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Abstract

The Adaptive Mesh Refinement is one of the main tech-
niques used for the solution of Partial Differential Equa-
tions. Since 3-dimensional structures are more complex,
there are few refinement methods especially for parallel en-
vironments. On the other hand, many algorithms have been
proposed for 2-dimensional structures. We analyzed the
Rivara’s longest-edge bisection algorithm, studied paral-
lelization techniques for the problem, and presented a par-
allel methodology for the refinement of non-uniform tetra-
hedral meshes. The main goal of this research is to propose
a practical refinement framework for real-life applications.
We describe a usable data structure for distributed environ-
ments and present a utility capable of distributing the mesh
data among processors to solve large mesh structures.

1. Introduction

Adaptive Mesh Refinement (AMR) is a technique used to
effectively solve numerical systems of Partial Differential
Equations (PDE). Instead of processing the uniform mesh
in which grid points are evenly spaced, we place more grid
points to the areas where local error is large in the solution.
The adaptive mesh refinement is the preferred methodology
in terms of computational and storage requirements. Re-
finement algorithms begin with an initial mesh conforming
to a particular geometry, and the conformity of the over-
all structure must be preserved after partitioning an ele-
ment [33, 36]. Most of the research have focused on mesh
components as line segments in /-dimension, triangles in
2-dimension, and tetrahedra in 3-dimension [34, 42].

The triangle refinement process have been studied briefly
in recent studies [41, 18, 39]. Since we cannot analyze
the elements in a planar view, 3-dimensional structures
yield to complexities and difficulties. Refining using the
skeleton structure is the main idea behind the algorithms
[33]; 3-dimension is reduced to 2-dimension, and then to
1-dimension. The skeleton structure of meshes in all views
should preserve conformity, and partitioning of the origi-

nal mesh is refined according to the information in previous
skeleton structures.

The main intention behind this research is to enhance
the 8-Tetrahedra Longest-Edge (87-LE) technique [34] and
propose a parallel algorithm with a suitable data structure
that is applicable in real life.

During the process of the Differential Equations, the size
of the used memory will increase since the geometry of the
mesh should be extracted for computation. We cannot lo-
cate all of the required elements on a single machine; there-
fore, we should distribute both computational power and the
stored data among distributed processors.

The overall mesh structure can be partitioned in order
to fit into the local memory of computational nodes, and
the Rivara’s longest edge bisection technique can be used
to process the refinement operation locally; results in each
node can be synchronized in a proper and efficient way us-
ing an appropriate data structure to handle the refinement
process in a parallel manner, in which the resulting mesh
data is parallely constructed.

This work analyzes the longest-edge bisection procedure
in details and presents a novel methodology solving the re-
finement problem in parallel. It also proposes a data struc-
ture to store elements efficiently. The refinement framework
described in this study is implemented for Message-Passing
(MPI) environments.

2. Mesh refinement

Many numerical applications and simulations, solid
modeling, and computer graphics require geometric objects
to be partitioned into smaller pieces in order to process and
solve related problems. Triangulating a set of points is the
basic tool in finite element method and computational ge-
ometry [16, 6]. Therefore, mesh refinement algorithms have
a critical role in adaptive finite elements of numerical com-
putations. Especially, 3-dimensional structures have diffi-
culties in construction of good quality and adapted to ge-
ometry solutions [33, 35, 1, 49, 5, 13, 23].

Two approaches have been mainly used to overcome
the refinement problem in 2-D. The first approach is the



longest-edge bisection process which guarantees a good-
quality, conforming mesh structure with linear time com-
plexity [33, 6, 23, 38]. The second approach is based on the
Delaunay algorithm, which can be summarized as adding
non-vertex points in the circumcenter of the worst triangles
of the current structure [44, 45, 37]. Delaunay refinement
assures the construction of most equilateral triangulation
at the optimum time complexity O(NlogN) for a given
mesh structure of NV vertices [44]. However, the second
method cannot be applied easily to 3-dimensions, and new
approaches are needed for tetrahedral mesh refinement us-
ing a Delaunay triangulation based construction [44, 46].
Therefore, Longest-Edge Bisection method is mostly ap-
plied due to its straightforward and common implementa-
tion in the refinement process.
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Figure 1. Longest-edge propagation

Intersection of adjacent triangles is either a common ver-
tex or common edge. For any triangular mesh structure
T, the longest-edge propagation path (LEPP) for a trian-
gle ¢ is the ordered list of triangles {to, t1, t2, ..}, such that
t; is adjacent to triangle ¢,_; by the longest-edge of t;_
[33, 42, 6, 1, 48]. Evaluating and computing the longest-
edge propagation path means regarding the elements that
will be bisected before partitioning any of the triangles since
the longest-edge bisection method finds out effected neigh-
bor triangles [41, 6, 40, 7, 18, 38]. LEPP(t), the longest-
edge or longest-side propagation path of triangle ¢, is al-
ways finite and longest-edges in the list of triangles have
always increasing lengths [33, 36, 34, 42, 41, 18, 39, 40].
Figure 1.a shows the LEPP(ty)={to,t1,t2,t3}, propaga-
tion path for triangle ¢y. Triangulation of refinement prob-
lems can be solved via evaluating the longest-edge propaga-
tion path. We can compute the LEPP and bisect elements in
the list to accomplish the refinement process. In the given
example, terminal triangle pairs t3 — to, to — t1, t1 — o will
be bisected in order. This procedure, starting from an initial
conforming geometry, will produce a good-quality nested
triangulation with linear time complexity [36, 42, 37].

The Longest-edge Propagation Path algorithm can be
generalized to 3-dimensional tetrahedral mesh structures.
The 3-D LEPP for a tetrahedron T, is the set of neigh-

boring tetrahedra that have adjacent longest-edge greater or
equal to the preceding tetrahedra in the list [34, 42, 6, 1, 48,
43].

Longest-edges are bisected progressively so all angles in
triangle refinement are greater or equal to half of the small-
est angle in the initial mesh geometry [33, 42, 41, 18, 37,
40]. Thus, known longest-edge refinement algorithms guar-
antee the construction of smooth and conforming structures.
Longest-edge bisection can propagate to the entire mesh
in worst cases. Propagation is accomplished by travers-
ing the longest-edge neighbor triangles of triangle ¢. Fig-
ure 1.b describes an eccentric situation. However, theoreti-
cal results and experiments show that successive processing
of unstructured triangular mesh refinement results in mesh
structures in which the average propagation path is reduced
in each refinement stage and approaches to the constant of
5 [48].

For 2-dimensional mesh refinement, we can restrict the
length of the propagation path. This behavior is crucial
in terms of analyzing the algorithms and performance of
the bisection process. However, such a limitation cannot
be stated for 3-dimensional tetrahedral meshes. It should
be noted that this property is the most important difference
between 2-dimensional and 3-dimensional refinement algo-
rithms; lack of such a limiting definition results in the chal-
lenge for 3-dimensional problems.

In 2-D meshes, a LEPP-graph forms a forest since each
edge can only have two neighbor triangles. Each tree in the
forest can be used to find the elements that should be re-
fined for a conforming mesh structure [32]. A propagation
path for 3-D mesh forms a directed-acyclic graph (DAG)
such that each longest edge can be shared by many trian-
gles and refinement operation can propagate in many direc-
tions. Therefore, the Longest-edge propagation graphs for
3-D meshes are denser.

The LEPP graph can be sequentially processed with
O(n) time complexity [33, 36, 18, 39, 20, 8]. Parallel im-
plementation can be handled in O(logn) time if the struc-
ture is 2-D [32]. However, it cannot be stated for 3-D mesh,
since the number of edges in the propagation graph is not
linearly related to the number of elements as in a LEPP

graph of a 2-D mesh.

Figure 2. 4-Tetrahedra and 8-Tetrahedra
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The 8T-LE partition is defined in terms of a polyhe-



dron skeleton concept using a simple edge-midpoint bi-
section procedure. The 2-dimensional algorithm, which is
also formulated as 4-triangle longest-edge, works over wire-
frame meshes containing the edges of target triangles and
some neighboring triangles to prepare a conforming struc-
ture [23, 36, 7, 47].

Information in the lower dimension is used to partition
appropriate triangles. The 8-tetrahedra algorithm is the gen-
eralization of skeleton algorithms in 3-dimensions. Volume
refinement is based on the partitioned triangular faces of the
tetrahedron in 2-dimension [33, 34, 42]. Four-triangle par-
titions or partial partitions of neighboring triangles are ac-
complished by using edge bisection; that is, by refining the
wireframe mesh of the 3-dimensional edges of tetrahedra
[1,7].

The skeleton algorithm for 4-Triangle mesh refinement
can be analyzed in two steps; bisecting the edges in a I-
dimensional skeleton and partitioning individual triangles
according to the bisected edges [6, 7]. The 3-dimensional
skeleton algorithm is a generalized version of 4-Triangles.
If tetrahedral mesh 7 is conforming, then 2-D skeleton,
which is the triangular faces of the elements of 7, is also
conforming [34]. Moreover, a I-D skeleton of 7 tetrahedral
mesh is a conforming wireframe mesh of the elements of 7
[34,6,7].

The 8-Tetrahedra longest edge partition is a 3-D algo-
rithm that can be explained by applying 4-Triangle skele-
ton refinement methodology to the faces of correspond-
ing mesh 7 [34]. Partitioning any tetrahedron T in mesh
T produces both conforming volume mesh and conform-
ing surface mesh. Figure 2 shows the 4-Tetrahedra and 8-
Tetrahedra longest-edge bisection schemes.

Volume triangulation with 8 new internal tetrahedra oc-
curred and each face has been partitioned into 4 triangles.
There is an interior edge from the midpoint of the longest-
edge of T to the midpoint of the edge opposite the longest-
edge. Such a triangulation produces conformity both in vol-
ume and surface structure. Surface structure is identical to
the pattern obtained by 4-Triangle partitioning.

The 3-D algorithm for refining any tetrahedron T in a
conforming mesh 7 is a generalized version of a 2-D skele-
ton refinement algorithm. The volume structure of the re-
fined mesh based on the 87-LE also produces the refined
2-D skeleton surface structure. Moreover, refinement of the
faces of T as a 2-D skeleton structure in tetrahedra mesh
7 produces a refined 2-D volume structure. The sequential
algorithm for 3D skeleton refinement is finite with linear
complexity O(n) [34].

3. Parallel algorithm

Because of the excessive size of mesh structures used in
current research projects, developing a parallel refinement
algorithm is a crucial topic for Partial Differential Equation

(PDE) problems. There are many related projects investi-
gating an effective procedure that is applicable to adaptive
meshes [20, 30,9, 8, 15, 31, 19, 2, 29, 12, 24, 22]. The most
recent methodology for parallel refinement is based on fer-
minal edges, which are defined as edges that do not propa-
gate and do not cause other elements to be refined [43]. The
Terminal-Edge Bisection procedure has sequential and par-
allel solutions, and the main idea is to bisect the terminal-
edge which is the longest among selected edges first and
to continue this process until all of required elements are
refined [43]. However, there are some drawbacks in such
a solution like partitioning more components than required
and increasing the number of elements in the resulting 3-D
structure, which already necessitates an extreme number of
resources. This solution may not be practical despite the
flexibility of the proposed technique.

Theoretical limits for parallel tetrahedral mesh refine-
ment depend on the processing of the LEPP graph. It states
the elements that are affected after an initial tetrahedron re-
finement. If we compute and mark those elements to be
refined, other parts such as bisection steps are easily pro-
cessed in a parallel environment since they will not depend
on one another.

The propagation graph does not have a specific property
that can be used to find reachable elements within a parallel
algorithm. On the other hand, there are some approaches for
similar methodologies; the LEPP graph is a directed-acyclic
graph (DAG) and the DAG can be evaluated in many parallel
ways. Most of the related techniques use random algorithms
and state effective complexity times [28, 11, 25, 10, 21].
Average complexity may have proper values, but worst case
complexity is not acceptable when compared to sequen-
tial algorithms. Those parallel techniques are probably not
practically applicable for mesh refinement; the refinement
process is another sub-component of the PDE problem and
should be simple enough for the implementation.

The sequential algorithm has complexity O(n); when
data is distributed and evaluated in a parallel manner, we
should deal with the relations between propagation paths. In
3-D, each element in the LEPP graph can have more than
one propagation. Thus, the number of edges in the LEPP
graph, which are keeping the propagation relationship, is
O(n) [5, 43], if n is the number of elements. Therefore, we
can process LEPP graphs in O(logn) time with n? proces-
sors. For the 2-D algorithm, elements propagate to only one
other element, and the number of edges in the LEPP graph
is O(n); thus, the LEPP graph can be processed in O(logn)
time with n processors.

We start from an initial tetrahedron T, refine according to
LE-bisection and progress to find other elements that must
be partitioned. The second step is selecting all remaining
components that should be refined to form a conforming
mesh structure. Propagating through the initial components



Distributed Algorithm
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Figure 3. Distributed algorithm

will lead us to all other elements that corrupt the conformity.

The next step is combining components to form a con-
forming mesh structure. Due to the nature of structural al-
gorithms, explained in the previous section, we refine faces
according to the refined one-dimensional edges; and refine
tetrahedron according to 2-D faces. Components in former
steps represent the edges in the one-dimensional skeleton.

The parallel algorithm can be analyzed in three steps:

e Prepare propagation graph for the refinement, (DAG)
for 3-D mesh 7.

e Find components which must be refined.

e Partition components according to the longest-edge bi-
section procedure.

The 3-dimensional mesh refinement solution for adap-
tive structures should be effective in terms of scalability,
distributed costs, and partitioned data. Required memory
for tetrahedral mesh structures increases if compared to 2-
dimensional structures. Therefore, distributing the compu-
tational power with partitioned data structure is crucial if
large structures are concerned.

The distributed algorithm accomplishes refinement prob-
lems by utilizing the local bisection procedure and synchro-
nizing partitioned tetrahedra. Since propagation-paths are
distributed, terminal points for a local mesh may trigger to
another LEPP globally. In Figure 3, we demonstrated the
overall algorithm.

The propagation path is distributed among each proces-

sor, and they compute local LEPP-Graphs independently.
After the local refinement process, computing nodes are in-
formed to trigger the refinement if the border element of
the local mesh partition is selected to be bisected by an-
other processor. Figure 4 presents the logically partitioned
LEPP-Graph. In the given example, overall structure is
partitioned among 3 processors. Node /3 and /4 have a
common longest-edge; thus, refining Node /3 represent-
ing a tetrahedron in the figure results in propagation of the
LEPP and refinement of Node /4. The other processor is
informed that neighbor node in the border of the local par-
tition should be refined. Therefore, the LEPP graph of the
local mesh structure is synchronized and the integrity of the
overall propagation paths is preserved.

The synchronization process is limited and cannot ex-
ceed a few loops due to the conforming structure of input
mesh structure. In real-life problems, we usually start to
refine some tetrahedra, causing an unacceptable error ratio
in a PDE problem. Such a situation will not propagate to
all other elements of the mesh; thus, handling large mesh
structures and distributing them among remote processor
to compute at the same time is more important. Figure 5
presents the flow-chart representation.

Processor 2

Node 6
Node 18

Node 9

Node 11
Node 19,

Node 12 Node 13 '_“Nudc 14

Processor 0 Node 21

“_ Processor 1 | Node23

Figure 4. LEPP-graph synchronization

4. Implementation details

The presented implementation can be encapsulated and
used by other Finite Element programs; thus, it provides a
framework for the refinement process. Initially, distribution
of the elements among processing nodes is accomplished.
The mesh object is loaded locally and prepared for the re-
finement operation. After finishing the refinement process,
master processor collects new vertices and tetrahedra. An-
other important feature is the profiler; that is, all methods
are also capable of collecting elapsed time information in
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Figure 5. Parallel Algorithm

the network communication and computational code seg-
ments.

The parallel framework for tetrahedral mesh refinement
requires MPI' and PaRMetis* libraries. Loaded mesh is par-
titioned in order to have minimum edge-cuts in the LEPP-
Graph. Mesh partitioning is accomplished according to
tetrahedra, and each processor keeps only the elements that
are assigned. The mesh structure is partitioned fairly con-
cerning the network cost between processing nodes. The
overall mesh geometry fits into the memories of each pro-
cessing nodes; thus, we can handle tetrahedral mesh files
with excessive memory requirements. We can not deploy a
very large mesh structure on a single node due to memory
limitations, but we can distribute the data and operate in a
parallel manner.

Tetrahedrons that should be refined initially are com-
puted, and other elements which will be affected are se-
lected using the LEPP. The selection procedure is accom-
plished by traversing the mesh data in the local processing
node. A refined edge in one of the processors can trigger
another tetrahedron which is in another processor’s local
memory. Therefore, related processing nodes are informed
if an edge will be refined in the border of a partition.

Procedure of the parallel implementation can be stated
as follows:

e Partition and distribute tetrahedral mesh elements.

IMPI: Message Passing Interface (www-unix.mcs.anl.gov/mpi).
2ParMetis: Parallel Graph Partitioning (www.cs.umn.edu/ metis).

e Compute initial tetrahedrons that should be refined.

e Prepare the local LEPP-Graph sequentially and select
the edges that should be refined.

e Inform other processing nodes whether a border ele-
ment in the local partition is selected.

e Refine according to the 8T-LE procedure.

e Collect mesh data with recently produced tetrahedrons.

The gateway node is used not only to read the initial
mesh data from file but also to prepare communication ob-
jects holding the information whether border elements of
the local mesh partition require refinement or not. There-
fore, the gateway node minimizes the number of network
messages, and this situation is an important issue to enhance
the performance of an MPI program. Each processing node
sends the information about the selected border elements to
be refined with the knowledge of neighbor processors that
should take action. The gateway node collects the effected
elements and informs other processors to start refinement
process for the classified element.

4.1. Data structure

Designing a proper data structure is another challenge in
the implementation. Some know techniques have been in-
vestigated [26, 4, 27, 3, 47, 17] in order to prepare a flexible
architecture. A mesh structure is formed of vertices, edges,
triangles and tetrahedrons. In order to process algorithms,
we should be able to evaluate each element and keep rela-
tions between them. The 87-LE algorithm is a skeleton al-
gorithm, and elements in lower dimensions are required for
refinement. It is stated that the number of tetrahedrons in
a conforming mesh is much more than the number of other
elements; and any tetrahedron is adjacent to many edges
and vertices [14]. Figure 6.a demonstrates the number of
elements of a conforming mesh on average. Relations be-
tween elements are the related adjacencies; as an example,
changing an edge will affect 5 tetrahedra on average [14].

Since the 8T-LE is not principally parallelizable due to
the sequential progress of Longest-Edge propagation, we
developed a new data structure with a convenient parallel
algorithm which is applicable to distributed environments.
Each tetrahedron object keeps the list of edges it owns, and
edge objects have the list of vertices that form itself. Edge
objects also have the list of tetrahedrons which are adja-
cent, so that, while evaluating the LEPP, computation can
be handled without searching adjacencies each time.

The data structure of the local mesh object has vertices,
edges and tetrahedra. Each edge object has the list of tetra-
hedra it is owned by. The tetrahedron object keeps the list
of edges that form this tetrahedron, and we can calculate the
information of faces when required in the propagation path
process.

Each vertex object has a single unique identifier which
distinguishing them in the global space. Each processor



starts from a sequence which will not intersect with other
processors. During the operation of the LEPP synchroniza-
tion, a unique identifier which is the smallest number among
all other local sequences, is selected as the identifier for the
effected neighbor elements in the border of a local structure.

In 8T-LE and 4T-LE, we must select the longest-edge and
that should be unique in the tetrahedron or in the triangle.
The edge object has a simple methodology to handle the
uniqueness for the length comparison. If the length of two
edges are equal, identifiers of the first and then the second
vertices are compared to select one of them as the longer
edge.

Figure 6.b shows the used data structure skeleton. Figure
7 presents a more detailed view of the data model.
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Figure 6. (a) Statistics for the number of enti-
ties of a mesh from Garimella [14] (b) Depen-
dencies in data structure

Mesh structure is partitioned between each processing
node according to cost of interaction between elements.
Thus, while synchronizing the LEPPs between components,
the parallel tetrahedron refinement process minimizes the
network and computational costs. Such an implementation
also covers the scalability objective. Moreover, the gate-
way node used in the algorithm enables us to minimize the
number of network messages. The presented utility uses
communication objects in the MPI environment in order to
minimize the network traffic and handle the dynamic data
transfer between processors. Each processing node uses the
synchronization information to select and start the refine-
ment from received elements if it is required. Synchroniz-
ing the borders of propagation graph, which is partitioned
among processors as a result of the local mesh processing,
is accomplished by summarizing the received bisection in-
formation and distributing among the concerned processors.
Since the gateway node collects all messages used to syn-
chronize the overall LEPP, it prevents duplicate messages
in the communication environment.

Vertex ID
X,y,Z coordinates
parent , parent 2
Reference to parents if created by bisecting an edge

T Point Object
Point 1, Point 2
Sub-Edge 1, Sub-Edge 2
—] Reference to sub-edges after bisection
Mid-point
I Reference to the mid-point produced
after selecting this edge
Tetrahedra List
List of tetrahedra that own this edge

T Edge Object

Edge 1, Edge 2, Edge 3, Edge 4, Edge 5, Edge 6
parent Tetra-Bucket
Reference to Tetra-bucket that tetrahedron resides

Tetrahedron Object

|

|| Tetrahedra List
List of tetrahedra that are in this bucket object
Neighbour processors
Neighbour processor that also own tetrahedra
of this object

Tetra-Bucket

—— Tetra-Bucket List

List of Edges to be refined
List of Tetrahedra to be refined

Communication Object

Mesh Object (located on each processor)

Figure 7. The Object Relationship

5. Test Results

Parallel implementation for distributed environment has
been prepared and tested for homogenous platforms?. Uti-
lized data-structure can also handle heterogeneous environ-
ments and is capable of adapting to data distribution. Since
data is properly distributed, we can separate and reduce the
overall computation and memory cost of the refinement pro-
cess. Mesh input files from the GAMMA project* were used
as examples for testing the parallel refinement utility. We
also used mesh generation tools to understand the accuracy
of the methodology. Some of the mesh inputs were gener-
ated by TetGen 3, which is a program for generating tetrahe-
dral meshes for arbitrary 3-D domains based on Delaunay
methods. The following figures present some of the gener-
ated mesh files which were produced by refining sample in-

3The cluster system with 512 nodes (SuperMike) from Center for Com-
putation and Technology (cct.Isu.edu) at Louisiana State University has
been used to test the application.

4“GAMMA Project: The French National Institue for Research in Com-
puter Science and Control (www-rocql.inria.fr/gamma).

STetgen: A Quality Tetrahedral Mesh Generator and Three-
Dimensional Delaunay Triangulator (tetgen.berlios.de).



put structures. Mesh structures were viewed by Medit ¢ and
Tetview 7 which are graphic programs for viewing tetrahe-
dral meshes.
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Figure 9. Examples of tetrahedral mesh

Refining the tetrahedra mesh in Figure 8.a, which has
1803 tetrahedra and 527 vertices, will produce a new struc-
ture with 13506 tetrahedra and 3387 vertices. After refining
the resulting tetrahedral mesh we produced the 3-D for-
mation shown in Figure 8.b that has 99121 tetrahedra and
23351 vertices. Refinement of mesh in Figure 9.a, 14904
tetrahedra, and 4502 vertices produced 70203 tetrahedra
and 22568 vertices, as shown in Figure 9.b. Refinement of
the resulting mesh second time resulted in 235941 tetrahe-
dra and 22568 vertices. Other test results generated from the
same source produced mesh structures with 450573 tetrahe-
dra and138842 vertices, and 770882 tetrahedra and 215017
vertices.

Figure 10 presents the maximum amount of time spent
in a single processor among processing nodes during the re-
finement step. By defining the appropriate parameters, we
can profile the software in order to optimize and test the
scalability of the proposed algorithm. In future work, per-
formance tests with larger mesh files will be done to opti-
mize the code and to enhance the efficiency of the parallel
utility.

6. Conclusions

A parallel mesh refinement algorithm for distributed en-
vironments is proposed, in which each processing node

SMEDIT: Mesh Visualization Tool (www.ann.jussieu.fr/free.htm).
"TetView: A Tetrahedral Mesh and Piecewise Linear Complex Viewer.
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Figure 10. The refinement process

works over its local elements sequentially and synchronizes
changes to update the overall mesh structure. We analyzed
the longest-edge bisection algorithm and presented details
about the parallel refinement process. 3-D structures have
difficulties especially in processing the propagation path of
selected tetrahedra. We presented a practical methodology
for distributed environments which is capable of solving the
refinement problem. Representation of the mesh is also cru-
cial; the data structure must be compact not to consume so
much memory, but it should be flexible and simple for com-
putation. We explained the proposed objects to accomplish
the construction of mesh topology. We also present a par-
allel utility that can distribute the mesh data and process in
an inter-process communication environment; thus, clusters
of ordinary nodes can be used to process very large mesh
structures.
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