_X For t})e_ reference see tbe fast pa%

Inference of A 3-D Object From A Random Partial 2-D Projection

Pamela Hsu and Evangelos Triantaphyliou

Kansas State University

Abstract

The problem we examine here is how to infer the entire
topology of an unknown 3-D object from a random partial
2-D projection. In our research we combine the model
graph [Wong and Fu, 1985) with the AHR graph to create,
what we call, the Adjacency Graph (or AG graph). The AG
graph exhibits many interesting properties. These
properties relate the way the nodes and branches are
connected in complete and incomplete AG graphs. A
complete AG graph describes the entire topology of a 3-D
object while an incomplete AG graph describes a partial
topology of that object. Therefore, the problem we solve
here is how to infer a complete AG graph from an
incomplete AG graph. The proposed approach is
demonstrated by an example taken from the literature.
Furthermore, this approach is very efficient on both time
and space requirements,

Introduction

In object recognition, graphs are widely used to represent
entire or partial views of 3-D objects. The advantage of
using a graph representation is that the topology of an
object can be described in a simple and efficient way.
Nodes and branches of a graph can correspond to different
object components. Wong and Fu [1985] recommended
nodes to represent object vertices and branches to
represent object edges. In other work, however, nodes
correspond to object faces and branches correspond to
object edges (e.g., [Akinniyi, Wong, and Stacey, 1986)
and [Joshi and Chang, 1990]).

In general, very often a graph itself cannot capture all
pertinent topological information required for a recognition
process. For this reason, Wong and Fu [1985] proposed
"allowable junction sets" and "neighbor-constraint-sets” to

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. :

€ 1992 ACM 0-89791-502-X/92/0002/0417...$1.50

help describe the required geometry of a 3-D object. These
sets are associated with a graph which represents a 3-D
object and is called a model graph. The junction types

-were introduced by Chakravarty [1979]. Iin {Wong and Fu,

1985] the edges of a 3-D object are allowed to be curved
or straight segments. Some other graph representation
schemes indicate the type of the angle between two
adjacent faces. Attributes are thus assigned to every
branch to de-note the corresponding angle type (see, for
instance, [Wong and Lu, 1983] and {Joshi and Chang,
1988}).

The typical object recognition problem is described
following. Given a random view of an object and a number
of complete representations of 3-D objects in a data base,
a recognition system tries to identify the new object as
one of the objects represented in the data-base. /n this
paper, an inference approach is proposed to infer the
entire geometry of a 3-D object from a single random
view. Given a view of an object the proposed approach
can infer the rest part of that object, which is invisible
from the given view point. In the present research, we
deal only with inferring the geometry of an object. The
dimensions of a 3-D object are not considered here.

In this approach, a new graph representation scheme of a
3-D object is presented and is called the Adjacency Graph
{or AG graph). AG graphs are based on the junction sets
[Wong and Fu, 1985], the Attributed Adjacent Graph
{Joshi and Chang, 1988], and the Attribute Hyper-graph
Representation [Lu and Wong, 1988]. The difference be-
tween the previous work and AG graphs will be discussed
in the following sections. The pro-posed approach is also
illustrated by inferring a 3-D object from an example given
in the literature. -

The Concept of the Adjacency Graph

The Adjacency Graph (or AG graph) is introduced to
capture the pertinent topological information for the object
inference problem. In this paper, AG graphs are classified
into two categories; complete and incomplete AG graphs.
A complete AG graph describes the entire topology of a
3-D object. In a complete AG graph, every object face and

417



edge are represented by nodes and branches, respectively.
Contrary to a complete AG graph, an incomplete AG graph
describes only the topology of an object as it is observed
from a given view point. This indicates that onfy object
faces and their common edges visible from a given view
are represented in an incomplete AG graph.

An object face can be denoted by a sequence of object
vertices. Each vertex can be denoted by a junction. Only
two junction types are used in this paper; the T-type and
the non-T-type. These junction types are based on those
defined in [Wong and Fu, 1985] and [Chakravarty, 1979].
A T-type junction indicates the occurrence of a vision
occlusion. More discussion about vision occlusions is
presented later. A non-T-type junction denotes general
object vertices.

The explicit difference between Wong and Fu’s model
graph and an AG graph is as follows. In AG graphs a
branch does not only indicate the adjacency of two object
faces but also represents a common edge between these
two faces. Thus, the total number of branches connecting
two nodes is equal to the number of common edges
between the corresponding faces. For instance, if there
are three common object edges between two adjacent
faces, then there are three branches connecting the two
corresponding nodes in the AG graph. However, the
number of common edges between two adjacent object
faces is not indicated in a model graph {Wong and Fu,
1985]. In a model graph a branch between two nodes
simply expresses that the corresponding object faces are
adjacent.

In graph representations of 3-D objects, the connections
of nodes are widely used to indicate the adjacency among
object faces (see for instance, [De Floriani, 1986] and [Lu
and Wong, 1988}). The difference between AG graphs and
the previous work is the property set associated with
every AG graph. From a property set, the detailed
geometrical information of an object face can be derived.

Basically, components of AG graphs denote only the
existence of object faces and edges. An AG graph itself
does not offer the information about any vision occlusion.
Vision occlusions are indicated in the property set, which
is associated with an AG graph. This happens because the
junction types in a property set depend on the view point.

A complete AG graph represents alf faces and edges of a
3-D object as nodes and branches, respectively. The issue
of vision occlusions is‘not considered. Therefore, all the
junctions in a property set are of non-T-type. In the case
of incomplete AG graphs, however, only object faces and
their common edges visible from a given view are
represented in these graphs. Thus, an incomplete AG
graph may alter when the view point changes. Formal
definitions of complete AG graphs and their property sets
follow.

Definition 1:
A complete AG graph of a 3-D object is a graph G = (N,8),
where:
N = (N;. Ny Ny ..., N} is a set of nodes. Node N;
corresponds to the object face i.
B = (By, By, By ..., B} is a set of ordered branch lists,
Branch list B; corresponds to node N; e N. B; = {N; |
N; € N} is a list of ordered nodes, where N; € B; if and
only if object faces i and j have a common edge.

Definition 2:

A property set A of a complete AG graph is the set of
ordered junction sets A, where A; = {(V, ~T]| V;eV}
and corresponds to node NgN. V is the set of object
vertices and ~ T denotes a non-T-type junction. (V,., ~T)
€ A; if and only if Vj is a vertex of object face i and is a
non-T-type junction.

Figure 1 depicts a 3-D object taken from [Akkinniyi, Wong,
and Stacey, 1986] and the corresponding complete AG
graph with its property set. The adjacencies among faces
are denoted as the branches among nodes in the AG
graph. For example, face 1 in Figure 1(a) is adjacent to
faces 2, 3, 8, and 7. Therefore, in Figure 1(b) node Ny is
connected with nodes N, N, Ng, and N;. These
adjacencies are described in the corresponding branch list
B; = (N, Nj, Ng, N;}. Consider the corresponding
property set in Figure 1(b). The vertices which define face
1 and their junction types are represented in terms of
ordered pairs in the junction set A;. Namely, Ay = {tvV
~T), (Vp, ~T), (Vg ~T)(Vy, ~T)}.

Incomplete AG graphs and their corresponding property .4
sets are defined as follows. ~

Definition 3:
An incomplete AG graph of a 3-D object is a graph G

(N’, B’), where: .

= (N;| N; e N} is a set of nodes. Node N;

corresponds to a visible object face. "

= (B; | B;€ B} is a setof ordered branch lists. Branc:

list B; corresponds to node N;e N'. B; = {N | N

N’} is a list of ordered nodes, where N €B; lf aﬁ

only if visible object faces i and j have a common

edge.

Definition 4:
A property set A’ of an incomplete AG graph is the sé
ordered junction sets A, where A; = {(V, J) | V;e V.
{T. ~T}} and corresponds to node N; (N;e N’). Vis the
of object vertices. J is the set of allowab/e junction ty
where T indicates a T-type junction and ~T denoté
non-T-type junction. (V, J) € A;if and only if V; isav
of the visible object face i and has junction type J.



7\4‘1’ /;8 ¢ 1
‘:4 ?}—'2- g ;
i == L phTp
/5 .
¥ Gy °

where:
N = {N1, Nz, N3, N4, N5, N6' N7, N8' N9, N10' N11)
B = {B,, By, By, By, B, Bg, By, Bg, By, By, Byy}
{{N;, N3, Ng, N}, {N;, N3, Ny, N5},
{N1’ N2' N4' NB)I {NZI N31 N7: Ng, N5, N6’ N-”, Ng),
{Ng. Ny, Ng, Njo}, {Ng, N4 Nyj. Nyl
{N;, Ny, Ny, Ng}, (N7, N3, Ny, Ny},
{Ns, N10' N11' N4}I {NSI N6I N11: Ng},
{Ng,N4.Ng,Nqo}}

The property set is:

{A1, Ay Az, Ay, Ag, Ag. Az, Ag, Ag, Aqo, Aqq}
{V, ~T), (V. ~Th, Vo, ~T), (V,, ~T)},
((V,, ~T), (Vo ~T) Vg ~T), (Vy, ~T)),

{(Vp, ~Th Vg, ~T), Vg, ~T), (V, ~T)},

A =

{(Vi, ~T), (V;, ~T), (Vi ~T), V), ~T), (V,, ~T),
Vg, ~T), (Vg ~T), (V,, ~T)},

{(V, ~T), (Vn, ~T), (vol ~T), (Vkl ~T)}:

{(Vi, ~T), (Vg ~T), (V,, ~T), V), ~T}},

{(Var ~Th (Vg ~T), (Vg ~T), (Vo ~T)},

{(Vg ~T), (Vg ~T), (Vg, ~T), (Vg ~TI},

{(V,, ~T), (V,, ~T), (V,, ~T), (V,,, ~T)},

{{Vp,

~T), Vo, ~T), (Vg ~T) {V,, ~T)},
{(Vl"

~T), (V,, ~T), Vg, ~T) (V;, ~T}}
{b)

Figure 1. A Complete AG Graph of An Object taken from
[Akkinniyi, Wong, and Stacey, 1986].

Figure 2(a) is a random view of the object shown in Figure
1{a). The corresponding incomplete AG graph and the
associated property set are given in Figure 2(b). The
following section discusses the effect of a vision occlusion
on identifying object vertices.

419

> C
1_12 L M L
2 ae
E ?
I L x/6 P
The View Point 5
~ 0o
(a)

G’ = {N’, B’}
where:
N = {Nq, N3, N3, N4, Ng, Ng}
B’ = {B4, By, By, By, Bg, Bg}

{{N2, N3}, {Nq, N3, Ng}, {Nq, Ny, Ny},
{NZI N31 N5l NB): {N4: N6}l {N4l NS}}

The property set is:

A" = (A, Ay Ay, Ay, A, Ag)
= {{{(Vy ~T), (Vp, ~T), (V,, ~T), (Vg, ~T)},
(Vg ~T), Vo, ~TI, (Vy, ~T), (Vy, ~T)),
{(Vp, ~T) Vg, ~T), Vg, ~T), (V,, ~T)},
{tVi, TV Vi =T)L (V, ~T), (Y, ~T), V), ~T),
Ve T Vg, ~T), Vg, ~Th, (V,, ~T},
{tV;, ~T), (Vi ~T), (Vg ~T), (V, ~T)},
{tVi, ~T), (Vo ~T), (V,, ~T), V), ~T}}

{b)

Figure 2. An Incomplete AG Graph of The Object Shown
in Figure 1(a) Observed From A Given View Point.

Vision Occlusions

Very often vision occlusions result in recognition
ambiguities. In general, there are two classes of vision
occlusions: cross occlusions and alignment occlusions. The
difference between these two classes of occlusions is the
junction types. A cross occlusion always forms a T-type
junction such as vertex E shown in Figure 3(a). However,
an alignment occlusion happens only when two edges are
overlapped without forming any T-type junction. For
example, edges DC and JS are overlapped in Figure 3(b).
In this paper, we assume that only cross occlusions occur.



|4
S A B |- — e |, |
/i yAyY =,
. =Y
1
T
2 ]

(b) Alignment Occlusion

(a) Crces Occliuvsion

Figure 3. Examples of Vision Occlusions.

A vertex with a T-type junction is a virtual vertex. That
happens because this junction exists only when a vision
occlusion occurs. Therefore, a T-type junction cannot
correspond to an actual object vertex. In this paper a
vertex is assumed to be formed by exactly three adjacent
object faces. As the letter T indicates, a T-type junction is
formed by three object faces visible from a given view.
Since a T-type vertex cannot correspond to an actual
object vertex, this vertex thus may not be able to indicate
the adjacency among faces, which define this vertex. The
adjacency among faces which define a T-type vertex will
be discussed later.

In some cases, an actual object vertex may correspond to
a T-type junction when it is observed from a certain view
point. For instance, in Figure 4(a) the junction types of
object vertices B, C, H and | are non-T-type junctions.
However, when a side view of

this object is taken, vertices B, C, H, and | become T-type
junctions (see, Figure 4(b}).

In order to tell an object vertex from a T-type junction {i.e.,
a virtual vertex), a different view point thus needs to be
considered. In general, if a T-type vertex is an actual
object vertex, then its junction will change to a non-T-type
junction when the view point moves slightly above or
below its current position. In this paper it is assumed that
the situation shown in Figure 4(b) never occurs.

Similar to a virtual vertex resulted from a T-type junction,
virtual edges can be formed too. The top edge of a T-type
vertex can result in a virtual edge for any face which
contains the T-type vertex. For example, edge CH

edge of vertex | in Figure 3(a). Apparently, edge CH does
not only denote an object edge but alsa forms two virtual
edges. Namely, edges Cl and IH. These edges are virtual
edges of the two faces, which contain the T-type junction
l. Since virtual edges denote object faces only when an
occlusion occurs, then these edges cannot correspond to
actual object edges. There-fore, a virtual edge cannot
indicate the adjacency between two faces which contain
this virtual edge. For example, virtual edge Cl does not
indicate that faces (1) and (2) are adjacent in Figure 3{a).

420

F
>
\ J A 8 ¢ 3
s
H 4 H xr J
{a) ()

Figure 4. Examples of Virtual T-type Vertices.

Properties of AG graphs

The proposed inference process is a methodology for
inferring invisible faces of an object and the adjacency
among object faces. As discussed in Section 2, the
adjacency of two faces is denoted by a common edge.
This implies that the total number of faces adjacent to a
visible face can be inferred from the number of object
edges, which define this face. For instance, face 3 in
Figure 5(a) consists of four object edges. These are edges
HA, AJ, JI, and IH. Therefore, the total number of faces
adjacent to face 3 is four.

Consider the case in which no vision occlusions occur in
an object face. Any edge of this object face is a common
edge of two adjacent faces. Therefore, avery edge of the
visible face directly indicates one adjacent face. This
indicates that the number of faces adjacent to a visible
face is Jess than or equal to the number of edges which
define that visible face.

)

Figure 5. lllustrations of The Adjacency among Faces. -



in the previous paragraph, it was mentioned that the
number of faces adjacent to a face may be less than the
number of edges which define that face. This happens
when two adjacent faces have more than one common
edges between them. For example, face 1 in Figure 5(a)
has two common edges with face 2 (i.e., edges AB and
EF). The total number of edges, which define face 1, is
eight but the number of faces adjacent to face 1 is seven.
However, this adjacency can be shown in an AG graph
without distorting the topology of the object. Figure 5(b)
presents an incomplete AG graph of the object given in
Figure 5(a). The two common edges between faces 1 and
2 are denoted as the two branches connectmg nodes N,
and N2

In case an occlusion occurs, a visible face may be defined
by a number of edges from which at least one edge is a
virtual edge. Recall that a virtual edge cannot indicate the
adjacency between two faces which contain this virtual
edge. Therefore, if a visible object face contains a virtual
edge, then the total number of faces adjacent to this face
cannot be determined directly from the number of its
edges.

As it was discussed previously, the total number of faces
adjacent to a visible face can be determined from the
number of its edges if no occlusion occurs. However, in an
incomplete AG graph only the common edge of two visible
faces is represented as a branch. In other words, not every
visible edge is represented in an incomplete AG graph. For
instance, edge Hl in Figure 5(a) is a common edge of
visible face 3 and invisible face 8 but is not represented in
the graph. Therefore, in an incomplete AG graph the
number of branches emerging from a node may be Jfess
than or equal to the number of edges which define the
corresponding visible face.

The problem presented here is how to determine the total
number of faces adjacent to a visible face. In an object
face, we can observe that the number of edges of a face
is equal to the number of its vertices. Both these edges
and vertices define the same object face. This implies that
the number of faces adjacent to a visible face can be also
determined from its object vertices. Therefore, if a visible
face does not consist of any T-type vertex, then the total
number of faces adjacent to that face is less than or equal
to the number of vertices, which define that face. The
following property summarizes the above observation.

Property 1:

If junction set A; does not contain a T-type vertex, then
the total number of nodes connecting node N is less than
or equal to the total number of vertices given in junction
set A,

Applying Property 1, the total number of nodes connecting
node N, is at most equal to the number of vertices which
define object face i. Consider that in an incomplete AG
graph the number of nodes connecting node N; is equal to

the number of nodes in the corresponding branch list B.
Therefore, the total number of invisible faces (denoted as
M, adjacent to face i can be determined by Property 2.
Here, the nodes which correspond to invisible faces are
called new nodes, since these nodes are not represented
in an incomplete AG graph and are created during the
inference process.

Property 2:

. If junction set A; does not contain a T-type vertex, then

421

the number of new nodes (currently invisible faces)
connecting node N,is less than or equal to the quantity M,
where M; = | A; | |18;].

A common edge of two faces indicates the adjacency
between the two faces and consists of exactly two
vertices. Therefore, the adjacency between two faces can
also be inferred from two vertices, which define the
common edge of those two faces. We call these two
vertices as common vertices of the two adjacent faces. In
other words, if two faces have two common vertices, then
these faces are adjacent. Since we assumed that an object
vertex is formed by three adjacent faces, similarly, we can
obtain the following observation. If three faces have a
common vertex, then the three faces are adjacent to each
other.

As it was defined in Section 2, in AG graphs each junction
set in the property set corresponds to a node f{or
equivalently, to an object face). We can observe that
vertices in two consecutive pairs of a junction set indicate
an edge of that face. Therefore, if two junction sets have
two consecutive pairs in common, then the two
corresponding object faces have a common edge.
Furthermore, it follows that these faces are adjacent.

In order to avoid redundancy, the first and the last pairs of
a junction set are considered to be consecutive pairs.
Therefore, vertices in the first and the last pairs indicate
an edge of a face. For instance, in Figure 2(a), edge AB of
face 2 is denoted by the first and the last pairs in the
junction set A, given in Figure 2(b). These pairs are
{(Va.~T)  and (V| ~T), respectively. The above
observations are summarized in the following property.

Property 3:

Nodes N; and Nj are connected if and only if the
correspond/ng junction sets A; and A have two
consecutive pairs in common.

As discussed at the beginning of Section 3, a T-type
junction vertex indicates a virtual object vertex.
Furthermore, a vertex with a T-type junction may not be
able to indicate the adjacency among the three faces
which define this vertex. However, the following property
is applicable only when a vertex is a non-T-type ]UﬂCthn
That is, the vertex is an actual object vertex.



Property 4:

Nodes N, N, and N, are connected if and only if the
corresponding junction sets A, A, and A, have one
common pair.

For example, the graph which was shown in Figure 2(b)
depicts that node N, is connected with nodes N, and Nj.
In the property set, we can observe that junction sets A,
and A, have two common consecutive pairs;i.e., {(V,, ~T)
and {V},, ~ T). Furthermore, consider that the adjacent pairs
{Vp, ~T) and (V, ~T} are also listed in both junction sets
A, and Aj. This example illustrates how the adjacency of
two faces can be indicated in the two corresponding
junction sets. Since all visible vertices have been denoted
in an incomplete AG graph, this implies that the adjacency
among visible faces holds and should not be altered during
the inference process. Therefore, the following property is
true.

Property 5:

If node N; does not connect node N; in an incomplete AG
graph, then node N; and node N;cannot be connected in
the corresponding complete AG graph.

The Algorithm for Inferring A Complete AG
Graph

The five properties presented in the previous section are
used in the inference process. The main algorithm of the
inference process calls two procedures. The detailed
inference process is illustrated with an example in next
section.

Algorithm Infer_AG_Graph:

INPUT: An incomplete AG graph G’ = {N’,B’} and its
property set A’, where:

N’ = {N4, Nj, N3, ..., N.}; set of nodes.
B’ = {B,, B,, Bs, ..., B,}; set of branch lists.
A" = {Aq, Ay, Ag, ..., A); property set of G'.

OUTPUT: A complete AG graph G ={N,B} and its property
set A.

BEGIN /* Infer_AG_Graph */
/* Initialization */

N <—N’;B <—B’; A <— A’
Set all nodes in N as "UNMARKED"

(1

{2) Initialize set C such that set C contain all common
edges in each junction set A, (A; € A)
(3) REPEAT
(4)  Use Property 2 to find node N, and the quantity:
Mnext = lAnext I - I Bnext |

422

IF (M,gq > O) THEN

(5) Create M, ,,, new nodes and update node set N

/* UsePROCEDURE Init_Branch_Lists_&_Junction_Sets */
(6) Initialize branch lists and junction sets for each of
the M, New nodes.
ENDIF

/* Use PROCEDURE !dentify_& Update. A new vertex
may need to be created for an invisible common edge*/

{7) Identify common edges and common vertices in any
of the previously new junction sets
Update appropriate branch lists, junction sets and
common edges in set C
(8}  Set node N, as "MARKED"

UNTIL (all nodes N;'s in N without a T-type vertex
have been marked)

{9) Use Properties 3 and 4 to find dummy new vertices

Update proper sets B, A and C

END /* End of Infer_AG_Graph */

PROCEDURE Init_Branch_Lists_&_ Junction_Sets
/* Create M, .. branch lists and junction sets */

INPUT: Next node N,
M, oxt =min{M}, where
M={(M| M= |A]|-|B|) AeAandB¢B.

OUTPUT: B = (B, B, B,,
A = {A1, A2, Aa, ves

cony Bn, creg BMnext};
s A s Aol

BEGIN

(1) Create M, branch lists and junction sets. Each s
new branch list contains N, ... Each new junction :
set is initially empty

(2) REPEAT

(3)  Find any two consecutive pairs in A, (i.e., the
junction set of node N,,,,,), which does notindicate
a common edge

(4)  Assign the previous two pairs of A, to any of '

Mpext NEW junction sets which are still empty. Note
that now this two pairs will denote a common edge
since they are present in two junction set

UNTIL (all M, ., new junction sets are not empty) .
(5) Update branch set B by adding M, new branch lists

to branch set B and add M,,,, new nades to branch
list Bpgxe. T



{6) Update property set A by adding M, new junction
sets to property set A

END /* End of Init_Branch_Lists_& Junction_Sets */

PROCEDURE Identify_& Update

/* Identify common edges and common vertices in any of
the M, ., New junction sets. Update proper branch lists
in B and junction sets in A */

INPUT: B is the branch set which includes M, new
branch lists. A is the property set which includes
M, .¢ NEW junction sets.

OUTPUT: Updated sets B and A.

BEGIN
REPEAT
{1)  Find three junction sets such that they have a
common vertex Vommon: Vertex Voo o, is in
M,,.,« New junction sets and is not an intersection
of two common edges

IF (An existing vertex is adjacent to vertex Veommon!
THEN
Denote this vertex as Ve ¢

ELSE
{3) Create a new vertex. Denote this vertex as
Vnew_c . .
(4) Add veriex V,,,, . 10 proper junction sets such

that vertex V.., ¢ is adjacent to vertex
Y in those junction sets
ENDIF

common

{5) Update proper junction sets

(68)  Set vertices Ve ¢ aNd Viommen iN PrOPEr junction |
sets for indicating a common edge

{7)  Update proper branch lists
UNTIL (there are exactly three common edges
indicated in every new junction sets)

END /*End of Identify_& Update*/

Procedure Init_Branch_Lists_& _Junction_Sets takes 0(n?)
time. To see this observe that the main loop is repeated
0fn) times and step (3) takes also O(n) time. Similarly,
procedure Identify_& Update takes O(n?) time. This
happens because the main loop is repeated O{n} times and
step (6) takes O(n) time too. The main loop in the
Infer_AG_Graph algorithm is repeated O(n) times. From the
times of the previous procedures it follows that each
iteration takes O(n?) time. Therefore, the main algorithm
takes O(n3) time.

423

An Example of the Inference Process

A demonstration of the proposed algorithm is illustrated by
inferring an object presented in [ Akinniyi, Wong, and
Stacey, 1986]. This object is depicted in Figure 2(a). A
corresponding incomplete AG graph is given in Figure 2{b).
The inference process is described as follows.

The Inference Process:

Step 1: N = {N;| N;eN’}; B = {B;| B; ¢ B’};
A= {A]| AEA])
Node N;'s are "UNMARKED", where N; € N.

Step 2: C = {AB, BC, BF, EF, FG, JK, KL, KO}.

Step 3:
Iteration 1
Step 4: N ox = Not M = 1.

Step 5: New node: Nyq;
N <-NU{Nyn}

Step 6: 321 = (Nz}: A21 = {(V., ~T), (VQ, "'T)};
Bz <- Bz U (N21}; B<-BU {821},'A <-AU {Az-‘).

Step 7: New vertex V;

Ay = {(Vp, T, (Vi =T, (V) ~T), (Vy, ~T),
Vi, ~T), Vo, T, (Vg ~T), (Vg ~T), Vg, ~Th,
(Vg ~Tki

Ba1 <- By U {NNgki

Az = {Vg, ~T) (Vg ~T), (Vy, ~T), (Vg ~TIk

By <-B; U {Ny}; By <-B4 U {Ny};

C <-C U {AE, AD, EQ}.

Step 8: Set node N, as "MARKED".
Note that the current AG graph is shown in Figure 6{a).

Iteration 2
Step 4: Nygsr = Nii Mg = 1.

Step 5: New node: Nqq;
N <-NU {Ny, }.

Step 6: B11 = {N1),'
A = {(Vc' ~T), Vg, ~T}

Step 7: B11 <- 811 U (N21,N3};
A‘I‘] = ((Vgl ~T)I (Vcl ~T)r (le ~T): (Vql ~T)};
821 <- 821 U {N11}, B3 <- 83 U {N-”};
C <-C U {DC, CG, DQ}.

Step 8: Set node N, as "MARKED".
Note that the current AG graph is shown in Figure 6(b).

Iteration
Step 4: N o = N3 Mo = 0.



C <-C U {GQ).

Step 8: Set node N, as "MARKED".
Note that the current AG graph is shown in Figure-6(c).

Iteration 4
Step 4: N, o« = Ngi Moe = 2.

Step 5: New node: Ngq and Ngy;
N <- N U {Ng;, Ng,}.

A51 = “Vl' ~T), (Vn, ""T)),'

Agy = {(Vy, ~T), (V,, ~T)k

Bg <- Bg U {Ng, N5}

B <- B U {Bgy, Bg,}; A <- AU {Ag,, Ag,}).

Step 7: New vertex V,.
Bgy <- Bgy U {N4.Ngy)i
Agy = {(Vy ~T), (V;,~T), (V,,, ~T) (V,, ~T)};
Bs, <- Bgy U {Ngq, Ng};
Agy = {(Vy, ~T), (V,, ~T), {V,, ~T), (V,, ~T);
C <- C U {JN, NO, IJ, NR, OP}.

Step 8: Set node Ng as "MARKED".
Note that the current AG graph is shown in Figure 6(d).

lteration 5
Step 4: Njgxe = Ngi Mo = 1.

Step 5: New node: Ngq; N <- N U {Ng4}.

Step 6: 861 = {Ne),’

Step 7: New vertex V,.
A4 = {(Vh, T)I (Vll ~T): (er ~T)I Vkl ~T)I (vp ~T)l
(Vo ~T) Vi T) (Vg ~T), (Vg ~T), Vg, ~T),
(Vg ~T));
Bg1 <-Bgq U {N5a, Nyg}i
A61 = {(Vrl ~T)l (Vp; ""T): (VII ~T)1 (vsl ~T)};

Step 8: Set node Ng as "MARKED".
Note that the current AG graph is shown in Figure 6(e).

Because all nodes in N’ without a T-type vertex are
marked, we exit the REPEAT loop.

Step 9:

Vertex V, is a common vertex in junction sets Agy, Agy,
and Ag4. By applying Property 4, nodes Ngq and Ng,, and
Ngq should be connected. From Property 3, junction sets
Ag, and Ag, must have a common edge. Therefore, vertex
V, is a dummy vertex and should be replaced by Vertex V,.
C <-CU{IR, U}; Agy = {V,, ~T), (V,,, ~T), (V,, ~T),

424

Vi ~TE Ay = {{Vy, =T (V;, ~T), (V, ~T), V), ~T),
(Vol ~T)1 (VfI~T)I (VQI ~T)l (Vqr ~T)}'

Therefore, the inferred complete AG graph is as the one
given in Figure 6(e) and its property set is as follows.

A= {{{V, ~T) (Vp, ~T), Vg, '~T), (Vg ~T}},
{(V,, ~T), (Vg ~T), (Vy, =T, (V,,, ~T)},
{(Vp, ~T), Vg, ~T), Vg, ~T), (V,~T},
{(Vie ~T) (V, ~T), (Vy, ~T), (V) ~T), (V,
(Vi ~T), (Vg ~T), (Vg ~T)),
{(V;, ~T), (V,, ~T), (V,, ~T), (V,,
(Vi =T Vg, ~T), (V, ~T), (V,
((Vd' ~T), (Val ~T), (Vel ~T), (Vq: ~T))l
{(Vq, ~T)h Vg, ~T), (Vy4, ~T), (V,, ~T)},
{(Viy ~T), (V;, ~T), (V,,, ~T), (V,, ~T)},
{(Ve, ~T) (V,, ~T), Vg, ~T), (V,, ~T)},
((Ve, ~T) (V,, ~T), V), ~T), (V;, ~T}}

~T)l

~T)}:
~T))I

Recall that the inferred AG graph and its property set are
equivalent to the complete AG graph shown in Figure 1(b).
Nodes N-”, N21, N51, st, and NGT' in Figure 6(e),
correspond to nodes Ng, Ny, Ng, Ny, and Ny, in Figure
1(b}, respectively.

(L}

Figure 6. The Current AG graphs during The Inference

Concluding Remarks

In this paper we examined the problem of inferring the
entire geometry of a 3-D object, given a partial 2-D
projection of the object. For this reason the concept of the



TE

Adjacency Graph (or AG graph) was developed. Two types
of AG graphs were considered. Complete and incomplete
AG graphs. Therefore, the problem was to infer a complete
AG graph from an incomplete AG graph. An efficient
algorithm (it takes 0(n3) time) is given for this purpose and
it is illustrated via an example.

The object inference problem is a critical problem in many
industrial applications. Such applications include process
planning, diagnostic systems, and motion analysis. Future
research may focus on inferring the dimensions and angles
of the invisible parts of a 3-D object.

REFERENCES

Akinniyi, F.A., A.K.C. Wong, and D.A. Stacey, 1986. "A
new algorithm for graph monomorphism based on the
projections of the procedure graph,” |EEE Transaction on
System, Man, and Cybernetics, Vol.SMC-16, No.5, 1986,
pp. 740-751.

Chakravarty, 1., 1979. "A generalized line and junction
labelling scheme with application to scene analysis, ” IEEE
Transaction on Pattern Analysis and Machine Intelligence,
PAMI-1, No.2, pp. 202-205.

De Floriani, Lelia, 1986. "A hierarchical boundary model
for variable resolution representation of three-dimensional
objects,” Proceedings of International Conference on
Pattern Recognition 8th, 1986, pp.226-229.

De Floriani, Lelia and Bianca Falcidieno, 1988. "4
hierarchical boundary model for solid object
representation,” ACM Transactions on Graphics, Vol 7,
No. 1, January 1988, pp. 42-60.

Joshi, S. and T. C. Chang, 1988. "Graph-based heuristic
for recognition of machine features from a 3D solid
model, " Computer Aided Design, 20, 1988, pp. 58-66.

Joshi, S. and T. C. Chang, 1990. "Feature extraction and
feature based design approaches in the development of
design interface for process planning,” intelligent
Manufacturing, 1, 1990, pp.1-15.

Lu, Siwei and Andrew K. C. Wong, 1988. "Analysis of 3-D
scene with partially occluded objects for robot vision,”
Proceedings of International Conference on Pattern
Recognition 9th, 1988, pp.303-308. 5
Wong, E.K. and K. S. Fu, 1985. ed.Julius T. Tou.; "A
graph-theoretic approach to 3-D object recognition and
estimation of position and orientation, " Computer-Based
Automation, Plenum, New York, 1985, pp.305-344.

Wong, A. K. C. and S. W. Lu, 1983. "Representation of 3-

425

D objects by attributed hypergraphs for computer vision, *
Proceedings of International Conference on Systems, Man,
and Cybernetics, 1983, pp. 49-53.

Wong, A. K. C. and S. W. Lu, 1985. "Recognition and
knowledge synthesis of 3-D object images, " Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition, 1985, pp.162-166.



APPLIED COMPUTING:
TECHNOLOGICAL CHALLENGES OF
THE 1990'S

PROCEEDINGS OF THE 1992 ACM/SIGAPP
SYMPOSIUM ON APPLIED COMPUTING
VOLUME I

Kansas City Convention Center
March 1-3, 1992

editors:

Hal Berghel
Ed Deaton
George Hedrick
David Roach
Roger Wainwright

NETWORKS
OTHER — Al

SCIENTIFIC R

w) X, e
HARDWARE e L L

INFO SYS

DATABASE

: OP SYS
DISTRIBUTED GRAPHICS

LANGUAGES




