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Abstract

The problems of Al effectiveness in manufacturing for
Design, Scheduling, Control and Process Diagnosis are
considered. We have developed an effective dialog procedure for
a designer. This procedure helps him to identify the needed
parameters of a designed product, ie., to distinct acceptable
parameters, non acceptable parameters and parameters that
require additional design study. In scheduling we developed a
new intelligent procedure to formulate and find an effective
schedule. Often such approach can avoid complicated
time-consuming computations. In Coutrol we developed simple
and robust control procedures, which join the advantages of
pure/conventional interpolation and fuzzy control methods for
design of quick and cost-effective controllers. In Process
Diagnosis we overcome some difficulties of such known methods
as neural networks, linear discriminant analysis and the method of
nearest neighbors. The main difficulties which we overcome are
related to the speed of a dynamic learning process and reliability
of diagnosis. We also make the extracted diagnostic regularities
easily understandable by a manufacturing expert. This approach
was successfully used for several tasks related to engineering and
medical problems.

Keywords: design, diagnosis, scheduling, fuzzy control,
knowledge discovery.

1. Introduction

We study a way how Al procedures can become
more effective in manufacturing. A developed interactive
procedurc  allows designers to identify the needed
paramecters of a designed product. We are discovering
propertics of job sequences which allow us to formulate
cffective criteria of optimal scheduling. Tn control tasks
thc main Al tools are fuzzy control methods. These

methods have shown the effectiveness, but still have lots of
problems. A design of quick and cost-effective controllers
especially for mobile real-time systems is one of them. In
process diagnosis there are many difficulties of such
known methods as Neural Networks, linear discriminant
analysis and the method of nearest neighbors. The speed of
a dynamic learning process, rcliability of diagnosis and
understanding of procedures by the user--manufacturing
expert are among main difficultics of these methods. We
present an overview of our developments.

2. Design Problems

In Design our interest isfocused on procedures, to
assist formulation of design criteria as formal requirements
for a product. Usually it is a very complicated multilevel
and multi-attribite task. This is a new important problem.
The solution of this problem can significantly speed up
design.

We have developed an original effective dialog
procedure (Kovalerchuk, Triantaphyllou, Despande &
Vityaev 1996a), which allows designers to restore lower
and upper borders in a hierarchical multi-attribute space.
These borders help a designer to identify the needed
parameters of a designed product. They belp to distinct
parameters which must be reached from parameters which
must not be reached, and parameters which require
additional design study.

An illustrative example below shows the main
steps of the approach. Suppose that one wishes to design a
mid-sized car under $25,000 better than the average level
on the market. Table 1 presents features of the cars on the
market, taken from Consumer Reports, 1994 (p.160). We
use the following notation in this table: x, for the overall
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score, X, for predicted reliability, x; for overall mpg, x, for
driver's air bag, x, for passenger's air bag, x¢ for antilock
brakes, x, for auto-transmission and x, for air-conditioning.
Also "P“ denotes “optional”, “1”and “0” denote available
and not available, respectively.

Table 1. Rating 1993 mid-sized cars under $25.000

car X | X X5 x| Xs Xe | X7 | Xe

Camry 6 4 |5 |21 (1 |O P |1 |P

Camry 4 4 15 |24 11 0 PP [P

Ford 4 3 20 |1 P P 1 P
Taurus

Mercury |4 |3 |20 {1 |1 [P |1 |1

Maxima 4 (5 |21 11 |O P[P |1

Chrysler 3 (3 |21 (1 |0 P |1 1
NY

Buick 2 13 120410 |0 P (1 |1
Regal

Chevrolet 1 2 {2210 [0 P |1 |P
Lumina .

Next. the designer needs to identify a combination of car
features, which should be design requirements ( see table
1). It requires to analyze a huge amount of possible feature
combinations with different overall scores (x, in tablel).
There are 5 values for predicted reliability, 5 values for
mpg (20,21,22,23,24), 2 for driver's air bag, 2 for
passenger’s air bag, 3 for each of the next three features
(brakes, transmission, air-conditioning). The values for
these three features are “yes”, “no” and “optional”. There
are 2x5x5x2x2x3x3x3=5,400 of the combinations. A
designer should choose some of them. This number
demonstrates the size of problem. Table 1 brings
information about only 5 cases from these 5,400. The
problem is how to assist a designer to analyze this 5,400
cases and discriminate acceptable cases from not
acceptable.

Some cases can be excluded from further
considerations relatively easy. For example, if all existing
cars have antilock brakes, auto-transmission and air-
conditioning options, probably it will not be wise to design
a car without these options. The same is true for the
driver's air bag. If all cars with 4 overall scores have air
bags then a new car should also have it. We can also
restrict an acceptable range of reliability with values 3, 4
and 5. All cars with overall scores 4 have this reliability.
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By combining all these restrictions we obtain a new number
of design cases 3x5x2x2x2x2x2=480. We need to classify
them into two classes: (1) acceptable for design and (2)
not acceptable for design. This design problem has the
monotonicity property. If some car (a combination of
values of features) is acceptable for design then a better
car (a combination with stronger feature values) should also
be acceptable. This property together with the hierarchy of
design features allows to optimize the sequence of the
analysis of cases, using the powerful mathematical theory
of monotone Boolean functions and software.

An interactive system presents to the designer a
case (values of feature combinations), obtains his answer
(acceptable/not acceptable) and presents the next case
depending on all his previous answers. This optimal

procedure allows to reduce the number of analyzed cases -

up to 50-100 times, as we have shown for another
applications (Kovalerchuk et, Triantaphyllou, Despande &
Vityaev 1996a). In our experiment we decreased the
number of requests for analysis from 4,000 cases to 40
cases.

3. Scheduling

In Scheduling we are interested in criteria
formalization for an optimal schedule and intelligent
procedures to find such optimal schedule. Often the right
formulation of criteria allows to avoid complicated
time-consuming computations.

This is also a new important problem, where Al
research methods are very promising. Currently, this
problem is out of formal analysis. Non formalized expert
knowledge is a base of mostly intuitive solutions. There
are some interesting attempts hased on fuzzy logic made in
Boeing Co. (Kipersztok & Patterson, 1995) for monitoring
network load of jobs submitted to clusters of workstations.

To clarify the situation, let us also consider a task
from (Kipersztok & Patterson 1995) in more detail. For
these tasks most existing systems employ the first-in, first-
out rule (FIFO) to assign programs to a cluster of machines
independently of the network load and communication
requirements. Advanced scheduling should address which
of the incoming jobs should be sent to the network cluster
first, and which of the currently running jobs should be
suspended. Tt requires a process of prioritization of the
jobs and rules that match the resource specification
requirements of the jobs to the current state of the available
resources in the cluster. Next the authors introduce a
priority rank for each job. Importance of cluster features
defines priority ranks. Priority ranks show how sensitive
an incoming job is to each parameter, which characterize
the cluster. These parameters are introduced using fuzzy
logic. Then they are combined with a weighted linear
function in the priority rank. This is the weakest point of
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this kind of approaches. The priority rank is a heuristic
construction. It can fit the task or not. The designer’s
experience is of critical importance for the construction of
a priority rank. We develop an alternative approach related
to direct extraction of rules that match the resource of
the jobs to the current state of the available resources
using data of the previous performance of the system. The
main difficuldes, which restrict existing methods of
machine learning to extract rules from data are that for
scheduling the data are not usual points in a feature space,
but they are much more complicated. A technique based
on first-order logic (Vityaev & Moskvitin 1993) can
overcome these difficulties. Let us illustrate this idea in the
previous example. For each time we may have records
how effectively the system uses resources. We compute
percentage of the used processors’ time with the length of
this interval for all jobs and for each job separately for
some time interval. Next we can collect these data for
sequential time intervals. Then we use methods of data
mining and knowledge discovery to discover relations
between sequential data. We present data for two pairs of
time intervals (t,t+1) and (k,k+1) in figures 1 and 2. Jobs
are presented beginning with those that required more time.
We also measure the total effectiveness of a resource usage
for all jobs. Let it be 90% for figure 1(b) and 40% for
figure 2(b). It allows us to extract the following rule. If
jobs require resources as in figure 1(a) or 2(a) at the
moment i THEN for the next moment i+1 the set of jobs
should be as in Figure 1(b). It means that these jobs should
require the same or close share of resources as in figure
1(b). It will allow to have total effectiveness up to 90%.
This job sequence is much more complicated than FIFO
and can be significantly different from that used in heuristic
priority formulas. To be reliable this rule should be
discovered on a bigger data set. This method -allows us to
discover many rules without a human expert. Then we
develop a procedure to match rule premises with current
system states. Next we describe how we discover rules
using figures 1 and 2 and the first order logic.

Let al, a2, bl and b2 be job sets from figure
l(a),(b) and figure 2(a), (b) respectively. Next, the
predicate V(al,a2) is true if and only if the plot in figure
1(a) is above the plot in figure 2 (a). Similarly predicate
P(al,a2) is true if and only if E(b1)>E(b2), where E(b1),

|
u
i

Fig.1 (a) Job effectiveness E at time t

E(all jobs)=90%

[3; Qi —

6 7 8 9 jobs
ffectiveness at time t+1

ey
99
—
~
<
—
Q
o
o

I T N I
L 1 1 |
56 7 8 9 jobs

N S

|
L
3
Fig.2 (a) Job effectiveness at time k

E(job)

E(all jobs)=40%

|
L
IIIIIIII'II

123456789 jobs

Fig. 2 (b) Job effectiveness at time k+1

E(b2) are effectiveness’ of resource’s usage by all jobs in
figure 1 (b) and figure 2 (b), respectively. Then we can
describe the rule: v
IF V(al,a2) THEN P(al,a2),

which should be tested against a data set of such figures. If
this rule is confirmed on the data set, we can use it for
scheduling as we described above. In the same manner we
automatically extract similar rules.using larger sets of
predicates not only V and P.

4. Control Problems
. In Control we are interested in the development
of simple and robust control procedures. The main Al tools
here are fuzzy control methods, which have shown the
effectiveness, but still have lots of problems. One of these
problems is a design of quick and cost-cffective
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controllers especially for mobile real-time systems.
There are three areas of control methods:

(1) the area of conventional control methods; ’

(2) the area of pure/conventional interpolation methods;

(3) the area of fuzzy control methods.

Conventional control methods cover control tasks
with a known model of the controlled process. This model
is usually presented with differential equations.

Pure/conventional interpolation methods cover
control tasks without a model but with sufficient training
data to interpolate a control function. Many interpolation
methods are used here: polynomial interpolation, spline
functions, piccewise linear interpolation etc.

Fuzzy control methods cover control tasks without
a model and without sufficient training data, but with expert
linguistic control rules.

Furthermore, there are many intermediate cases
between these three cases. Intermediate cases require mixed
approaches, which are now under development. The
problem is that there is no way to know in advance if the
training data are sufficient or not to choose an
appropriate method. Usually, it becomes clear only after
testing with large independent test data or several trials of
use the system. In (Mouzouris & Mendel 1996) it was
shown that with extension of a training set linguistic
information becomes less important.

We offer an approach which helps to choose an
appropriate method when we do not have a model of the
process. This approach is related to the perspective
direction ~- the development of Al tools for an adequate
fuzzy control task formulation. Adequacy means that we
nced to avoid oversimplifications as well as too
complicated methods, balancing between these two
extremes.

At first we have found conditions where the fuzzy
control is practically equivalent to the conventional
interpolation (Kovalerchuk 1994a, 1996a). If these
conditions for input and output membership functions are
fulfilled we can use conventional interpolation methods and
obtain a very simple piecewise linear interpolation of the
control function. As a result we may have a simple and
cost-effective controller. The output of this interpolation
differs from Mamdani controller output no more than
5.05% of the length of the support of the used fuzzy sets
(Kovalerchuk, 1994a, 1996a). The length of the support of
a fuzzy set is the length of the interval where its
membership function w(x) is above zero. For triangular
membership functions it is the length of the interval
between slopes, where (x)>0.

If our conditions for membership function shapes
and overlapping are not fulfilled, we organize a guided
extension of training data interactively with a designer
to fulfill these conditions. The guided extension of training
data requires less data to tune control function than a usual
random extension. The relations between input and output
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fuzzy sets of control function give us guidance how to
extend the training data. The main idea is to adjust the
fuzzy sets to form the so called exact complete context
spaces (Kovalerchuk, 1995, 1996b). Next we select peaks
of membership functions (MFs) of these adjusted fuzzy
sets. These peaks form a new training data set. This
procedure allows us to immediately find a piecewise linear
interpolation of the control function. This interpolation has
the same deviation from the Mamdani controller as above
mentioned 5.05% of the fuzzy set support.

We join advantages of fuzzy control and pure
interpolation in this method, realizing a mixed approach.
We call our version of interpolation the second
interpolation. This interpolation was inferred from Mamdani
fuzzy controller. Mamdani controller itself also represents
an interpolation of a real control function, but it is not a -
pure interpolation based on training data only

Figures 3, 4 and 5 illustrate conditions when our
interpolation can simplify a fuzzy controller, thus
substituting the fuzzy controller. Our conditions are
represented in figures 4 and 5. These conditions are very
common in fuzzy control applications. For example, a
classical control problem of balancing an inverted
pendulum was successfully solved using membership
functions presented in figure 5 (see, for example, (Beale &
Demuth 1994)). These triangular membership functions
were used for position of the cart, velocity in meters/second
and radians/second, angles and force.
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Fig. 3. Interpolation for non overlapping intervals
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Fig 5. Interpolation for fuzzy sets with an “overlap of one”

Figure 3 shows a Mamdani fuzzy control function for non-
overlapping intervals. It is a simple step function. In this
example each input is presented as an interval and each
output as an exact number. Also, control rules are: “If
argument a is about zero (ie., from the interval [-
0.5,+0.5)), then control u should be 0" “If argument a is
positive small (i.e., from the interval [+0.5,+1.0)), then
control u should be 1”. The other rules are formulated
similarly. In this simple case the fuzzy control method
and the pure interpolation method give the same control
function. Then we do not have a problem choosing one of

them.
‘ A fuzzy control function is presented for partly-
overlapping fuzzy sets in figure 4. Here control rules are
slightly different. Let us describe one of them: "If
argument @ is positive small then control u should be also
positive small”. The term “positive small” (PS) for
argument a is formalized with a fuzzy set in the bottom of
figure 4. The term “positive small” for control u is also
formalized with a fuzzy set. This fuzzy set is presented
above PS fuzzy set for argument a in figure 4. The next

control rule is ”If argument a is positive medium then
control u should also be positive medium”. The term
“positive medium” (PM) for argument a is formalized with
a fuzzy set in the bottom of figure 4 next to the fuzzy sct
for PS. The term “positive medium” (PM) for control u is
also formalized with a fuzzy set. This fuzzy set is presentcd
above the PM fuzzy set for argument a in figure 4. The
other control rules are defined similarly. Figure 4 shows
that the fuzzy sets “positive small” and “positive medium”
are overlapping on the part of their supports. Control
functions for the fuzzy control method and the pure
interpolation are shown above the fuzzy sets. The control
function for the fuzzy control method has a small wave in
the area where PS and PM fuzzy sets are overlapped. The
pure interpolation method gives a straight line in this area.
Out of the overlapping areas the fuzzy control method and
the pure interpolation method give the same linear picces.
The difference between these two interpolations in the
overlapping area is described with the formula
(Kovalerchuk 1996b, theorem 1}):
u=[(1-(p+e)*+p(1+e)[2+(1+e-p)IfI(1-(pre)+p(1+e)],

where e is the distance between the peak point of PS fuzzy
set and the beginning of the PM fuzzy set and p is the
distance from the beginning of the PM fuzzy set to the
input point a, for which we compute a value u of the
control function (see also figure 6). Computer simulation
using the last formula allowed us to show that for this
single input single output (SISO) case the difference
between the fuzzy controller and the pure interpolation is
no more than 2.07% of the length of the support of the
used fuzzy sets. In figure 6 we show results of this
simulation, when w=1+e.

A fuzzy control function is presented for
optimally overlapped fuzzy sets in figure 5. Linguistic
control rules are the same as for partly-overlapping fuzzy
sets. The term “positive small” (PS) for argument a is
formalized with a fuzzy set in the bottom of figure 5. The
term “positive small” (PS) for control u is formalized
similarly as a fuzzy set too. This fuzzy set is presented
above PS fuzzy set for argument a in figure 5. The term
»positive medium” (PM) for argument a is formalized with

v/
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Fig. 6. Overlapping of triangular fuzzy sets
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Fig. 7. Difference between fuzzy control function and the
second interpolation

a fuzzy set in the bottom of figure 5 next to the fuzzy set
for PS. The term “positive medium” for control u is
formalized similarly as a fuzzy set. This fuzzy set is
presented above PM fuzzy set for argument a in figure 5.
Figure S shows that fuzzy sets "positive small” and
»positive medium” are overlapping on the half of their
supports. Control functions for fuzzy control method and
pure interpolation are shown above fuzzy sets. The control
function for the fuzzy control method has a slight wave
shape for all domain. The pure interpolation method gives
a single straight line. The difference between these two
interpolations in the overlapping area is described with the
formula (Kovalerchuk, 1996b; Corollary 1):
u=(2-3p*+5p)[2(1-p*+p), .

where p is the distance from the beginning of the fuzzy set
to the input point a, for which we compute a value u of
the control function. Computer simulation using the last
formula allowed us to show that for this single input single
output (SISO) case the difference between fuzzy controller
and pure interpolation reaches only 2.07% of the length of
the support of used fuzzy sets. This maximum deviation
2.07% is reached for e=0 and two values of p:
p,=0.197200388 and p,=0.8022799611. For two inputs and
single outputs (TISO) case the difference between a fuzzy
control function and a pure interpolation is no more than
5.05% of the support (Kovalerchuk, 1994, 1996a). Recall
that the optimal fuzzy set overlapping shown in figure 5 is
most common in fuzzy control. This study shows how to
combine fuzzy control and pure interpolation to construct
simple control functions. If fuzzy sets have a large support
then difference between these two interpolations can be
significant and the "wave” on figures 4 and 5 can be
relatively large. In this case we need to decide which of the
two control functions should be used. We argue that a
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piecewise linear interpolation between peak points of fuzzy
sets has an important advantage. We consider a control task
where all fuzzy sets are equal and symmetrical. How can
they generate a wave? How to explain the wave in
Mamdani control function in terms of a particular applicd
control task? There is no such explanation. The only
explanation is out of context of the particular task. The
source of the wave is Mamdani defuzzification procedure,
ie.. Center of Gravity (COG). Piecewise linear
interpolation between peak points does not have this
weakness.

Let us summarize our offer for control tasks
without model and very restricted possibility to have a large
training data set. Wc combine fuzzy control and pure
interpolation methods. Fuzzy control methods are used to
choose interpolation points and pure interpolation methods
are used to interpolate between these points. With fuzzy
control methods we extract linguistic rules, construct
respective fuzzy sets preferably as in figure 5, identify their
peaks. Then interpolation methods are used to identify a
control function interpolating between these peak points. If
the constructed fuzzy sets meet the above mentioned
requirements, we do not need any more fuzzy control
procedures to have practically the same control function as
Mamdani control function (see also mentioned the above
theorem 1 (Kovalerchuk, Triantaphyllou, Despande &
Vityaev 1996a).

5. Process Diagnosis

In Process Diagnosis we are interested in using
our original sophisticated diagnostic methods, which
overcome some difficulties of known methods such as
Neural Networks, linear discriminant analysis and the
method of nearest ncighbors. The main difficulties which
we overcome are related to the speed of a dynamic learning
process and  reliability of diagnosis (Kovalerchuk,
Triantaphyllou, Despande & Vityaev 1996a, Vityaev &
Moskvitin, 1993). We also make the extracted diagnostic
regularities easily understandable by a manufacturing
expert.

Expert systems, linear discriminant analysis,
neural networks, decision trees, and similar classification
methods are the most known and effective tools for
computer-aided diagnosis. They are used in many areas of
diagnosis of machinery failures in the process of
manufacturing and exploitation, military target recognition,
detection of contamination of radioactive materials, non-
destructive detection of damages in composite materials,
drug design, medical diagnosis etc. Usually the accuracy of
90%, 95% or 99% is considered as an evidence of effective
diagnosis. We study the following practical questions:
Do these numbers really evaluate the performance of a
diagnostic system?

Should we buy and use a system with this accuracy for
practical tasks?



We show that there is many misconceptions/
misunderstanding/illusions related to these critical for
practitioners questions. Next we show how to distinct
illusions of reliable diagnosis from a really reliable
diagnosis and demonstrate how a reliable diagnosis can be
accomplished.

Let us consider the first illusion, which we call an
illusion of a single index of accuracy. Consider following
real data: about 0.2% of 15,000 screened women have
breast cancer (data from Woman's Hospital of Baton
Rouge, 1995). If asystem diagnoses all these women as
not having cancer, then accuracy is 99.8% and only
0.2% of women have a wrong diagnosis according to this
"all right” optimistic strategy. The general accuracy of
this "all right” strategy looks like a dream 99.8%. Is it
good? Of cause, the answer is negative. We must not only
use accuracy itself, but examine false-positive and false-
negative mistakes separately as is in real evaluation of
cancer diagnostic methods. In these terms the system with
"all right” strategy makes no mistakes in diagnosis of non
cancer cases (100% of them are diagnosed accurately). But
all cancer cases are diagnosed as non cancer cases (0% of
accuracy). These two indexes allow us immediately to
reject the use of such system. There are many other
diagnostic fields where illusion of a single index of
accuracy is not so obvious. They require a special
analysis.

Next let us study how to evaluate the performance
of a diagnostic system in reality having two indexes. If
both of them are 99% for the entire population the total
accuracy is also 99%. In this case usually the system
performance can be evaluated positively. But how to
evaluate the performance of a diagnostic system with 30%
of false-positive and 80% of false-negative rates? In this
case the total accuracy can be any number between 30%
and 80%, including 50%. It means that a special study for
a particular task will be needed to evaluate whether we
should use or not this system for practical diagnosis.

We have shown above how critical is to find false-
positive and false-negative error rates. It requires to solve
a much more fundamental problem: identify a real border
between diagnostic classes and compare it with a formal
border, which have found by a diagnostic method, for
example, by the "all right” strategy . Note, that the real
border can be as narrow as a very wide area.

Let the border area consist of only 10% of all
possible cases and a system improperly diagnoses  all
these border cases, i.e., 100% of mistakes on border cases
from both diagnostic classes. Also let all other non border
cases, i.e., 90% of cases be diagnosed accurately. This

gives 90% of the total accuracy. Should such diagnostic

system be used? It can be used only for relatively simple
for diagnosis cases out of the border area. For all truly
complicated cases the system gives 100% of mistakes.
Therefore the presented 10% of mistakes is the second

illusion of the diagnosis problem solution--accurate
diagnosis without complicated cases. In reality this 10%
means 100% mistakes for complicated cases, which really
require sophisticated methods of diagnosis. Note, that often
majority of simplc cases can be diagnosed without any
computer-aided diagnostic system. Therefore such a system
with 90% accuracy can be useless.

The third illusion is related to a random choice of
the test data. The standard approach to test diagnostic
systems performance includes a test of a system on the
randomly chosen sct of cases. In the example above (with
10% of border cases and 90% out of this area) the
random choice of cases will repeat this ratio. As a result,
we will have the same 100% accuracy out of border area
and 0% accuracy in the border arca and the total accuracy
of 90%. This means that we have the same second illusion
of accurate diagnosis without complicated cases, but
caused also by random chose of test cases. We call this
illusion--the random choice illusion.

Next we discuss a critical for practical diagnosis
question: Why procedures of accurate evaluation of
diagnostic methods have not been developed before?

The reason is that diagnostic methods were
developed and used in the frames of the paradigm: the
real border principally cannot he known. We may know
something about the real border only after approximating
it using some method. Different methods give different
approximations of the border using different a priory
assumptions such as metrics of feature space, a type of
distribution, a class of discriminant functions, a type of
rules and etc. This a priory assumptions approach often
leads to confusing diagnostic solutions and/or illusions of
accurate diagnosis. Note, that often these assumptions are
not formulated and should be discovered.

Next, what leads to reality, i.e., real solution of
a diagnostic problem? It is a method of finding real
borders hetween positive and negative examples and their
diagnostic classes. This problem has not been studied
before, because there was not known another way to find
a real border except the construct of an approximation.

We develop another approach to restore the real
border. This approach is based on the Empirical
Paradigm and respective methods, which were developed
in the former Soviet Union during the last 25 years
(Zagoruiko 1981, Zagoruiko, Sviridenko & Samokhvalov
1978, Vityaev et al., 1976,1992,1993, Kovalerchuk et. al.,
1975, 1996a). The core idea of this approach is in
replacing a metric feature space by an Empirical System
as this concept is defined in Measurement Theory (Krantz
at al. 1971). Discriminant functions are replaced by
hypotheses in the first-order logic, which express
empirically testable properties of diagnostic classes of
functions instead of choosing a particular function from this
class ( usually with interpolation technique).

We demonstrate our approach on the empirically
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testable property of monotonicity and the class of all
monotone functions. This is a rather general class of
functions. But it is not necessarily for us to identify a
particular monotone function to discriminate two patterns
as it is, for example, in regression and discriminant
analysis. We can directly use the empirically confirmed
property of monotonicity for diagnosis. In this case all
other non empirical a priory assumptions, needed for
approximation methods, are eliminated. Also we show that
the property of monotonicity can be empirically
discovered with a high accuracy using a data set or
interactively with an experienced expert. In the last
interactive case we can discover empirically an exact
monotone discriminant function too.

Let us illustrate the effectiveness of the property
of monotonicity for diagnosis. We consider the task to
discriminate two classes of design requirements: acceptable
and non acceptable for a new car design using the example
presented in table 1. For illustrative purposes we consider
only two features from table 1: predicted reliability (x,) and
miles per gallon(x,). Figure 8 shows these data. Numbers
in the grid show the overall scores for cars from table 1.
For example, (%,,x;)=(2,22) corresponds to Chevrolet
Lumina, which has grade 2 for forecasted reliability and 22
mpg; (%,,%;)=(3,20) corresponds to three cars from table 1:
Ford Taurus, Mercury Sable and Buick Regal. We use
feature x, from table 1 as a criterion for discrimination of
two classes: if x, = 4 design requirements are acceptable
and if x, < 4 then they are not acceptable. If we consider
5 values for x, and 8 values for x, we will have 40
possible design cases. Recall that 8 cars from table 1 cover
only S possible cases. We do not have sufficient statistics
to construct a border between these two classes. Moreover,
the classes are overlapping: two cars from the positive
class and one car from the negative class correspond to the
same point (3,20). There are dozens  of possible
discrimination lines. For example one of the simplest one
is x, » 4 for the positive class and x, < 4 for the negative
class. The other one if x, > 3 for the positive class and x,
<3 for the negative class. Both of these discrimination rules
generalize these 5 points for all other points without
argumentation. For example, both of them classify (5,19)
as acceptable. but where are the arguments? Neural nets,
linear discriminant functions and other methods usually do
not control this situation for large data sets. For small data
sets, as the one is in table 1, these methods cannot give any
answer.

We resolve this problem exploring the semantics
of the features. Semantics of features x, and x, give us
the following monotonicity property. Let us consider two
cars a and b with their properties:

(P1)  forecasted reliability x, of car b is more than
forecasted reliability x, of car a, i.e., x,(a)<x,(b);

r2) car a makes less miles per gatlon than car b, ie.,
x3(a)<x3(b).
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™3) we are ready to design a car as car g, ie., with
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Fig. 8. Points from table 1.
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Fig 9. Monotone discrimination of positive and
negative design classes

properties x, and x; of car a. We denote this as a
property D(a).

We see from (P1) and (P2) that car b is better than car a.
To be logically consistent we should consider car b also as
acceptable for design, ie., to agree that D(b) is true as
well. Now we can write this property formally:



IF x,(a)<x,(b) and X4(a)<x5(b) and D(a) THEN D(b)
This is the property of monotonicity. For our features x,
and x; and D the property of monotonicity is a result of
their semantics. For other features monotonicity may be
not so clear. In this case we need to discover this property
empirically using data set and a method for discovery of
regularities in the first order logic {Vityaev and Moskvitin,
1993]. :

The main advantage of the semantical or
empirical discovering monotonicity that by this way we
obtain interpretable properties of diagnosed. classes,
instead of interpolation of  border using a priory
assumptions. More often these assumptions are not known
to the author of a method explicitly.

We exploited the discovered monotonicity for our
illustrative task. Figure 9 shows the border between the
positive and negative classes discovered using the
semantical monotonicity. The points marked with 7+” and
n_# are from positive and negative classes, respectively. The
points marked as 7" represent Cases, for which our 8
training cases (cars from table 1) are not sufficient. A
designer should analyze these cases with additional
information. The other features from table 1 can be one of
the sources of this information. This approach was
successfully used for several tasks related to engineering
design problems, signal recognition, breast cancer
diagnosis, forecast of the surgery after effects, forming the
secondary structure of proteins and so on.

6. Concluding Remarks

Al methods require deep understanding by each
user of applicability of a method for his/her task. Ignoring
analysis of applicability often leads to illusions of solutions,
spending resources without obtaining a reliable solution.
Currently many excellent user-friendly software systems
allow to try any method easily without any analysis of
applicability and reliability of solution. The problem of
development of reliable Al methods is still open. In this
paper we have shown how it can be accomplished for some
diagnostic, design, control and scheduling tasks.
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