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Abstract. An increasingly interesting issue in Rule-Based System (RBS)
development is the problem of inferring rules from examples. As RBSs attempt
to solve larger and more complex problems, automatic ways for determining the
knowledge bases of these systems become critical in Knowledge Fngineering. The
present paper proposes the use of an Integer Programming approach in deriving
rule structures from a set of examples. This Integer Programming approach
provides a flexible and powerful way for utilizing information that very often is

difficult to handle, mainly due to the complexity of the problem.
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1.0 Introduction

In this section we deal with some of the fundamentals of Rule-Based Systems (RBSs).

Edward Feigenbaum in [Harmon and King, 1985] has defined Expert Systems or Rule Based

”

Systems as: “... an intelligent computer program that uses knowledge and inference procedures

to sohve problems that are difficult enough to require significant human expertise for their solution

” From the above definition it follows that any RBS is associated with a knowledge base and of

inference procedures. The inference procedures guide the usage of the knowledge base in order

to solve a problem under question. In RBSs the knowledge base is organized in terms of

procedural rules and declarative facts. A rule is divided in two parts: the antecedent and the

consequent. ’ p)

The rules used in a knowledge base can be unreliable and changeable or reliable and

static. A system that belongs in the first case is MYCIN. Such systems require considerable

attention on such issues as: probabilities, fuzzy logic, uncertainty etc. Usually there is no

single widely accepted way of handling data of this nature [Stefik, et al., 1982]. The systems that

we will deal with are the ones that use reliable-and static knowledge.
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While the inference process takes place it is possible for the system to require additional
information. Usual sources of additional information are data bases (for example: files with
numbers), human experts, or the working memory. The working memory is used to store
findings that are established during a consultation session. The working memory might
expand or shrink during a consultation session. To summarize, an cxpert system has the
following parts:

1) The knowledge base

2) The inference procedures

3) Additional sources of information (data bases, humans, sensors, etc.)

4) A dynamically changing working memory
We deal with deterministic RBSs (reliable and static) for three critical reasons:

1) These are simpler than systems of the first kind (ie: the ones that use
unreliable and changeable knowledge bases). We do not need to consider
probabilities or fuzzy logic. The knowledge is much better structured.

2) Even if we needed to study systems of the first kind, we still need to examine
first the systems with reliable and static data (since they are of simpler nature).

3) Systems of the second kind are more easily formulated by means of automata
theory or Integer Programming formulations. That is, they are more
promising for study.

A typical rule in the RBSs under consideration has the following structure:

IF (P; and Py and ... P,) THEN ( Py, Py,... Pip) (1.1)
That is, if premises Py,P;,...,P,, are true then, premises P;y, P3,... Pj, claimed to be true as well.
As an example, rules in the VM system reported by Fagan [Fagan, 1980] follow the above
structure (1.1). For instance, the VM rule: _
IF the current context is ‘Assist” AND
respiration rate has been stable for 20 minutes AND
I/E ratio has been stable for 20 minutes,
THEN the patient is on ‘CMV’ ((f()ntr()lled Mandatory Ventilation).
follows the structure depicted in (1.1). Here the premises arc:
P, = ” the current context is "Assist” ”
P, = ” respiration rate has been stable for 20 minutes *
P, = ” I/E ratio has been stable for 20 minutes ”
P;; = ” then the patient is on 'CMV’
In the following section the RBSs that are under consideration in this study are described in
a formal manner. This kind of treatment is necessary for a number of reasons. First, the structure

of these RBSs is established in a clear and }igorous fashion. Secondly, some elementary properties
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of the RBSs are revealed. In this way, it is possible to understand some of the combinatorial

difficulties that emerge in many RBS related problems in a better manner.

2.0 Some Characteristics of RBSs
Using the previous notation and structure of rules, it can be derived easily that a typical rule
in the RBSs under consideration can be reprcsented as an ordered pair of two sets. More
specifically, the rule given in the previous section as (1.1), becomes:
((P1, Py, Pa P}, {Py, P, Pigye Pro)) 2.1)
The consequent part of the rule shown in (2.1) involves <in> indicator variables (or
<in> premises). For reasons of ease of modeling it is assumed that the consequent part of any
rule involves only one indicator variable. This assumption is without loss of generality because a
rule given as in (2.1) can equivalently be represented by the set of <in> rules given as (2.2):
(P, Py, Py, P}, {Py}) (22)
({Py, Py, Py, Pr}, {Pig))
({P1, Py, Py, P}, {Pi3))

(P, Py, Py P, {Pi))
Previously it was assumed that the premises in the antecedent parts are connected only
with ANDs. This is without loss of generality because if ORs are present they can be eliminated
by substituting them with equivalent expressions that have only ANDs. For example, the rule:
({{PAND P;) OR {P;AND Py}  (Pg)
is equivalent to the following set of rules:
({PL AND P} {Ps))
({P; AND P;}  {Ps})
From the previous discussion it follows that the knowledge basc of any RBS can be
represented by a set of ordered pairs that have the form:
({P1, Py, Py, Po}, (D)) (2.3)
If it is assumed that a RBS has a knowlcdge basc with M rules with n; premises in the
antecedent part of the it rule (for i=JL,2,3,,..,M) then, the knowledge base of that RBS can be
represented as:
(P11, P2, Prs,e. P}y {Pra}) (24
({Pa1s Pyy, Pa3ye. Pogy}s {Pr2})
({P31, P32, Pas,... P3ﬁ3}» {P3})
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({Pm1> Pmas Pum3ie Punyds {Pamd)

Suppose that 2 RBS has N premises. From the N premises suppose that N, (0 < N; <
¥} are in the antecedent parts of the rules. These N; premises are called input premises. Let
N, to be the number of premises in the consequent parts. In reality some of the premises
that appear in the consequent parts might also appear in the antecedent parts of some rules.
However, it is assumed that these premises are substituted with premises that appear only in
the antecedent parts. This is without loss of generality. In this way rules that might cause infinite
loops are avoided. For example, the following rules create such a loop:

RULE LI: ({Py, Py, Py}, {P4})

RULE 2: ({Ps, Ps},  {P1})

However, if it is assumed that consequent premiscs do not appear in antecedent parts, the

previous two rules become:

RULE 1" ({Py, Py, P3}, {Ps})

RULE 2: ({Py, P,, P5, Ps}, {P}})
That is, the second rule has the consequent premise in the antecedent part. This might make the
use of the second rule impossible since P, may never be proved. In order to avoid this problem, it
is assumed that the consequent premises do not appcar in the antecedent part in any rule.
Therefore, these N, consequent premises will be called output premises (since their value is the
output of the system). From the above discussion, relation (2.5) follows:

N, + N, =N , 2.5

The above concepts are illustrated through the following example:

Example 1.

The following rules deal with the problem (adopted from [Harmon anf King, 1985]) about
getting to a theater on time. The knowledge base is depicted in Table I. The premises involved in
these rules can be encoded as shown in Table II.

From the 16 premises shown in Table II the first 9 are input premises while the remaining 7
are output premises. That is, in this example: N = 16, N; =29, and N; = 7. From the
definition of the above premises the rules in the knowledge base can be written in terms of

ordered pairs as follows:

From Rule #1:

{ P} {Piw})
({Ps, P3} {Pp})
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From Rule #2:
({ Py P3} {P})
({ P2, P3 )} {Pi })
From Rule #3:
({ P2 Py} {Pwo})
From Rule #4 (and Rule #1):
({ P, Ps} {P}
From Rule #5 (and Rule #1):
({ Py, Pg } {Pi})
From Rule #6:
{ P} {Pwo})
From Rule #7 (and Rule #6):
({ Py, P71} {Pud)
From Rule #8 (and Rule #6):
({ Py, Py} {Pis})
That is, the knowledge base given in Table I, by using the conventions established in Table II,
can be represented by the ordered pairs depicted in Table TI1.
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Table I. Rules about getting to the theater

Rule| IF: THEN:
1 Distance is greater than 5 miles OR
( Location is Downtown AND
Time is less than 15 minutes) Means is drive
2 Distance is greater than | mile AND
Time is less than 15 minutes Means is drive AND
Advise is hurry up
3 Distance is greater than 1 mile AND
Time is greater than 15 minutes Means is drive
4 Means is drive AND ,
Location is downtown Action is take a cab
5 Means is drive AND
Location is not downtown Action is drive your car
6 Distance is less than 1 mile Means is walk
7 Means is walk AND ¢
Weather is bad Action is take a coat and walk
8 Means is walk AND
Weather is good Action is walk
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Table I1. Set of premises

Code | Premise Code | Premise

P, Distance is greater than $ miles Py Distance ‘is less than | mile

P, Distance is greater than 1 mile |P;, | Means is drive

P Time is less than 15 minutes P Means is walk

Py Time is greater than 15 minutes | P, | Action is take a cab

Ps Location is downtown P;; | Action is drive your car

P Location is not downtown P;s | Action is take a coat and walk
P, Weather is bad P;s | Action is walk

Ps Weather is good P,s | Advise is hurry up

Table III. Set of ordered pairs

Derived from: Ordered pair
Rule #1: ({ P} {P1o})
1 ({(PsPs}  {Pu))
Rule #2: {PxPs3} {Pi))
({ P2 P3} {Pi D
Rule #3: ¢ Pz,.P4 } {Pio})
Rule #4: (P, Ps) {P})
Rule #5: ({ Py, Pg ) {Pi})
Rule #6: ({ Py} {Pw )
Rule #7: ({ Py, P7} {Pu})
Rule #8: ({ Py, P3 } {Pis})
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3.0 Description of the RBS Inference Problem
The current paper primarily deals with the RBS inference problem. That is, to infer a RBS
from a set of example consultations. An example consultation is a set of input premises that
have to be true in order for certain output premises to be true, or false.
For example, suppose that a system under question involves the following five premises as
input ones:
P, P, P, P, P
Suppose also that the following three are the output premises:
P, P, P, '
Then, a example consultation might be:
({P, P} {Py Pg})
This example can be interpreted that if premises P, and P, are true, then the output premises
P,, P, should also be true, while the output premise P, must be false. As with the case of the
rule format, example consultations are assumed to be ordered pairs of two sets. The first set
contains the input premises that are true in the current example. The second set simply
contains the output premise that is true when the input premises are true. If the second set is
empty, then no output premise becomes true in that example. This is without loss of generality.
For example: ({P,, P,} { P, P;}) becomes:
({Pn Py} {Pg})
({ Py P} {Pg})
The inference problem then is to utilize examples of the above form and to determine a
RBS that can derive these examples. As a second demonstration, suppose that a system under
question has five input premises (ie: P, P,, P,, P,, P;) and only one output premise (ie: Py).
Suppose also that the following example consultations (interpretable as previously) are
the only available data:
({ P, Py Py} {Pg})
({(P, Py P;} {Pg})
({ Py Ps} {(Ps})
({ Py Py} N
The last example simply indicates that when premises P, and P, are true then, the output premise
P, cannot be true.
A RBS that can satisfy the above data might have three rules with the following trivial

structure:
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IF (P, AND P, AND P;) THEN (Py)

IF (P, AND P, AND P,) THEN (Pg)

IF (P, AND P,) THEN (Py)
Apparently, these three rules can derive all the above cxamples. However, it is desirable to
design a method that determines a RBS, with the above requirements, that has the minimum
number of rules. For the current example, such a RBS might be:

IF (P, AND P,) THEN (Py)

IF (P, AND P;) THEN (Py)

The importance of the RBS inference problem was recognized from the first steps of the
Al development. McCarthy expressed the ultimate objective of research on Al by stating that
*Our ultimate objective is to make programs that learn from their experience as effectively as
humans do” [McCarthy, 1958]. This problem is also known as learning from examples. An early
treatment of this problem is due to Fu [Fu, 1970]. In this approach the unknown system is
considered as finite-state automaton. A comparative review of selected methods for learning
from examples, on a RBS context, can be found in |Dietterich and Michalski, 1983]. More
recent developments are included in [Michalski, 1986}, [Mozetic, 1986], [Fisher, 1987], [Tallis,
1988], [Gross, 1988], [Helft, 1988], [Kadie, 1988].

Research on learning from examples does not provide a unified formalization of RBSs. In
order for a methodology on this subject to have pervasive power, a formalization of the majority
of RBSsis needed. In the literature the RBS inference problem has not been examined from a
minimum number of rules point of view. This is one of the reasons why Mathematical
Programming, and especially Integer Programming, is a reasonable approach in treating machine
learning issues. Furthermore, the highly  successful application of Mathematical
Programming techniques on the logical inference problem (see, for example, [Williams, 1986],
[Jeroslow, 1988], [Hooker, 1988a, 1988b]) provide a strong motivation for examining learning

from 6xamplcs from an Integer Programming point of view.

4.0 Formalization of RBSs
4.1 Some Preliminary Definitions
It is assumed that initially there are N premiscs involved in the RBS that is to be

determined. These premises are denoted as: P,, P, P, .. Py Itisalso assumed, without loss
of generality, that the first N, (1< N, < N) premises arc input premises, that is, their value (true
or false) is given as input to the system. Similarly, the remaining N, (N, = N — N)) premises are

output premises, that is, their value (true or false) is given as the output of the system. After

establishing the concepts of input and output premises, the following definitions are introduced:
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Definition 4.1:

Define S, to be the set of all the possible input conditions. Since the number of input premises
is N,, it follows that there are (2”’ — 1) different input conditions (since the empty set is not
considered),

Definition 4.2:

Define S| (i = Ni+1, N\+2, Ny+3, ... N) to be the set of all input conditions that result in the
premise P, to be true.

Definition 4.3:

Similarly, define S, (i = N;+1, N\+2, N\+3, ... N) to be the set of all input conditions that
result in the premise P, to be false.

Definition 4.4:

Define E] (N, <m < N) as the set of all the members a,eS,, that are already known to satisfy

the relation: ajeS:.
Definition 4.5:

Define Ef ('Nl <m< N) as the set of all the members a5y, that are already known to satisfy

the relation: ajeSfl .

4.2 The Definition of the ¢( S), 1(a), and f( a) Sets
Let aeSNl then, a can be written as:
a= [blbzbs...bh,l]
In other words, a can be represented by a sequence of N, characters that are either zero or one
according to the following rule:

b, = {(} if input premise P is true (for any i = 1,2,3, .. N,)

otherwise
That is, the members of the Sy S; and ST scts are strings of size N, with characters from the
alphabet: {0, 1}.
Definition 4.6:
Define the set ¢( { Pnl, P,.,' Pna’ P"L } to be the set with members from the set { Pﬂl, Pnz, Pn3,...

P"L } plus all its non-empty subsets.
For example: ¢({ P, P, P,}) =
UPUP P, PP}, (P P), (P PY, (P) (P, (P))

For reasons of notational simplicity the expression: é({ I’"l, Pnz, I’na, P"] } will be denoted as:

e({mnyny, o))
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Let aeSy,, where: a = [b, b, b,... by |
Suppose also that the following relation (4.1) is true:

N, K
> b = lebij = iy (1)

j=1
That is, the b,j ’ 5 are the only characters in string a to be equal to | or equivalently, the

P, P Py o P, are the only premises to be true among all the input premises. The following

definition formalizes the previous concept:

Definition 4.7:

Let aeSy,. Then, #( a) is defined to be the set of the input premises that are stated as true in
string a.

Definition 4.8:

Similarly, let aeS,,. Then, fla) is defined to be the set of the input premises that are stated as

false in string a.

The following example illustrates the above issues:

Example 2:
Let N = 5 and N, = 4. Suppose also that:

a, = (1110)
a, = (0001)
a = (1111)

Then, the following relations are derived by using the appropriate definitions (the P’s are dropped
from the notation for easier representation. For example, {1, 2, 3} stands for: {Py, Py, P3}):
t(a) = {1,23)

t(aq) = {4}
t(a) = {1,234
fla) = {4)
fla) = {1,2.3}
f(a) ={}

and consequently:

$(t(a)) = {{1,2,3), {12, {23 (1,3}, {1} {2}, {3})

(t(a)) = {{4}}

S(r(a)) = {{1,23,4), (1,23}, (1,2}, (23}, (L3} (1,24}, {1.4), {24},
(3,4, {2,3,4), (1,3,4), {1}, {2), {3}, {4})
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4.3 Inference Properties of Members of the £” and E Scts
Suppose that it is given that:
a, = (1110)eE]
The previous relation indicates that when premises P, P, and P, arc true then the output
premise P, should also be true. That is, there is a rule that has in its antecedent part a member of
the set:
({1,234 {1,2), (L3}, {2,3L{1}, {2}, {3}} = ¢(Uq))
and has { P, } as a consequent. Similarly, suppose that:
a, = (0110)eE]
In this case the above relation indicates that any rule that has as antecedent a member from the
set:
{{2,3}, {2}, {3}} = é(U(q))
cannot have the consequent: { P, }.
The previous two observations can be generalized as follows:
Statement 4.1:
Let aeEl (N, < m< N). Then, a was derived by a rule that has in its antecedent part a member
of the set: ¢( #( a)) and as consequent: { P _}.
Statement 4.2: _
Let acEL (N, <m< N). Then, a cannot be derived by a rule that has in its antecedent part a
member of the set: ¢( ¢ a)) and as consequent: { P, }.

. The following example elaborates the previous two statements.

Example 3:
As in example 2, let N =5 and N, = 4. Suppose also:

a = (1110)eS]

a, = (0001)eS!

a, = (1111)eS7

and a, = (0110)eS!
Then, from Statement 4.1, the string a, was derived by a rule that has in its antecedent part
a member of the set ¢( ( #( a,)) and as a consequent { P, }. Similarly, a, and a, were derived from

rules that have antecedent parts from the sets ¢((# a,)) and ¢((«(a,)), respectively.

Statement 4.2 and the fact that a,eE] indicate that rules that have consequent part: { P"5 } cannot
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have as antecedents a member of the set $(( 1 a,)). From the previous discussion it follows that:

The antecedent part of the rule that derived a, is a member of f;
The antecedent part of the rule that derived a, is a member of f;

The antecedent part of the rule that derived a is a member of £

where:

£ = ¢((t(a)))— #((t(a))) ({1,235 {L2, (L3} (1})
£, = $((t(a)))— #((t(a))) {{4}}
£, = ¢((t(a)))— ¢((1(a))) = ({1,2,3,4), {1,2,3}, (1,2}, {L3),
(,2,4), {1,4), {24, 3.4, 234, 134 {1}, {4}}
It can be also seen that:
ANANG = ¢

From the above relation it follows that given:

El = {a,4a,a} and
E: = {4q,}

it is impossible for a,, a,, a; to be derived by a single rule. However, the previous data suggest that

it is possible that a,,a, were derived by the same rule that has antecedent: { 4 } and consequent: {

5}. This can be seen easily from the following Venn diagrams of the sets f;, f f, (Figure 1).

5,

(1234} {124} {14} (24 (34) (234 {1.3,4)

Figure 1. Venn diagrams

From Figure 1 it can be seen that all the RBSs that have one rule that derives a,, a;and a

second rule that derives a, must have the first rule with antecedent { 4 } and the second rule

with antecedent a member of the set { (1,2}, {1,2}, {1.3}, {1} }. That is, there are: 1x4 = 4
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such systems. Similarly, it is possible to derive a,, a, from one rule and q, from a second rule. In

this case the first rule has as antecedent a member from the set { {1,2,}, {1,2}, {1,3}, {1} } and

the second rule has antecedent { 4 }. Apparently it is impossible to derive g, and q, from the

same rule (since f, (] f; = ¢)-

From the above considerations and under the requirement of the minimum number of
rules it follows that given the data of example 3 there are 4 candidate RBSs that can result
a,, a, a, E] and a,eE;.

From the way RBS are modeled in the present treatment it is a good idea to consider one
output premise at a time. This is true because if we know the rules that correspond to each
output premise then, the rules in the final RBS can be found by simply taking together all the
above sets of rules. For this reason, from now on, it is assumed that there is only one output
premise. in each rule. This consideration indicates that the RBS inference problem is

reduced to the problem of inferring a RBS given only one pair of sets £/ and E’. That is, the

inference problem under investigation can be formulated as follows:

Problem:

Given a pair of two E7 and E. (N = m> N,) sets derive a RBS that has the minimum number of

rules and can derive the above pair of E7 and E! sets.

5.0 Proposed Algorithm
5.1 A Preliminary Discussion.

The problems presented in the previous sections are examined from an Integef Programming
point of view. IP has long been used in RBS related problems (see, for example, [Williams,
1986}, [Jeroslow, 1988}, {Hooker, 1988a, 1988b]). Thesc treatments deal mainly with the problem
of inferring facts given a set of conditions (rules) and assertions (logical inference problem). The
proposed approach uses two IP models. The first IP model determines the minimum number
of rules that can be derived from a pair of £’ and E! sets. The second IP model uses the results
of the previous model and determines a representative sct of rules that can derive the members
of the ET set, while they do not derive the members of the £ set. In order the motivation of this
formulation to become clear, an example is examined first. Then, a formal formulation follows as

generalization of this example.
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Example 4:
Let N =6 and N, = 5. Suppose that the following data are also available:

a = (1 1100)eE]

a = (1 1010)eE]

a = (01 100)eE!
and a4=(01010)eE6F
That is:

E={a,aa), E=(a)
Variable Definitions
Let M, = |EL| = |ET|and M, = | E]| = | EF | ( where: | S| means the cardinality of set
S). Since there are three strings in ET, it is reasonable to assume that at most three rules ( ie:
M, ) will be derived (one for each string). Then, the following varables arc being introduced:

[Variable Set #1]

Let
X, =1 if rule i has premise P, on its antecedent part
X, =0 otherwise

where:
1< i <M, (=3)
1< j <N (=5)

[Variable Set  #2]

Let
w,=11 string a,(a€ ED) was derived by rule i
w,=10 otherwise

where:

1< i <M (=3)

1<j<M (=3)
[Variable Set  #3]
Let

R, =1 ifruleiis NOT nil

R, =0 ifruleiis nil (ie: there are NO premises in its antecedent part)
where:

1< i <M (=3)
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Using the above variables the following constraints are being introduced:
[Constraint Set #1]

The first family of constraints requires each member of L] to be derived by at least one rule. For

this example we have:

a,eE] which requires that:

(X, + X+ X)) + (X, +X,+X,) + (X, +X,+X,) =1
Also a,eE] requires that:

(X, + X, +X,;) + (X,+X,+X,) + (X + X+ Xy,) 21
Similarly, a,eE] requires that:

(Xp+Xp+X,) + ( X+ Xy +X,) 21

[Constraint Set #2]
If q (ajeEGT ) was derived by rule i then, by the definition of the second class of variables it
should be: W‘.j = 1. This statement indicates that if WU =1 then, all the X vanables of the it
rule that correspond to premEscs that are not true in string a, should be cqual to zero. Therefore

we have:

a;eEZ which requires that:
2xW, + (X, +X;) <2
2xW, + (X +Xy) <2
xXWy + (X +X5) <2
Similarly, a,eE] requires that:
2xW, + (X ;+ X)) <2
2xWo, + (X + Xy5) < 2
2xW,, + (X + X)) <2
[Constraint Set #3]
Since each ajeEZ was derived by at least one rule, the foﬂowing constraints should be satisfied:
Wi+ W+ W, =21
Wo+ W+ W, 21
Wyt W+ Wy 21
[Constraint Set #4]

If a,eEf then, the premises that are true in a, cannot be present alone in the antecedent part of

any rule. For this example, since a,eE! it follows that:
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if (Xy+X,) =1 then, (X, +X,+X;) > 1
forany i=123 (= M,)

or:

(X, + X+ X)) =2 (X, +X,)

2x( X, + Xy + Xy ) = (X, +X,,)

2x( Xy + Xy + Xy ) = (X, + X,,)
[Constraint Set #5]
This family of constraints simply requires that if at least one premise in the antecedent part of a
rule is true then, the corresponding R variable has to be equal to 1. For this example this is
achieved by the following three constraints:

SR, Xy + X+ X+ X, + X

SxR, 2 Xy + Xy + Xy + Xy + X6

SXRy = Xy + X+ Xy + Xy + X
[Constraint Set #6]

This family of constraints requires that if all the premises in the antecedent part of a rule is true

v

then, the corresponding R variable has to be equal to 0. For this example this is achieved by the
following three constraints:

Xy + X, + X+ X,+Xs 2 R,

Xy + X+ X+ X0+ Xy = R,

Xy + X+ X+ Xy + Xy = R,
[Constraint Set #7]
The last family of constraints requires that if an R, variable is zero then all the corresponding
W, should be equal to 0 for any value of j. For this cxample this is achieved by the following
three constraints:

W+ W,+ W, < 3xR,

W+ Wy,+ W, < 3xR,

Wy+ Wyt Wy < 3xR,

This IP approach has two phases. In the first phase the minimum number of rules is

determined. That is, the following objective function is used.

MIN )R,

i=1

In the second phase, the body of constraints is first simplified. That is, the variables that
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correspond to rules that were derived to be nil in the first phase are dropped. This step reduces
the complexity of the current formulation. After the simplification step, a maximization function

is used. This function is as follows:

MM N
MAX > Y x,

t=1 j=1
Where MM is the value of the objective function of the first phase. Also in the second phase the

indices are modified to express the compaction of the current formulation.

Phase two results in each rule (ie: non nil rule) to have the maximum number of premises.
Suppose that rule z has the following premises in its antecedent part:
S, = (PP, PP}
Then, this rule is allowed to have as antecedent parts members of the following set f] :
L=4¢(S,) - U ¢(t(q))
ajeE;

The above discussion can be summarized in the following IP formulation:

MIN (R, + R,+R,) (for phase one)

subject to:
(X + X+ X)) + (X + X+ X,) + (X + X+ X,) =21
(X, + X, +X,) + (X, +X,+X,) + (X + X+ X,) 21

(X12+X22+X32) + (Xl3+X23+X33) 2 1

W, + (X + X)) < 2
W, + (X + Xpg) < 2
2XWy + (Xy+ X)) < 2
W, + (Xy+ X)) < 2
Wy, + (Xy+ Xy) < 2
Wy, + (X + X)) < 2

Wll+W21+W3l > 1
W12+ W22+ W32 = 1

I/VIS + W23 + W33 2 1

2x( X+ X+ X)) = (X, +X,,)
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2 Xy + Xy + Xos) 2 (X + X5,)
2X(X31+X33+X35) = (X32+X34)

5xR, = X+ X, + X3+ X, + Xjs
SxR, = Xy + X+ Xy + Xy + Xy
5xR, = Xy + X+ Xy + X“ + Xy

[\
-]

Xll + X12 + Xl3 + XM + XIS
X, + X+ X+ Xy + Xy
Xy 4 X+ Xy + Xy + Xy

v
=

v
pe-]

W+ W,+ W, < 3xR,
W2l + WZZ + W23 = 3XR2
W31 + W32 + W33 =< 3XR3

where the R, X, and W, are 0-1 variables.

When the phase one model is solved, the solution indicates that:
X,=0 X,=1 X,;=0

X,=0 X,=1 X,=0
X,=0 Xu=0 Xy=1
X,=0 X,=0 X,=0
Xs=0 Xu=0 X =0
W, =0 Wy=1 W,=0
W,=0 Wy=1 Wy=0
W,=0 W,=0 Wy=1

R =0 R,=1 R,=1
That is, two is the minimum number of rules for this cxample! Since three rules were allowed as
the maximum number of rules and the result of phase one indicates two rules, a simplification of

the set of constraints is possible. The (simplificd) model for the second phase is as follows:

3 5

MAX Z Z X, (for phase two)

i=2 j=1

subject to:
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(X + X)) + (Xp+Xy) + (Xp+Xy) 2|
(X21+X32)+ (X22+X32)+ (X24+X34)2 1
(Xp+ X)) + (Xp+Xy) 21

W, + (Xyy+ Xyg) < 2
W, + (K + Xyg) < 2
W, + (Xy+ Xyg) < 2
W, + (X +Xyg) < 2

Wy + Wy, = 1
Wy+ W, > 1
W23+ W33 2 1

2x( Xy + Xy + Xy ) = (X + X))
2x( Xy + Xyg+ Xys) 2 (X + X))

SXR, = Xy + Xy + Xy + Xy + Xy
SxRy = Xy + Xy + Xy + Xy + X

X+ X+ X+ X+ X5 2R,
X+ X+ X+ X+ Xy 2 Ry

W21 + W22 + W23 < 3XR2
W31 + W32 + W33 = 3xR3

where the R, X, and W, are 0-1 variables.

When the phase two model runs, the following solution is derived:

X,=1 X;,=0
X,=1 X,=1
X,=0 X,=1
w=1 X,=0
Xy=0 X,;=0
W,=0 W, =1
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Wo=1 W,=0
Wy=0 Wy=1
R,=1 R;=1
That is, the proposed RBS is:
{{1,2,4}, {6})
{{23 }, {6}}
or:
IF (P, AND P, AND P,) THEN ( Py)
IF (P, AND P;) THEN ( Pg)

52 A Generalization of the IP Formulation
The above formulation can easily be generalized. The general model for phase one is as

follows (the model for phase two is obvious and hence omitted):

MIN Z R, (for phase one)

subject to:
[Constraint Set #1]

i Z X, 21 for any a,cE]

i=1 all j such that: Pjsl(ak)

[Constraint Set #2]
nxW, + Z X, <n for any a,eEl and i=123,..M,

y
all j such that: PjEj(ak)

where: n=|f(qa,) |

[Constraint Set #3]

. Ml
Z w, =1 for any j such-that:aeE,,
i=1

[Constraint Set #4]
nx Z X, < z X, for any a,eEl, and i=123,...M,

all j such that: Pjsﬂﬂk) all j such thet: Pjsl(ak)

where: n=|t(a,)|
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[Constraint Set #5]

My
N, R, = Z X,.j. Jor any i=123,...M,
Jj=1

[Constraint Set #6]

M
Z XU = R, Sfor any i= 1,2,3,..M,
J=1

[Constraint Set #7]

> W, < MxR, for any i=1.23,..,.M,

where the R, X, and W, are 0-1 variables.

From the above formulations it follows that the number of the X, ; variables is M,xN,, the
number of the W variables is M,xM, and the number of the R, variables is M ;- That s, there are
M x(N,+ M, + 1) 0-1 variables in this IP formulation. Similarly, the constraint sets 1, 2, 3, ...,
7 have M,, M,xM,, M,, MxM,, M,, M|, and M, constraints, respectively. That is, there are
M x(M, + M, + 5) linear constraints.

This analysis of the size of the IP formulation reveals that the derived approach is linearly
dependent on the number of input premises ( ie: N,), the number of members of the set EL
(ie: M, ), and on the square of the number of members of the set ET (e M,). Thus, the small

size of the models, makes the application of the present IP approach to be a flexible one.

6.0 Concluding Remarks

In this paper we considered the problem of lcarning structures of rules in Rule-Based
Systems from selections of examples. This problem is onc of the major issues in machine learning.
Learning from examples has been realized as a critical issue in Knowledge Engineering. Most
often the structure of the rules in the kr;owledge basc of a RBS is not known and has to be
derived from examples. As the problems that RBSs are called to solve today become increasingly
complex, the problem of machine learning becomes more vital and difficult at the same time.

A formalization of RBSs was introduced in order to highlight the fundamental issues of the

learning problem that this paper is dealing with. This formalization leads to an IP approach that
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effectively treats the problem of inferring rules from examples. The sizes of the resulting IP
models make this approach to be particularly powerful.

Integcr Programming has long been used in logical inference from a set of facts and
rules. In that context IP turned out to be a very powerful approach, since many difficult logical
inference problems can be solved this way. However, the RBS inference problem (ie: inferring
rules from examples) has not been intensively examined from an IP point of view. The present
work is a step towards this direction. The successful treatments presented in this paper indicate

that IP can also be a powerful tool in dealing with many complex machine learning problems.
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