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1. INTRODUCTION

Computer assisted diagnosis has become one of the promising methods for
improving the accuracy and early detection of breast cancer. Standard back-
propagation neural networks are presently very popular diagnostic tools, but this
approach does not inform the physician user on how a conclusion was reached. Some
promising results have obtained with rule based techniques’. This method has the
advantage of providing the physician with a tool that promotes consistency and
accuracy. However, these (and most other) models suffer from relatively small
training sample sets which in turn limit statistical significance.

An approach called logical analysis of data (LAD), and which is based on
inferring discriminant Boolcan functions, has the potential to overcome these
weaknesses. By discovering logical relationships in existing classes of disjoint
observations, the method can improve the understanding of the diagnostic process The
statistical significance problem is eliminated by exploiting the property of
monotonicity that exists within mammographic evaluation and interpretation.

The resultant discriminant functions could be used many ways. In the
evaluation of a new "problem case” the radiologist could use these functionsfor that
case to draw a diagnostic conclusion. Alternatively, with a set of "gold standard” test
cases, the functions could be used as a reproducible testing mechanism. Each
radiologist could determine his/her own function, compare it to the gold standard and
thereby identify areas of strength or weakness. Progress or improvement over time
could then be objectively measured.

2. BACKGROUND

Currently, methods of computer-aided diagnostics include neural networks,
nearest neighbor methods, descriminant analysis, cluster analysis, and linear
programming based methods. *'' These techniques attempt to generalize from
collections of available training data. Therefore, they rely on the fact that the more
representative the data are, the more accurate the performance of these methods will

l The first two authors gratefully acknowledge the support from the
Office of Naval Research (ONR) grant N0OI14 -95-1-0639
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be. However, there are some basic weaknesses in using these techniques.  For
example, according to Jonson® the use of Baysian models in medical diagnosis is
controversial, if not unethical, because the fundamental requirement of strict
randomness rarely occurs in reality. Standard back-propagation neural networks
techniques are problematic because they do not provide bio-medical explanations®.
While newly developed intelligent hybrid systems, and in particular knowledge based
neural networks®, appear to be more promising, these systems have the potential to
create too many (i.e., an exponential number) of rules'?. In summary, there are two
closely related difficulties with these methods as they may be applied to breast cancer
diagnosis:

(i) The available training data are often insufficient to guaranty statistically
sionificant results by using ordinary mathematical methods.

(i) The way these computerized diagnostic tools work and produce
recommendations, is not appealing to medical doctors.

The diagnostic problem considered in this research is a nested one. That is,
it is composed of two interrelated sub-problems. The first sub-problem is related
to the clinical question of whether a biopsy or short term follow-up is necessary or
not. The second sub-problem is related to the question whether the radiologist
believes that the current case is highly suspicious for malignancy or not. It is
assumed that if the radiologist believes that the case is malignant, then he/she will also
definitcly recommend a biopsy. Formally, these two sub-problems are defined as
follows:

The Clinical Management Sub-Problem: One and only one of two disjoint outcomes
is possible. That is: 1)"biopsy/short term followup is necessary”; or 2) "biopsy/short
term followup is not necessary”.

The Diagnosis Sub-Problem: Similarly as above, one and only one of two disjoint
outcomes is possible. That is, a given case is: 1) "highly suspicious for malignancy"”;
or, 2) "not highly suspicious for malignancy".

The above nested sub-problems provide a natural area for the application of
a recent development in artificial intelligence. The technique aims at to discovering
logical relationships which may be present in classes of disjoint observations. Each
observation is described in terms of a number of characteristics or features. Then, the
challenge is to find patterns which can be used to explain which features, or
combinations of features, are present in each class.  This development is called
Logical Analysis of Data (or LAD) and consists of a group of methods.>"® The
proposed logical analysis of data approach has several unique advantages related to:
(1) the understanding/comprehension of the diagnostic process and recognition of
sources of uncertainty in existing knowledge, (2) overcoming the statistical
significance problem mentioned earlier by utilizing the property of monotonicity, (3)
resolving differences arising in conclusions that are based upon the same premises,
(4) developing Al-based expert systems to assist in the diagnosis of breast cancer.

The validity and accuracy (reliability) of a classifier should be reasonably
high for clinical applications. Many, if not the majority, of the pattern recognition
studies in radiology operate with approximately 80 training cancer cases. To explore
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the issue of reliability, assume that flx,,%-.,X;;) 1S some discriminant function in the
space of 11 binary (i.e., with 0 or 1 value) indirect diagnostic features (vectors,) see
section 5. Also assume that this discriminant function was constructed by using a
sample of 80 cases (many studies consider sample sizes around 80). Next, suppose that
the function f discriminates the entire state space (which is of size: 2'' =2,048 )
by describing 2,048 distinct binary vectors (combinations of 11 features). The vectors
are as follows: 1,600 (i.e., about 80%) of them are features suggestive of cancer and
448 (i.e., about 20%) are negative for cancer. A description of suspicious/benign
features is given in section 5. Thus, in this illustrative scenario, at most 80 different
vectors (5% of 1,600) were used to learn to discriminate 1,600 cancer vectors. At
this point one may wish to ask the question: “Is this function (which was inferred by
using a training sample of 5% of the combinations of features suggesting malignancy)
sufficiently reliable to require a patient to undergo a surgical procedure 77 While
this function can be useful, its statistical significance is very questionable for the
reliable diagnosis of cancer. Observe that the concept of state space is different than
the concept of population. The state space expresses all possible combinations of
features. However, the actual population may not exhibit all these combinations of
features (i.e., some combinations may be impossible) and these can be eliminated from
consideration. We consider the ratio /N (where S is the sample size and N is the size
of the state space) as the index of the potential reliability.

In the light of the above considerations, consider the published data''. We
estimated the sample/space ratio (ie., the /N value) for these data.  That is, for 43
features /N = 133/10" = 133%10%'. This means that the available sample is
1.33.10% % of the total possible number of different vectors in the state space.
Therefore, the question which is naturally raised is: "Can this small number of
training cases be considered as reliable in order fo assist in accurately diagnosing
new (and thus unknown) cases?" According to some estimations® the recommended
value of the §/C ratio (where C is the number of connections in a neural network)
must be no less that 10:1 for potentially reliable learning of a neural network. (Note
that this ratio is similar but not identical to the /N ratio).

The 10:1 ratio is debated by Boon'. He compares the neural network with
biological networks (e.g. radiologists), ~ showing that for them the ratio of
sample/connections is much worse, over 10% times less, than the ones presented in
studies which were criticized by Gurney” Thus, Boone asks: “Is there any reason that
we should hold a computer to higher standards than a human?” Maybe not, but we
should ask of both systems: “Is learning based on small subsets sufficiently reliable
to distinguish suspicious from not suspicious _given the vast diversity of all potential
mammographic_images?” The Machine Learning Theory'® shows that there are
relatively simple concepts that no algorithm is capable of learning in a reasonable
amount of time (polynomial time). Therefore, the question about reliability is
among the most fundamental questions of scientific rigor of mammographic
diagnosis. Thus, in this study we explore the question: “ Are accessible, relatively
small samples sufficiently representative for learning how to evaluate the broad range
of mammographic appearances?”. '
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3. THE REPRESENTATION HYPOTHESIS
One of the most common fundamental hypotheses supporting the usage of small
samples in pattern recognition is the hypothesis that a small sample is representative
for the whole population (the representation hypothesis). "The training data must still
form a representative _sample of the set of all possible inputs if the network is to
perform correcily™. Therefore, without confirmation of the representation hypothesis
as it applies to mammography, all pattern recognition work with small samples will
be extremely heuristic and of questionable reliability. Specifically, we study the
following version of the representation hypothesis: the hypothesis of narrow vicinity.
According to the hypothesis of narrow vicinity (the NV hypothesis): All real possible
cases are in the narrow vicinity of an accessible small training sample. The NV
hypothesis means that we can generalize a training sample with 80 vectors, for
instance, for an additional 40-80 vectors, but not for an additional 1,600 vectors. It
also means that we may exclude those 1,520-1,560 vectors from 1,600 that do not
represent possible cases.

4. TASKS

Let us consider how one can confirm the narrow vicinity (NV) hypothesis when
a small sample is available. This is a difficult methodological question. If one has
a large sample available, then he/she does not nced the NV hypothesis. On the other
hand, without a large sample, one does not have direct data to confirm the hypothesis.

We develop a new methodology to avoid these difficulties. The main idea is
to extend insufficient clinical cases with information from an experienced
radiologist. Another approach is mentioned by Miller et al. %. "One obvious solution
to the problem of restricted training and testing data is to create simulated data using
either a computer based or physical model.” Unfortunately this way is still a
theoretical possibility. There is no such model. We will use experienced experts as
a "biological"jfexpert model to generate new potential cases. One can ask a
radiologist to evaluate a particular case when a number of features take on a set of
specific values. A typical query will have the following format: “If feature I has
value V,, feature 2 has value V,, ..., feature n has value V, then should biopsy/short
term follow-up be recommended or not? Or, does the above setting of values
correspond to a highly suspicious case or not?”

The above queries can be defined with artificially constructed vectors or with
artificially generated new mammograms by modifying existing ones. In this way one
may increase a sample size but not as much as may be necessary. The technical
weakness now is, roughly speaking, the same as before. It is practically impossible
to ask a radiologist to generate many thousands of artificial, new mammographic
appearances.

A logical analysis approach can avoid these difficulties in two possible ways.
First, if the features can be organized in a hierarchical manner, then a proper
exploitation of this structure can lead to a significant reduction of the needed queries.
Second, if the property of monotonicity is applicable, then the available data can be
generalized to cover a larger training sample”®.
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5. METHODS AND RESULTS

We construct a hierarchy of medically interpretable features from a very
generalized level to a less generalized level.  For example, we consider the
generalized binary feature x --"Shape and density of calcification” with grades (0-
"contra cancer” and 1-"pro cancer”). On the sccond level we consider the feature
x to be some function of five other features: y,,y,,...,ys.  That is, X =y(y,,¥s,...¥5),
where: y\-- "Irregularity in shape of individual calcifications"; y,--"Variation in shape
of calcifications";y - "Variation in size of calcifications”,y,-- "Variation in densi ty of
calcifications” and ys—- "Density of calcifications”.

Monotonicity in Boolean functions is the core of a powerful mathematical theory,
which we applied in the breast cancer problem. For instance, consider the evaluation
of calcifications in a mammogram. For simplicity and illustrative purposes assume
that x, is the number and the volume occupied by calcifications, in a binary setting,
as follows: -(0-"contra cancer”, 1-"pro cancer”). Similarly with the same values we
used features:x,--{shape and density of calcifications}, x,--{ductal orientation}, x,--
{comparison w. previous examination}, and x,--{associated findings}.

Given the above definitions we can represent clinical cases in terms of binary
vectors with these five features as: (x,,X,,X3,X,,Xs). Next consider the two clinical cases
which are represented by the two binary vectors: (00111) and (10100). If one is given
that a radiologist correctly diagnosed (10100) as a malignancy, then, by utilizing the
monotonicity property, we can also conclude that the second clinical case (10110)
should also be malignancy.

A detailed description of the method and the specific steps can be found in "®
we show that the descriminant monotone Boolean functions for features on the upper
level of the hierarchy are as follows. For the Biopsy/Short term followup Sub-
Problem: f,(X)=X,x,VX,X,VX,X,VX;VX; . Similarly, for the second sub-problem (highly
suspicious for cancer) the function which we found was: f,(x)=x,X, VX, V(X; VX, VX ) Xg
Regarding the second level of the hierarchy (which recall has 11 binary features)
we interactively constructed the following functions (interpretation of the features is
presented below): X; =@ (W, Wy, wy)=w,Vww; and X; = $(¥pYnYsYoYsd = Y1 VY 2V
¥,V.¥: . By combining the previous functions we obtained theformulas of all the 11
features for hiopsy/short term followup:

£ () =(y2 VY1 VY2 Y X VW VW W3) (7, VY VY YYD VW, VW W)X, VX VX
and for highly suspicious for cancer: f3(x) =x,X,V/x;V(X, VX, VX)X:=
aUALAAINAVAYAADIL QUVANAVAA AN CARA AL H) &

To construct these functions with usual methods one needs more than 4000
training cases® or to ask an experienced radiologist to diagnose these 4000 cases,
presented as binary vectors. We constructed these discriminant functions for one hour
in dialog with a radiologist. Our approach allowed to ask only 42 questions, i.e.,
about 1) times less diagnostic questions than the number of all possible cases.

An analysis of these functions and real statistics has shown that that, in general,
the hypothesis of narrow vicinity (NVH) is not valid for mammographic evaluation.
Recall, that this is exactly the hypothesis implicitly used by all traditional pattern
recognition methods in breast cancer diagnosis!




we have done this study for binarized the features presented below:
« zuount & volume of calcifications , w, - number of calcifications/sm?, w, -
e, cm® ws -total number of calcifications; x, -shape & density of calcifications.
Note, we consider x, as a function (y.¥a.¥3.¥4:Ys) Of Y1,¥2.¥3,YaYs,-
v - irregularity in shape of individual calcifications; vy, - variation in shape of
= sifications; y, -variation in size of calcification; y, - variation in density of
~ sification; ys - density of calcification; x, - ductal orientation; x, - comparison with
provious exam ; Xs - associated findings.
we assume that radiologists implicitly use monotone regularities when they learn
wo Jdiagnose breast cancer. This gives them a chance to be more successful than
~yputer programs learning just by positive and negative examples. Incorporation
o:' -hese verified regularitics in computer learning programs opens a new direction of
ipsmpovement in mammographic evaluation.
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