival rate is decided by the
the current system is under high pressure, we lificoming rate of key-value pairs and their average size,
the low watermark by doublingMow to quickly \yhich are both measurable. Assuming the arrival rate of

respond to increasing writes, and the high watermark iRey-values is\kv, the average size &y, and the slab
correspondingly updated. As a result, the system wilk;,¢ isSyap A can be calculated as follows.

hash(key

Free slabs (%
N

Evict slab

>

Llig

activate the aggressiviick cleanto produce more free Akv X Sky

slabs quickly. This also effectively reserves a large OPS A= e 2
space for use. When the number of free slabs reacheg we have 1ab

the high watermark, which means the current system is Akv X Skv X (tevict + tother)

. . Wow = 3
under light pressure, we linearly drop the watermarks. M Syiab— Akv X Skv X (tevict + tother))

By using the above-mentioned equations, we cad.3 Hardware Level: Open-Channel SSD

periodically update the settings of the low and highwe use an Open-Channel SSD manufactured by
watermarks. In this way, we can adaptively tune the OP#emblaze [30]. This hardware is similar to that used in

size based on real-time workload demands. SDF [35]. This PCle based SSD contains 12 channels,
each of which connects to two Toshiba 19nm MLC flash
4.1.5 Other Technical Issues chips. Each chip contains two planes and has a capacity

of 66GB. Unlike SDF [35], our SSD exposes several
Flash memory wears out after a certain number okey device-level properties: first, the SSD exposes the
Program/Erase (P/E) cycles. In our prototype, for weagntire flash memory space to the upper level. The SSD
leveling, when allocating slabs in the drain process angjardware abstracts the flash memory space in 192 LUNS,
reclaiming slabs in the GC process, we take the erasghd an LUN is the smallest parallelizable unit. The
count of each slab into consideration and always use theyNs are mapped to the 12 channels in a sequential
block with the smallest erase count. As our channelmanner, i.e., channel #0 contains LUNs 0-15, channel
slab selection and slab-allocation scheme can evenly| contains LUNs 16-31, and so on. Therefore, we
distribute the workloads across all channels, wears can g ow the physical mapping of slabs on flash memory
approximately distributed across channels as well. Othejnd channels. Second, unlike SDF, which presents
additional wear-leveling measures, such as dynamicalifre flash space as 44 block devices, our SSD provides
shuffling cold/hot slabs, could also be included to furthegjirect access to raw flash memory through thetl
even out the wear distribution. interface. It allows us to directly operate the target flash
Crash recovery is also a challenge. We may simplynemory pages and blocks by specifying the LUN ID and
drop the entire cache upon crashes. However, due to thiege number to compose commands added to the device
excessively long warm-up time, it is preferred to retaincommand queue. Third, all FTL-level functions, such as
the cached data through crashes [52]. In our system, alddress mapping, wear-leveling, bad block management,
key-value items are stored in persistent flash but the hastie bypassed. This allows us to remove the device-level
table is maintained in volatile memory. There are tworedundant operations and make them completely driven
potential solutions to recover the hash table. One simpley the user-level applications.
method is to scan all the valid !<ey-_value_ items in fla_shs Evaluation
and rebuild the hash table, which is a t|me-consum|n%
process. A more efficient solution is to periodicallyo.1 Prototype System
checkpoint the in-memory hash table into (a designatede have prototyped the proposed key-value cache on the
area of) the flash. Upon recovery, we only need to reloa®pen-Channel SSD hardware platform manufactured by
the latest hash table checkpoint into memory and thememblaze [30]. Our implementation of the key-value
apply changes by scanning the slabs written after theache manager is based on Twitter's Fatcache [45]. It
checkpoint. Crash recovery is currently not implementeéhcludes 1,500 lines of code in the stock Fatcache and
in our prototype. 620 lines of code in the library.
In Fatcache, when$ET request arrives, if running out
; C o9 of in-memory slabs, it selects and flushes a memory slab
4.2 Library Level: 1ibssd to flash. If there is no free flash slab, a victim flash slab is
As an intermediate layer, the libraryibssd, connects chosen to reclaim space. During this process, incoming
the application and device layers. Unlike Liblight- requests have to wait synchronously. To fairly compare
nvm [16],1ibssd is highly integrated with the key-value with a cache system with non-blocking flush and eviction,
cache system. It has three main functions: $1gb-to- we have enhanced the stock Fatcache by adding a drain
block mappingwhich statically maps a slab to one (or thread and a slab eviction thread. The other part remains
multiple contiguous) flash memory block(s) in a channelunchanged. We have open-sourced our asynchronous
In our prototype, it is a range of blocks in a flash LUN version of Fatcache for public downloading [1]. In our
(logic unit number). Such a mapping can be calculateéxperiments, we denote the stock Fatcache working in the
through a mathematical conversion and does not requigynchronous mode as “Fatcache-Sync”, and the enhanced
another mapping table. (Xperation transformation one working in the asynchronous mode as “Fatcache-
which converts key slab operations, namsdgd, write, Async”. For each platform, we configure the slab size
anderase, to flash memory operations. This allows theto 8 MB, the flash block size. The memory slab buffer is
key-value cache system to operate in units of slabs, ratheet to 128MB.
than flash pages/blocks. (Bad block management For performance comparison, we also run Fatcache-
which maintains a list of flash blocks that are detected aSync and Fatcache-Async on a commercial PCI-E SSD
“bad” and ineligible for allocation, and hides them from manufactured by Memblaze. The SSD is built on
the key-value cache.

the exact same hardware as our Open-Channel SSDWe test the system performance by varying the cache
but adopts a typical, conventional SSD architectursize (in percentage of the data set size). Figure 6
design. This SSD employs a page-level mapping anshows the throughput, i.e., the number of operations
the page size is 16KB. Unlike the Open-Channel SSDper second (ops/sec). We can see that as the cache
the commercial SSD has 2GB of DRAM on the devicesize increases from 5% to 12%, the throughput of all
which serves as a buffer for the mapping table and ¢he three schemes improves significantly, due to the
write-back cache. The other typical FTL functions (e.g.improved cache hit ratio. Comparing the three schemes,
wear-leveling, GC, etc.) are active on the device. DIDACache outperforms Fatcache-Sync and Fatcache-
: Async substantially. With a cache size of 10% of

5.2 Expe”memal Setup) . the data set (about 25GB), DIDACache outperforms
Our experiments are conducted on a workstation, Wh'C&atcache-Sync and Fatcache-Async by 9.7% and 9.2%,
features an Intel i7-5820K 3.3GHZ processor angegpectively. The main reason is that the dynamic
16GB memory. An Open-Channel SSD introduced inopg management in DIDACache adaptively adjusts the
Section 4.3 is used as DIDACache’s underlying cache.sereq OPS size according to the request arrival rate.
storage. Since the SSD capacity is quite large (1.5TB), contrast, Fatcache-Sync and Fatcache-Async statically
it would take excessively Ion_g time to fill up the entire Laserve 25% flash space as OPS, which affects the cache
SSD. To complete our tests in a reasonable time fram@y; 4tig (see Figure 7). Another reason is the reduced
we only use part of the flash space, and we ensure thgerhead due to the application-driven GC. The effect of
used space is evenly spread across all the channels agg policies will be examined in Section 5.4.2.

ﬂ"?‘Sh I_‘UNS‘ For the software, we use Ubuntu 14.04 \ye 150 note that Fatcache-Async only outperforms
with Linux kernel 3.17.8. Our back-end database Servegaicache-Sync marginally in this workload. This is
is MySQL 5.5 with InnoDB storage engine running pecase for this workload, Fatcache-Async adopts the

on a separate workstation, which features an Intelyne static OPS policy as Fatcache-Sync, which leads to
Core 2 Duo processor (3.13GHZ), 8GB memory and ghe same cache hit ratio. Figure 7 shows the hit ratios of

500GB hard drive. The database server and the caclifqe three cache systems. We can see that, as the cache

server are connected in a 1Gbps local Ethernet network;. increases, DIDACache’s hit ratio ranges from 76.5%

Fatcache-Sync and Fatcache-Async use the same systgifg4 go, which is much higher than that of Fatcache-
configurations, except that they run on the commerciaéynC ranging from 71.1% to 87.3%.

SSD rather than the Open-Channel SSD. 54 Cache Server Performance
5.3 Overall Performance In this section we focus on studying the performance
Our first set of experiments simulate a production datadetails of the cache servers. In this experiment, we
center environment to show the overall performance. Idlirectly generat€ET/GET operations to the cache server.
this experiment, we have a complete system setup with\&/e create objects with sizes ranging from 64 bytes to
workload generator (client simulator), a key-value cachdKB and first populate the cache server up to 25GB
server, and a MySQL database server in the back-end. in total. Then we generatBET and GET requests of

To generate key-value requests to the cache server, warious key-value sizes to measure the average latency
adopt a workload model presented in prior work [7]. Thisand throughput. All experiments use 8 key-value cache
model is built based on real Facebook workloads [5]servers and 32 clients.
and we use it to generate a key-value object data sét4.1 RandomsET/GET Performance
and request sequences to exercise the cache server. Higure 8 shows the throughput®ET operations. Among
size distribution of key-value objects in the databas¢he three schemes, our DIDACache achieves the highest
follows a truncated Generalized Pareto distribution withthroughput and Fatcache-Sync performs the worst. With
location 8 = 0, scaley = 2144766, and shap& = the object size of 64 bytes, the throughput of DIDACache
0.348238. The object popularity, which determinesis 2.48x 10° ops/sec, which is 1.3 times higher than that
the request sequence, follows a Normal distributiorof Fatcache-Sync and 35.5% higher than that of Fatcache-
with meany; and standard deviatioa, wherey; is a Async. The throughput gain is mainly due to our unified
function of time. We first generate 800 million key- slab management policy and the integrated application-
value pairs (about 250GB data) to populate our databasdtiven GC policy. DIDACache also selects the least
and then use the object popularity model to generataded channel when flushing slabs to flash. Thus, the
200 million requests. We have run experiments withSSD’s internal parallelism can be fully utilized, and
various numbers of servers and clients with the abovewith software and hardware knowledge, the GC overhead
mentioned workstation, but due to the space constrainis significantly reduced. Compared with Fatcache-
we only present the representative experimental resulssync, the relative performance gain of DIDACache
with 32 clients and 8 key-value cache servers. is smaller and decreases as the key-value object size

7.5x10" 100 3.0x10°
] Fatcache-Sync [__] Fatcache-Sync

[Fatcache-Async [Fatcache-Async

Il DIDACache | Il DIDACache

[_]Fatcache-Sync
[_] Fatcache-Async
Il DIDACache

7.2x10"

2.5x10°

o
©
X
=

2.0x10°

6.6x10"
1.5x10°

1.0x10%
F s.0x10* 70 [
5.0x10*
.y
60 0.0
6 8 10 12 6 12 64B 1288 2568 512B 1KB 2KB 4KB

8 10
Cache Size(%) Cache Size(%)

Figure 6:Throughput vs. cache size ~ Figure 7:Hit ratio vs. cache size. Figure 8:sET throKungﬁ})ut vs. KV size
° [

°
©
X
3

hroughput(ops/sec)
Hit Ratio(%)
8
Set Throughput(ops/sec)

25 2.5x10°
[Fatcache-Sync ‘ T] Fatcache-Sync 400 {[__]Fatcache-Sync |
[Fatcache-Async [Fatcache-Async L1 Fatcache-Async ‘
200 || I DIDACache } 2.0x10° Bl DIDACache 350 -/l DIDACache |
300

1.5x10° & 250

&'200

1.0x10° L
8 150
100
5.0x10*
50
0.0 o

648 1288 256B 512B 1KB. 2KB 4KB 10 0:1 1:0

tency(u

Throughput(ops/sec)

5:5 37 0:1
Set/Get Ratio

Figure 9:sET IaKtVeSﬁ::y vs. KV size Figure 10:Througﬁplj't VSSET/GET ratio. Figure 11:Latency vs.SET/GET ratio.
increases. As the object size increases, the relative GC Table 1: Garbage collection overhead.

efficiency improves and the valid data copy overhead is L__GC Scheme | Key-values | Flash Page | Erase |
decreased. It is worth noting that the practical systems | D!DACache-Space | 7.48GB N/A 4,231
are typically dominated by small key-value objects, on DIDACache-Locality 0 N/A 3,679
- typically y | KEY Jects, DIDACache 2.05GB N/A 3,829
which DIDACache performs particularly well. Fatcache-Greedy 7 28GB 5.73GB | 5,024
Figure 9 gives the average latency &RT operations Fatcache-Kick 0 3.86GB | 4,122
Fatcache-FIFO 15.35GB 0 5,316

with different key-value object sizes. Similarly, it can
be observed that Fatcache-Sync performs the worst, ais4.3 Garbage Collection
DIDACache outperforms the other two significantly. Forg,,r cross-layer solution also effectively reduces the GC
example, for 64-byte objects, compared with Fatcach&syerhead, such as erase and valid page copy operations.
Sync and Fatcache-Async, DIDACache reduces thg, o cache-driven system, we can easily count erase
average latency by 54.5% and 23.6%, respectively. gnq page copy operations in the library code. However,
Figures 10 and 11 show the throughput and latencye cannot directly obtain these values on the commercial
for workloads with mixedSET/GET operations. Due SSD as they are hidden at the device level. For effective
to the space constraint, we only show results for thgomparison, we use the SSD simulator (extension to
case with 256-byte key-value items, and other caseniskSim [6]) from Microsoft Research and configure
with different key-value sizes show similar trend. Weijt with the same parameters of the commercial SSD.
can observe that DIDACache outperforms Fatcache-Syne first run the stock Fatcache on the commercial SSD
and Fatcache-Async across the board, but as the portigind collect traces by usinglktrace in Linux, and
of GET operations increases, the related performancgen replay the traces on the simulator. We compare
gain reduces. Although we also optimize the path obur results with the simulator-generated results. In our
processinGET, such as removing intermediate mapping.experiments, we confine the available SSD size to 30GB,
the main performance bottleneck is the raw flash readind preload it with 25GB data with workloads generated
Thus, with the workload of 100%ET, the latency and with the truncated Generalized Pareto distribution, and
throughput of the three schemes are nearly the samgien do SET operations (80 million requests, about
Figure 12 shows the latency distributions for key-valuesoGB), following the Normal distribution.

items of 64 bytes with differer#ET/GET ratios. Table 1 shows GC overhead in terms of valid
data copies (key-values and flash pages) and block
5.4.2 Memory Slab Buffer erases. We compare DIDACache using space-based

Memory slab buffer enables the asynchronous operatiof@iction only (“DIDACache-Space”), locality-based
of the drain and GC processes. To show the effect dgiviction only (“DIDACache-Locality”), the adaptively
slab buffer size, we vary the slab buffer size from 128MBselected eviction approach (‘DIDACache”) with the
to 1GB and test the average latency and throughput withtock Fatcache using three schemes (*Fatcache-Greedy”,
the workloads generated with the truncated Generalizedratcache-Kick”, and “Fatcache-FIFO”). In Fatcache,
Pareto distribution. As shown in Figure 13 and Figure 14the application-level GC has two options, copying valid
for both SET and GET operationsl the average |atencykey-Value items from the victim slab for retaining hit
and throughput are insensitive to the slab buffer sizgfatio or directly dropping the entire slab for speed.
indicating that a small in-memory slab buffer size (128m)This incurs different overheads of key-value copy
is sufficient.

300 500 80 3.0x10° 500 9x10*

400 -

4 8x10"

300 !

.
|
200 El
100 :
L
~

I — S - —, = [

Lo . P

Fe dexto*

FH
-
Latency(us)

—— | ol

L
B
SET/GET(1:1)

4 sx10*

o%—D]»—%
I
\
|
|
|

4 ax10"

Set Latency (us)

B
ET/GET(1:0)

Figures Eﬁ?ﬁé&ency (64-byte KV itemskigure 13:Lg?"gﬁé§7?rﬂ% throughpuskT)Figure 14:LaMtegFlwc?acaeﬁMcBi)throughpuGET)
with differentSET/GET ratios. with different buffer sizes. with different buffer sizes.

operations, denoted as “Key-values”. In this experiment, Table 2: Effect of different OPS policies.

both Fatcache-Greedy and Fatcache-Kick use a greedyGC Scheme| HitRatio | GC [Latency | Throughput |
algorithm to find a victim slab, but the former performs Static 8r.7% | 2716] 79.9 198,076
key-value copy operations while the latter does not. HQiuerL'frt_:g 33'§£ gggg gg'ﬂ ggg’;gg
Fatcache-FIFO uses a FIFO algorithm to find the victim ' ' \

slab and copies still-valid key-values. In the table, thedata’ ar\d then chqr)gethe request coming rates to test our
dynamic OPS policies.

flash page copy and block erase operations incurred byFigure 15 shows the dynamic OPS and the number of

the device-level GC are denoted as “Flash Page” an . ’ : .
g #ee slabs with the varying request incoming rates for

“Erase”, respectively. . o . . 0
Fatcache schemes show high GC overheads. Fg}ree different policies. Th_e static policy reserves 25%
example, both Fatcache-Greedy and Fatcache-FIF flash Space as OI.DS to simulate t.h? conver_monal SSD.

’ or the heuristic policy, we set the initid,, with 5%.

_recycl_e valid key-value items at the app_hcatmn IeveI,FOr the queuing theory policy, we use the model built
incurring a large volume of key-value copies. Fatcache-

Kick, in contrast, aggressively drops victim slabs withouR'RleEggs\fn :ist;)dhei;rgl?heawwe Val_llf:“c:’"é ?St :ﬁgg(r:rid
any key-value copy. However, since it adopts a greEd\\fvhen thelglhumber of free slabsog.rops beloky,

policy (as Fatcache-Greedy) to evict the slabs with least As sh i Fi 15 h . i h-

valid key-value items, erase blocks are mixed with valid s shown in Figure 15(a), the static policy reserves a

and invalid pages, which incurs flash page copies by thBortion of flash space for over-provisioning. The number

device-level GC. Fatcache-FIFO fills and erases all slab%]c free slabs fluctuates, responding to the incoming

in a sequential FIFO manner, thus, no device-level flas equest rate. In Figure 15(b), our heuristic policy

page copy is needed. All three Fatcache schemes sho r_1am|cally changes the_ two watermarks. When the
large number of block erases arrival rate of requests increases, the low watermark,

The GC process in our scheme is directly driven b))Mo""’ nereases to aggressively generate free slabs
i . : by using quick clean The number of free slabs
the key-value cache. It performs a fine-grained, single:- .
pproximately follows the trend of the low watermark,

level, key-value item-based reclamation, and no flas Ut we can also see a lao-behind effect. Our queuin
page copy is needed (denoted as “N/A’ in Table 1). The g ’ q 9

locality-based eviction policy enjoys the minimum dataIOOIiCy in Figure 15(c) performs even better, and it can be

. . ; . bserved that the free slab curve almost overlaps with the
copy overhead, since it aggressively evicts the LRU slal .) .
; . . . ow watermark curve. Compared with the static policy,
without copying any valid key-value items. The space-

both heuristic and queuing theory policies enable a much

based eviction policy needs to copy 7.48 GB key'valu?arger flash space for caching. Accordingly, we can see

items and incurs 4,231 erase operations. DIDACach% Figure 16 that the two dynamic OPS policies are able

dynamically chooses the most appropriate policy ako maintain a hit ratio close to 95%, which is 7% to 10%

runtime, so it incurs a GC overhead between the above -) .
two (2.05 GB data copy and 3,829 erases). Compared polgher than the static policy. Figure 17 shows the GC

cost, and we can find that the two dynamic policies incur
Fatcache schemes, the overheads are much lower (e.%. . .

l[oWer overhead than the static policy. In fact, compared
28% lower than Fatcache-FIFO). .) . - . .

_ o with the static policy and the heuristic policy, the queuing

5.4.4 Dynamic Over-Provisioning Space theory policy erases 15.7% and 8% less flash blocks,
To illustrate the effect of our dynamic OPS managementespectively. Correspondingly, in Figure 18, it can be
we run DIDACache on our testbed that simulates the databserved that the queuing policy can most effectively
center environment in Section 5.3. We use the sameeduce the number of requests with high latencies.
data set containing 800 million key-value pairs (about To further study the difference of these three policies,
250GB), and the request sequence generated with thee also compared their runtime throughput in Table 2.
Normal distribution model. We set the cache size as 12%Ve can see that the static policy has the lowest throughput
(around 30GB) of the data set size. In the experimen(198,076 ops/sec). The heuristic and queuing theory
we first warm up the cache server with the generatedolicies can deliver higher throughput, 223,146 and

229,956 ops/sec, respectively.

4 3x10*

Get Throughput(ops/sec)

A: DIDACache J 2x10

s B
. 150
B: Fatcache-Async 30 Sot Latenc 10" 100
: * Y . [——Get Latency P
C: Fatcache-Sync —=— Set Throughput 50 e Got Throughput 110’
20 o o o

20 o.
0 200 400 600 800 1000 o 200 400 600 800 1000

Latency(us)
N
8 8
T F-- (oo

o[}

P I | } a5t S e |
e - Ha e e eSS s=~
2% A PR s -
& 10 e — a B0
1 e s PR Srmeim—C A s 2
. * T ; But =
a0 Time 30 Time ?30 Time
§75 L[—=— Reguest R: '.L = %25 [—=— Request R teL i %25 [[—=— Request Rate.\ s
ZERE HEESEoEEES v
5 ° Time 5 g Time § z Time
(a) Static policy. (b) Heuristic policy. . (c) Queuing theqglicy.
Figure 15: Over-provisioning space with different poliie
Time o Time " Time
(a) Static policy. _ _(b) Heuristic policy. ~ (c) Queuing thegglicy.
Figure 16: Hit ratio with different OPS policies.
3 e Z o “l
8 8 8
GC Time GC Time
(a) Static policy. (b) Heuristic policy. _ (c) Queuing theqwlicy.
Figure 17: Garbage collection overhead with different OB [es.
odlidilppallib, | wdi ool L ‘ L \i il
(a) Static policy. (b) Heuristic policy. (c) Queuing theqwllcy
Figure 18: Request latency with different OPS policies.
5.5 Overhead Analysis Table 3: CPU utilization of different schemes.
| Scheme | SET [GET [SET/GET (1:1) |
DIDACache is hlghly opt_|m|zed for key_—value caching DIDACache | 47.7% | 205 % 37.4%
and moves certain device-level functions up to the Fatcache-Async| 42.3% | 20 % 33.8%
application level. This could raise consumption of host- Fatcache-Sync| 40.1% | 20% 31.3%
side resources, especially memory and CPU. of DIDACache and Fatcache are almost identical during

Memory Utilization: In DIDACache, memory is runtime. Also note that the device-side demand for
mainly used for three purposes. (1) In-memory hastinemory is significantly decreased, such as the removed
table. DIDACache maintains a host-side hash tabl&TL-level mapping table.
with 44-byte mapping entries<fid, sid, offset>), CPU utilization: DIDACache is multi-threaded. In
which is identical to the stock Fatcache. (2) Slabparticular, we maintain 12 threads for monitoring the load
buffer. DIDACache performance is insensitive to theof each channel, one global thread for garbage collection,
slab buffer size. We use a 128MB memory for slaband one load-monitoring thread for determining the OPS
buffer, which is also identical to the stock Fatcache. (3pize. To show the related computational cost, we compare
Slab metadata. For slab allocation and GC, DIDACachéhe CPU utilization of DIDACache, Fatcache-Async, and
introduces two additional queueBré¢e Slab Queuand Fatcache-Sync in Table 3. It can be observed that
Full Slab Queugfor each channel. Each queue entry is 8DIDACache only incurs marginal increase of the host-
bytes, corresponding to a slab. Each slab also maintaisgde CPU utilization. In the worst case (1008&T),
an erase count and a valid data ratio, each requiring BIDACache only consumes extra 7.6% and 5.4% CPU
bytes. Thus, in total, DIDACache adds 16-byte metadateesources over Fatcache-Sync (40.1%) and Fatcache-
for each slab. For a 1TB SSD with a regular slab sizéAsync (42.3%), respectively. Finally it is worth noting
of 8MB, it consumes at most 2MB memory. In our that DIDACache removes much device-level processing,
experiments, we found that the memory consumptionsuch as GC, which simplifies device hardware.

Cost implications. DIDACache is cost efficient. As and erase an entire flash block, since we are dealing with
an application-driven design, the device hardware caa cache rather than storage.

be greatly simplified for lower cost. For example, the Some prior work also leverages Open-Channel SSDs
DRAM required for the on-device mapping table can befor domain optimizations. Ouyang et al. present
removed and the reserved flash space for OPS can BF [35] for web-scale storage. Wang et al. further
saved. At the same time, our results also show that theresent a design of LSM-tree based key-value store on the
host-side overhead, as well as the additional utilization osame platform, called LOCS [46]. Instead of simplifying
the host-side resources are minor. redundant functions at different levels, they focus on
6 Other Related Work enabling applications to take use of internal parallelism

Both flash memory [3, 8-10, 12, 17, 20, 22, 26, 29, 410f flash channels through using Open-Channel SSD. Lee

42] and key-value systems [4, 5, 11, 15, 24, 25, 47, 49§t al. [21] also propose an application-managed flash for

are extensively researched. This section discusses pri#fe Systems. We share the common principle of bridging

studies most related to this paper. the semantic gap and aim to deeply integrate device and
A recent research interest in flash memory is td<€y-value cache management.

investig_ate the interaction _between applica_tions _ane}' Conclusions

underlying flash storage devices. Yang et al. investigat

the interactions between log-structured applications anEI h-throuahout data processin In this paber. we

the underlying flash devices [48]. Differentiated Storage gesent agcg-desi N ap roach ?O deenl inr'c)epra'ée the

Services [32] proposes to optimize storage managemeElf gn approa : Py 9

with semantic hints from applications. Nameless ey-value cache system design with the flash hardware.

. . T -.—"Our solution enables three key benefits, namely a
Writes [50] is a de-indirection scheme to allow writing —. . . .
; . . single-level direct mapping from keys to physical flash
only data into the device and let the device choose threnemor locations. a cache-driven fine-arained garbage
physical location. Similarly, FSDV [51] removes the FTL Y ' 9 9 9

level mapping by directly storing physical flash addresses\(/)"ecnon' and an adaptive over-provisioning scheme.
in the file systems. Willow [40] exploits on-device e implemented a prototype on real Open-Channel SSD

- . . hardware platform. Our experimental results show that
programmability to move certain computation from the

o) 0
host to the device. FlashTier [39] uses a customized €41 significantly increase the throughput by 35.5%,
reduce the latency by 23.6%, and remove unnecessary

flash translation layer optimized for caching rather than i by 280¢
storage. OP-FCL dynamically manages OPS on SSD {p as€ opera |o.ns y o)
balance the space needs for GC and for caching [34]. Although this paper focuses on key-value caching,
RIPQ [44] optimizes the photo caching in Facebool®UCh an integrated approach can be generalized and
particularly for flash by reshaping the small randomapp“_ed to other semantic-rich apphcatl_ons. For example,
writes to a flash-friendly workload. Our solution shared©r file systems and databases, which have complex
a similar principle of removing unnecessary intermediat&@PPing structures in different levels, our unified direct
layers and collapsing multi-layer mapping into only one,"@PPiNg scheme can also be applied. ~ For read-
but we particularly focus on tightly connecting key-value/Nteénsive applications with varying patterns, our dynamic
cache systems and the underlying flash SSD hardware. OPS approach would be highly beneficial. ~Various
Key-value cache systems recently show its practicgtPPlications may benefit from different policies or
importance in Internet services [5, 15, 25, 49]. pdifferent degrees of integration with our sche_mes. As
report from Facebook discusses their efforts of scalin§U" future work, we plan to further generalize some
Memcached to handle the huge amount of Internet I/¢Hnctionality to provide fine-grained control on flash
traffic [33]. McDipper [13] is their latest effort on flash- OP€rations and allow applications to flexibly select
based key-value caching. Several prior research studi€ditable schemes and reduce development overheads.
specifically optimize key-value store/cache for flash.
Ouyang et al. propose an SSD-assisted hybrid memo@CKnOV\”ecjgmentS
for Memcached in high performance network [36].We thank our shepherd, Gala Yadgar, and the anonymous
This solution essentially takes flash as a swappingeviewers for their constructive comments. This work
device. NVMKV [27, 28] gives an optimized key- is partially supported by National Natural Science
value store based on flash devices with several newoundation of China (Project 61373049), Research
designs, such as dynamic mapping, transactional suppo@yants Council of Hong Kong (GRF 152736/16E and
and parallelization. Unlike NVMKYV, our system is GRF 15222315/15E), Hong Kong Polytechnic University
a key-value cache, which allows us to aggressively4-BCBB), Louisiana Board of Regents LEQSF(2014-
integrate the two layers together and exploit some uniqué&7)-RD-A-01, and U.S. National Science Foundation
opportunities. For example, we can invalidate all slot{CCF-1453705, CCF-1629291).

ey-value cache systems are crucial to low-latency

References

[1]

[2] Whitepaper:

(3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

Fatcache-Async. https://github.com/polyu-
szy/Fatcache-Async-2017.

total
(TCO).

memcached

cost of ownership

_white_papertco.pdf.

AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., Davis, J. D., MANASSE, M., AND PANI-

GRAHY, R. Design tradeoffs for SSD performance.[13]

In USENIX Annual Technical Conference (ATC 08)
(2008).

ANAND, A., MUTHUKRISHNAN, C., KAPPES
S., AKELLA, A., AND NATH, S. Cheap and

large CAMs for high performance data-intensive[14]

networked systems. IRSENIX Symposium on
Networked Systems Design and Implementation
(NSDI 10)(2010).

[15]

ATIKOGLU, B., Xu, Y., FRACHTENBERG E.,
JANG, S., AND PALECzNY, M. Workload
analysis of a large-scale key-value store. AGM
SIGMETRICS Performance Evaluation Review
(SIGMETRICS 12(2012).

[16]

[17]

Bucy, J., SHINDLER, J., SHLOSSER
S., AND GANGER, G. DiskSim 4.0.
http://www.pdl.cmu.edu/DiskSim/.

CARRA, D., AND MICHIARDI, P. Memory

partitioning in Memcached: an experimental
performance analysis. limternational Conference
on Communications (ICC 142014).

CHEN, F., KouraTy, D. A., AND ZHANG,

X. Understanding intrinsic characteristics and[18]

system implications of flash memory based solid
state drives. Ininternational Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS 09)20009).

CHEN, F., LEE, R., AND ZHANG, X. Essential

roles of exploiting internal parallelism of flash [19]

memory based solid state drives in high-speed data
processing. Irninternational Symposium on High
Performance Computer Architecture (HPCA 11)
(2011).

CHEN, F., Luo, T., AND ZHANG, X. CAFTL:
a content-aware flash translation layer enhancing
the lifespan of flash memory based solid state
drives. INUSENIX Conference on File and Storage

Technologies (FAST'112011).

[11] DEBNATH,

[12]
https://davisfields.files.wordpress.com/2011/06/gear6

[20]

B., SENGUPTA, S., AND LI, J.
SkimpyStash: RAM space skimpy key-value
store on flash-based storage. ACM SIGMOD
International Conference on Management of Data
(SIGMOD 11)(2011).

DirIK, C., AND JacoB, B. The performance
of PC solid-state disks (SSDs) as a function of
bandwidth, concurrency, device, architecture, and
system organization. linternational Symposium
on Computer Architecture (ISCA 0@009).

FACEBOOK. McDipper: a key-
value cache for flash storage.
https://www.facebook.com/notes/facebook-
engineering/mcdipper-a-key-value-cache-for-
flash-storage/10151347090423920.

GAL, E., AND TOLEDO, S. Algorithms and data
structures for flash memories. ACM Computing
Survey (CSUR{(2005), vol. 37:2.

GOKHALE, S., AGRAWAL, N., NOONAN, S.,AND
UNGUREANU, C. KVZone and the search for
a write-optimized key-value store. 1WSENIX
Workshop on Hot Topics in Storage and File
Systems (HotStorage 1(010).

GONZALEZ, J., BIGRLING, M., LEE, S., DONG,
C., AND HUANG, Y. R. Application-driven flash
translation layers on Open-Channel SSDs.

GRUPR L. M., CAULFIELD, A. M., COBURN,

J., SwANSON, S., Yaakosl, E., SEGEL,

P. H., AND WoLF, J. K. Characterizing flash
memory: anomalies, observations, and applications.
In International Symposium on Microarchitecture
(Micro 09) (2009).

GUPTA, A., KIM, Y., AND URGAONKAR, B.
DFTL: a flash translation layer employing demand-
based selective caching of page-level address
mappings. In International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS (3)09).

Hu, X., WANG, X., LI, Y., ZHOU, L., LuO, Y.,
DING, C., JANG, S., AND WANG, Z. LAMA:
optimized locality-aware memory allocation for
key-value cache. IMJSENIX Annual Technical
Conference (ATC 15p015).

KLimovic, A., KozYRAKIS, C., THEREKSA,

E., JHN, B., AND KUMAR, S. Flash
storage disaggregation. Trhe Eleventh European
Conference on Computer Systems (EuroSys 16)
(2016).

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

LEE, S., Ly, M., JuN, S., Xu, S., Kim, J.,
ET AL. Application-managed flash. WSENIX
Conference on File and Storage Technologies (FAST
16)(2016).

LEVENTHAL, A. Flash storage memory. In
Communications of the ACNR008), vol. 51(7),
pp. 47-51.

LiLLy, P. Facebook
DRAM, flaunts flash-based McDipper.
http://www.maximumpc.com/facebook-ditches-
dram-flaunts-flash-based-mcdipper.

Lim, H., FaN, B., ANDERSEN D. G., AND
KAMINSKY, M. SILT: a memory-efficient, high-
performance key-value store. ACM Symposium
on Operating Systems Principles (SOSP(2011).

Lu, L., PiLLAl, T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. WiscKey:
separating keys from values in SSD-conscious

storage. IUSENIX Conference on File and Storage[36]

Technologies (FAST 162016).

MARGAGLIA, F., YADGAR, G., YAAKOBI, E., LI,
Y., SCHUSTER A., AND BRINKMANN, A. The
devilis in the details: implementing flash page reuse
with WOM codes. INUSENIX Conference on File
and Storage Technologies (FAST 18016).

MARMOL, L., SUNDARARAMAN, S., TALAGALA ,

N., AND RANGASWAMI, R. NVMKYV: a scalable
and lightweight, FTL-aware key-value store. In
USENIX Annual Technical Conference (ATC 15)
(2015).

MARMOL, L., SUNDARARAMAN, S., TALAGALA ,
N., RANGASWAMI, R., DEVENDRAPPA S.,
RAMSUNDAR, B., AND GANESAN, S. NVMKYV:
a scalable and lightweight flash aware key-valu
store.
Storage and File Systems (HotStorage (Z8)15).

MARSH, B., DouGLIs, F., AND KRISHNAN, P.
Flash memory file caching for mobile computers.
In Hawaii Conference on Systems Scie(ic®94).

MEMBLAZE. Memblaze.

http://www.memblaze.com/en/.

MEMCACHED. Memcached: a distributed memory

object caching system. http://www.memcached.org[.42]

MESNIER, M. P., AKERS, J., CHEN, F., AND
Luo, T. Differentiated storage services. ACM
Symposium on Operating System Principles (SOSP
11)(2011).

ditches 34

[35]

[39]

In USENIX Workshop on Hot Topics in ‘T4O]

[41]

[33] NisHTALA, R., FRJGAL, H., GRIMM, S.,
KWwWIATKOWSKI, M., LEgE, H., LI, H. C.
McELROY, R., RLEczNYy, M., Peek, D.,

SaaB, P., SAFFORD, D., TuNG, T., AND
VENKATARAMANI, V. Scaling memcache at
facebook. INUSENIX Symposium on Networked
Systems Design and Implementation (NSDI 13)
(2013).

OH, Y., CHol, J., LEE, D., AND NOH, S. H.
Caching less for better performance: balancing
cache size and update cost of flash memory cache
in hybrid storage systems. WWSENIX Conference

on File and Storage Technologies (FAST (Z)12).

OuvYANG, J., LIN, S., JANG, S., Hou, Z.,
WANG, Y., AND WANG, Y. SDF: software-defined
flash for web-scale internet storage systemslnin
ternational Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 14§2014).

OUYANG, X., IsLAM, N. S., RAJACHAN-
DRASEKAR, R., DSE, J., Luo, M., WANG, H.,
AND PANDA, D. K. SSD-assisted hybrid memory
to accelerate memcached over high performance
networks. Ininternational Conference for Parallel
Processing (ICPP 12(2012).

[37] REDIS. http://redis.iol.

[38] ROSENBLUM, M., AND OUSTERHOUT, J. K. The

design and implementation of a log-structured file
system. IPACM Transactions on Computer Systems
(TC 92)(1992), vol. 10(1):26-52.

SAXENA, M., SWIFT, M. M., AND ZHANG, Y.
Flashtier: a lightweight, consistent and durable
storage cache. IThe European Conference on
Computer Systems (EuroSys 12)12).

SESHADRI, S., GAHAGAN, M., BHASKARAN, S.,
BUNKER, T., DE, A., JN, Y., LU, Y., AND
SWANSON, S. Willow: a user-programmable
SSD. INUSENIX Symposium on Operating Systems
Design and Implementation (OSDI 1014).

SHAFAEI, M., DESNOYERS P., AND FITZ-
PATRICK, J. Write amplification reduction in
flash-based SSDs through extent-based temperature
identification. INUSENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage (D&)16).

SOUNDARARAJAN, G., PRABHAKARAN, V.,
BALAKRISHNAN, M., AND WOBBER, T. Extend-
ing SSD lifetimes with disk-based write caches.
In USENIX Conference on File and Storage
Technologies (FAST 102010).

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

T13.
http://t13.org/Documents/MinutesDefault.aspx?
keyword=trim.

TANG, L., HUANG, Q., LLoYD, W., KUMAR, S.,
AND LI, K. RIPQ: advanced photo caching on flash
for facebook. INUSENIX Conference on File and
Storage Technologies (FAST 12015).

TWITTER. Fatcache.

https://github.com/twitter/fatcache.

WANG, P., DN, G., JANG, S., QUYANG, J., LIN,

S., ZHANG, C.,AND CONG, J. An efficient design
and implementation of LSM-tree based key-value
store on Open-Channel SSD. Trhe European
Conference on Computer Systems (EuroSys 15)
(2015).

Wu, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-
trie: an LSM-tree-based ultra-large key-value store
for small data items. ISENIX Annual Technical
Conference (ATC 15p015).

YANG, J., RASSON, N., GILLIS, G., TALAGALA ,

N., AND SUNDARARAMAN, S. Don't stack your
log on my log. InWorkshop on Interactions of
NVM/Flash with Operating Systems and Workloads
(INFLOW 14)(2014).

ZHANG, H., DONG, M., AND CHEN, H. Efficient
and available in-memory KV-store with hybrid
erasure coding and replication. INSENIX
Conference on File and Storage Technologies (FAST
16) (2016).

ZHANG, Y., ARPACI-Dusseauy, A. C., AND
ARPACI-DUSSEAU, R. H. De-indirection for flash-
based SSDs with nameless writes. WSENIX
Conference on File and Storage Technologies (FAST
12)(2012).

ZHANG, Y., ARPACI-DUSsSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Removing the costs
and retaining the benefits of flash-based SSD
virtualization with FSDV. In International
Conference on Massive Storage Systems and
Technology (MSST 1%2015).

ZHANG, Y., SOUNDARARAJAN, G., STORER,
M. W., BAIRAVASUNDARAM, L. N., SUBBIAH,
S., ARPACI-DuUsseAu, A. C., AND ARPACI-
DusseAy, R. H. Warming up storage-level caches
with bonfire. InUSENIX Conference on File and
Storage Technologies (FAST 12P13).

[54]

T13 documents referring to TRIM. [53] ZHENG, M., TUCEK, J., HUANG, D., QIN, F.,

LILLIBRIDGE, M., YANG, E. S., ZHa0, B. W.,
AND SINGH, S. Torturing databases for fun
and profit. INnUSENIX Symposium on Operating
Systems Design and Implementation (OSDI 14)
(2014).

ZHENG, M., Tucek, J., QN, F., AND
LILLIBRIDGE, M. Understanding the robustness of
SSDs under power fault. ASENIX Conference on
File and Storage Technologies (FAST 13013).

