BA: Scheduling Multiple Objects in Distributed Transactional Memory

Costas Busch1, Maurice Herlihy2, Miroslav Popovic3, and Gokarna Sharma1

1Louisiana State University, USA
2Brown University, USA
3University of Novi Sad, Serbia

DISC 2014
Transactional Memory in Distributed Systems

Modeled as a weighted graph G with n nodes

- Each transaction resides at a node
- Needs one or more shared objects for read/write

Data-flow model

- Objects are mobile
- Time to traverse an edge is equal to the weight of that edge

A transaction can execute when all requested objects are available at its node
We evaluate an execution schedule with two metrics:

- **Communication cost**: the total distance traversed by all the objects
- **Execution time**: the total time to execution all the transactions

Most of the previous works focused on schedules with only one shared object.
Communication Cost Results

- The problem of minimizing the communication cost is NP-Hard

- We give an $O\left(\frac{\log^4 n}{\log \log n}\right)$ approximation algorithm

- Both results are obtained using TSP techniques
 - Approximation algorithm is based on a universal TSP tour
Execution Time Results

- The problem of minimizing the execution time is NP-Hard.

- We give an $O(\Delta)$ approximation algorithm, where Δ is the maximum number of conflicts between transactions.

- Both results are obtained from vertex coloring techniques.

- An impossibility result: There are instances where it is impossible to have execution time close to optimal TSP tours of the objects.
Communication-Time Trade-offs

There are problem instances where

- It is impossible to simultaneously minimize communication cost and execution time

- In one schedule, optimal execution time is $O(n^{2/3})$ and lower bound for the communication cost is $\Omega(n)$

- In other schedule, optimal communication time is $O(n)$ and lower bound for the execution time is $\Omega(n^{2/3})$
Communication-Time Trade-offs

There are problem instances where

- Any schedule that achieves optimal communication cost must have sub-optimal execution time $\Omega(n)$

- Any schedule that achieves optimal execution time must have sub-optimal communication cost $\Omega(n^{4/3})$

- These results are obtained using a 2-dimensional grid network as G