
A Data Mining Study of Weld Quality Models Constructed with 
MLP Neural Networks from Stratified Sampled Data 

 
T. W. Liao, G. Wang, and E. Triantaphyllou 

Department of Industrial and Manufacturing Systems Engineering 
Louisiana State University 

Baton Rouge, LA 70803, USA 
 

P.-C. Chang 
Department of Industrial Engineering 

Yuan-Ze University 
Nei-Li, Taoyuan, Taiwan 32026 

 
Abstract 

 
A proportional stratified sampling method was implemented to sample radiographic welding data. The sample size 
was varied at different levels to study its effect on the model quality in terms of training time and its prediction 
accuracy. The sampled data of each size was then divided into training data and testing data in the ratio of 9 to 1.  
The training data is used to obtain multi-layer perceptron (MLP) neural network models.  The quality of each 
model was subsequently evaluated with unseen testing data. Moreover, each sampled data set was characterized to 
show its statistical representation of the population.  The correlation between the model quality and the sampled 
data statistics is also discussed.  
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1. Introduction 
Welded structures, especially those for critical applications such as pipelines, offshore drilling platforms, and high-
pressure vessels, are often tested non-destructively.  Radiographic testing is one of the most commonly used non-
destructive evaluation techniques.  Today, the interpretation of radiographs still relies very much on human 
experts.  This manual process is subjective, inconsistent, labor intensive, and sometimes biased.  It is our belief that 
radiographs accumulated over time contain rich information that is not fully tapped.  For instance, they can be 
utilized to describe weld quality due to any important welding process factor such as the skills of the welder, 
materials quality, new materials used, etc.  Most importantly, radiographs can be used to mine the human 
interpretation knowledge, if most (if not all) discriminating features can be extracted from them.   
 
Data mining, an important step in the knowledge discovery process, involves the application of specific algorithms 
for extracting patterns from data [1].  A wide variety of data mining methods exist and different classification 
schemes have been used to categorize them [2].  Self-organizing and supervised neural networks are well-
established machine-learning techniques that can also be used for data mining.  Jovanovic et al. [3] included 
neural networks as one data mining techniques in their integrated system architecture for the operation support in 
power and process plants. They specifically described the use of MLP neural networks for the prediction of 
structural component failure.  Abidi and Goh [4] presented a Web-based Infectious Disease Cycle Forecaster 
(IDCF), which comprises a number of distinct neural networks trained on data obtained from long-term clinical 
observations of 89 types of bacterial infections. One disadvantage of using neural networks for data mining is that 
knowledge generated is not explicitly represented in the form of interpretable rules.  Researchers such as Lu et al. 
[5], who presented an approach to discover symbolic classification rules using neural networks, are addressing this 
problem.  Another disadvantage is that the learning processes are very slow. The efficiency of data mining is a very 
important issue because of the vastness of the data involved.  This issue is especially critical if neural networks are 
chosen to be the data mining technique. 



 
Several strategies have been proposed to improve the efficiency of data mining, which include data sampling [6], 
attribute reduction [7], use of high performance computing [8], knowledge-guided discovery [9], and focusing on 
the discovery of a restricted class of rules or those which appear most interesting [10].  This study follows the first 
strategy to investigate the efficiency and effectiveness of data sampling. In the next section, a brief description of 
the data and the data mining technique used for this study is given.  Section 3 explains the implemented stratified 
sampling method for sampling data and testing of the statistical characteristics of the sampled data.  The results 
are discussed in Section 4, followed by the conclusions. 
 
2. Data Description and Mining Tool 
This study used some data extracted from radiographic images of industrial welds that are available to us. The data 
set has 10,500 tuples with each tuple having 25 numeric attributes, which were originally extracted for welding 
flaw detection [11]. The categorical (or pattern) value of each record is known, which indicates whether a 
particular tuple is a welding flaw (taking a value of 1) or not (0).  Approximately, 14.5% of the tuples represent 
cases with welding flaws.  Refer to [11] for more details about the features and the extraction procedure. 
 
The multi-layer perceptron (MLP) neural network is used as the data mining technique to capture the classification 
knowledge.  Specifically, BrainMaker developed by California Scientific Software is used.  BrainMaker uses 
backpropagation as its engine to modify connection weights.  All neural models constructed in this study have 
three layers: the input layer has 25 nodes corresponding to the 25 numeric attributes, the hidden layer with 25 
nodes, and the output layer with one node corresponding to the classification. The sigmoid function is used in 
every node.  The criterion used to stop network training is when 91% training data are good.  A training datum is 
considered "good" when the amount of error is within 25% of the pattern value.   
 
3. Stratified Sampling 
Stratified sampling first uses a stratifying strategy to separate the input data called focusing input or Fin, into a set 
of strata S = {s1, …, sl, …, sL}, and then draws samples from each stratum independently by an application of 
other sampling techniques such as simple random sampling. The sampled data with size n is called focusing output 
or Fout.  The stratifying strategy involves the selection of stratified variables, which must be categorical.  For the 
welding data set studied, the stratified variable is binary: flawed or not flawed. There are four variations of 
stratified sampling: proportional sampling, equal size, Neyman's allocation and optimal allocation. Proportional 
stratified sampling ensures that the proportion of tuples in each stratum is the same in the sample as it is in the 
population.  Equal size stratified sampling draws the sample number of tuples from each stratum. Neyman's 
allocation allocates sampling units to strata proportional to the standard deviation in each stratum.  With optimal 
allocation, both the proportion of tuples and the relative standard deviation of a specified variable within strata are 
the same as in the population. 
 
Algorithm PSS shows an implementation of proportional stratified sampling that is used in this study. Stratified 
sampling preserves the strata proportions of the population within the sample. It thus may improve the precision of 
the fitted models. 

Algorithm PSS(Fin, n) 
begin 

Fout := ∅; 
S := stratify(Fin); 
l := 1; 
while l ≤ |S| do 

nl :=n|sl|/|Fin|+1; 
Fout := Fout ∪ RS{sl, nl}; 
l :=  l + 1; 

enddo 
return(Fout); 

end; 
Note that in the above algorithm |•| and • denote the cardinality of • and the largest integer smaller than •, 



respectively. Algorithm RS implements simple random sampling. Note that in this algorithm the sampling is done 
with replacement.  That is, each tuple has the same chance at each draw regardless whether it has already been 
sampled or not. 

Algorithm RS(Fin, n) 
begin 

Fout := ∅; 
while |Fout| ≤ n do 

i := random(1, |Fin|); 
Fout := Fout ∪ {ti}; 

enddo 
return (Fout); 

end; 
Several sampling sizes were obtained (750, 1500, 3000, and 4500) in order to study their effect. Both the 
population and each sampled data set drawn from it are statistically characterized. The sample characteristics are 
compared with the population characteristics to show the representative-ness of the drawn samples.  
 
Three types of statistical characteristics are distinguished but only the first type is studied here.  The first type of 
characteristics describes the mean and variance of the attribute values.  The second type considers the distribution 
of attribute values for simple attributes.  The third type takes into account the joint distribution of attribute values 
for more than one single attribute. The key procedure used to analyze characteristics about focusing outputs in 
relation to focusing input is hypothesis testing. The null hypothesis, H0, is that the sample characteristic is equal to 
the population characteristic.  The alternative hypothesis, H1, is that the sample characteristic is not equal to the 
population characteristic.  
 
To test the mean of attribute j in the focusing output with sample size of n (>30), we compute the test statistic smj = 
n1/2(µj(Fout)-µj(Fin))/σj(Fout).  H0 is rejected at confidence level 1-α if  smj > z1-α/2 or smj < zα/2. For testing the 
variance of attribute j in the focusing output with sample size of n (>30), we compute the test statistic sVj = (n-
1)σj(Fout)

2/σj(Fin)
2.  H0 is rejected at confidence level 1-α if  sVj > χ2

1-α/2(n-1).  
 
4. Results and Discussion 
 
4.1 Statistical Characteristics of the Sampled Data 
The proportional stratified sampling program was repeated three times for each sample size.  The mean and 
variance of each sampled data set were tested to determine the percentage of features that passed the test.  Table 1 
summarizes the test results for each group of sampled data sets. For instance, the mean of 12 features was 
statistically different from the population mean for the data set with 750 samples in the first group (52% = 
100x(25-12)/25).   
 

Table 1. Percentage of features passing the hypothesis test for three groups of data sets. 
 Mean of Sampled Data Variance of Sampled Data 
Group 750 1500 3000 4500 750 1500 3000 4500 
1 52 72 100 76 92 84 92 88 
2 100 72 96 72 84 68 84 80 
3 96 84 84 84 84 88 92 80 
Avg. 82.7 76.0 93.3 77.3 86.7 80.0 89.3 82.7 
S.D. 26.6 6.9 8.3 6.1 4.6 10.6 4.6 4.6 

Table 2 summarizes the statistical test results of six selected features.  For each sample size, the percentage of its 
passing the test of its representative-ness of the population (or accepting H0) is shown for two statistical 
characteristics: mean and variance. The percentage is derived based on three samples obtained by running the PSS 
algorithm three times. Subsequently, one-way ANOVA tests were performed to determine whether sample size is 
statistically significant for each selected feature.  For this test, the outcome of two hypothesis tests, instead of three 
as in Table 2, was used to derive one percentage value.  Therefore, three percentage values, instead of one as in 



Table 2, were derived.  The significance of α = 0.05 is consistently used throughout all tests.  The test results 
indicate that sample size is only significant for the means of features 5 and 20 and for the variances of feature 10.   
 

Table 2. Percentage of passing three hypothesis-tests for six selected features. 
 Mean of Training Data Variance of Training Data 
Feature 750 1500 3000 4500 750 1500 3000 4500 
1 100 67 100 100 67 100 100 100 
5 100 33 100 100 100 67 100 100 
10 100 100 67 67 100 0 67 0 
15 67 100 100 67 33 67 67 33 
20 67 33 67 0 100 67 100 100 
25 100 67 67 33 100 100 100 100 

 
4.2 Performance of MLP Neural Models 
The performance measures of interest in this study are the time taken to train the MLP neural model (or the 
training accuracy) and the accuracy of welding-flaw detection. The PC used to learn neural models was a Gateway 
Enterprise E-4200 equipped with an Intel 450 MHz Pentium III Processor.  Table 3 summarizes the results of 
different MLP neural models with identical number of hidden nodes. In training each neural model, four different 
random seeds were used to initialize the network weights.  Therefore, four replications were obtained.  
 

Table 3. Performances of MLP neural models with identical number of 25 hidden nodes. 
  Training Time (seconds) Testing Accuracy (%) 
Group Repl. 750 1500 3000 4500 10500 750 1500 3000 4500 10500 

1 187 110 1651 2531 1530 89.3 14.7 34.7 31.6 89.1 
2 131 315 1601 2491 171 90.7 59.3 34.0 27.1 88.4 
3 116 310 1611 2391 165 92.0 50.0 34.3 32.0 88.7 
4 93 204 1671 2491 152 86.7 25.3 33.3 30.9 88.2 
Avg. 132 235 163 248 505 89.7 37.3 34.1 30.4 88.6 

1 

S.D. 40 98 3 6 684 2.3 20.8 0.6 2.2 0.4 
1 135 801 1671 2451  85.3 38.0 22.0 26.9  
2 131 450 1621 2411  85.3 36.7 26.0 26.2  
3 83 187 1581 2421  85.3 42.0 25.7 26.9  
4 138 218 1641 2421  85.3 58.0 40.0 27.6  
Avg. 122 234 163 243  85.3 43.7 28.4 26.9  

2 

S.D. 26 156 4 2  0.0 9.8 7.9 0.6  
1 NC2 751 1621 2461  - 40.7 25.7 24.2  
2 387 801,3 1571,4 2381,5  85.3 40.7 26.3 28.6  
3 NC2 721,3 1641,4 2401,5  - 45.3 25.0 30.4  
4 NC2 691 1611 2431  - 49.3 25.0 31.6  
Avg. 387 74 161 242  85.3 44.0 25.5 28.7  

3 

S.D. 0 5 3 4  0 4.1 0.6 3.2  
Avg. of Avg. 214 181 162 244 505 86.8 41.7 29.3 28.7 88.6 
S. D. of Avg      2.5 3.8 4.4 1.8  

Notes:  (1) The training process was forced to stop at 100 runs despite that almost every run meets the stopping 
criterion of 91% good (the testing accuracy was very low initially and started to converge beyond 50 runs). 

 (2) NC denotes not converged.  That is, the model does not meet the criterion after 2000 runs. 
 (3) For replication 2 (3), 44% and 44.7% (63.3% and 48.7%) were obtained if the model was trained for 

150 and 200 runs.  
 (4) Similar to the previous note, 29.7% and 30.7% (24.3% and 28%) were obtained for replication 2 (3).  
 (5) Similarly, 30% and 30.9% (32.2% and 34.4%) were obtained for replication 2 (3).  
 
From Table 3, the following observations can be made: 



1) The training time to reach the termination criterion could be volatile when different random number seeds are 
used. The training time also greatly varies when different data sets of the same size are used. 

2) Data mining based on sampled data could be more efficient and as effective when a proper sample size is used 
(e.g. 750).  However, an in-depth study is needed to determine the optimal sample size. 

3) The testing accuracy is quite consistent when different groups of data sets are used (the standard deviation of 
average testing accuracy is low). 

4) The learning pattern of the same sample size is also quite consistent among three different data sets. 
 
The number of hidden nodes is known to affect the performance of MLP neural models. To investigate the 
magnitude of this effect, the number of hidden nodes is varied for each sample size by fixing approximately the 
ratio between the number of training data and the number of connection weights in the network.  Assuming the 
network architecture of 25x25x1 is used for the population, the number of hidden nodes was determined to be 2, 4, 
7, and 11 for sample sizes 750, 1500, 3000, and 4500, respectively.  As a result of reducing the number of 
connections, the stopping criterion of 91% good training data becomes different to meet for the data set with 750 
samples.  Therefore, it was decided to introduce a different stopping criterion, i.e., the maximal number of runs. 
Two different maximal values were used to see the difference. 
 
Table 4 summarizes the training and testing accuracy of MLP neural models constructed with varying number of 
hidden nodes.  These results were obtained based on the first group of sampled data sets in Table 3. In training 
each neural model, four different random seeds were used to initialize the network weights.  Therefore, four 
replications were obtained. For each sampled data set of a certain size, the coefficient of variance (COV) of 
performance was also computed.  A low value of COV is desirable. The COV index, however, is not a good 
measure of performance because the average performance is far more important than the variance.  The average 
training time for each sample size was also noted in the last row of Table 4.  
 

Table 4. Performances of MLP neural models with varying number of hidden nodes. 
  Training Accuracy (%) Testing Accuracy (%) 
No. of 
Runs 

Replica-
tion 

750 1500 3000 4500 10500 750 1500 3000 4500 10500 

1 86.2 93.9 95.6 97.6 90.7 82.7 31.3 37.7 31.8 88.9 
2 87.0 93.2 95.3 97.6 91.0 22.7 24.7 38.3 36.2 87.7 
3 86.7 93.3 95.8 96.8 90.3 81.3 25.3 39.0 32.9 90.7 
4 86.4 93.0 96.2 97.6 91.1 81.3 28.7 43.7 32.9 88.6 
Avg. 86.6 93.4 95.7 97.4 90.8 67.0 27.5 39.7 33.5 89.0 
S.D. 0.4 0.4 0.4 0.4 0.4 29.5 3.1 2.7 1.9 1.3 

200 

COV 0.004 0.004 0.004 0.004 0.004 0.441 0.112 0.069 0.057 0.014 
1 83.7 94.0 95.4 97.2  82.7 34.0 39.0 31.1  
2 88.2 93.0 95.1 97.5  90.7 28.0 42.3 35.1  
3 83.7 93.3 95.3 97.6  92.0 27.3 38.7 36.4  
4 86.1 92.8 96.0 97.6  86.7 39.3 45.0 30.0  
Avg. 85.4 93.3 95.5 97.5  88.0 32.2 41.3 33.2  
S.D. 2.2 0.5 0.4 0.2  4.2 5.6 3.0 3.1  

500 

COV 0.025 0.006 0.004 0.002  0.048 0.175 0.072 0.093  
Avg. Training Time 

 - 200 runs 
- 500 runs  

 
77 

195 

 
157 
393 

 
317 
789 

 
484 

1208 

 
1253 

     

Comparing Table 4 with Table 3, it can be observed that: 
1) Using varying number of hidden nodes improves the performance of some sampled data sets (3000 and 4500), 

but degrades the performance of others (750 and 1500). 
2) Using 500 runs as the termination criterion seems to improve the testing accuracy of most sampled data sets, 

except the 4500 data set.   
3) The data set of 750 samples again has comparable testing accuracy as the population. 
 



4.3 Correlation between Statistical Characteristics and Model Performances 
The correlation between the testing accuracy and the mean passing percentage is found to be very low with a 
coefficient of -0.0284.  Similarly, the correlation between testing accuracy and variance passing percentage is also 
found to be low with a coefficient of 0.096.  In other words, a sampled data set with representative mean and 
variance of the population does not always produce better model performance and vice versa.  Figures 1 and 2 
show the corresponding scatter plots. 

 
 
 
 
 
 
 
 
 
 

Figure 1. Scatter plot of accuracy vs. mean passing percentage. Figure 2. Scatter plot of accuracy vs. 
variance passing percentage 

 
5. Conclusions 
This paper has presented some results obtained in a study of mining weld quality models using MLP neural 
networks based on sampled data.  Major conclusions include the following: 
1) Data mining based on sampled data could be more efficient and as effective when a proper sample size is used. 
2) There is no correlation between the representative-ness of sampled data, in terms of similar statistical 

characteristics as those of the population, and the model performance in terms of testing accuracy. 
Although there is no guarantee that the MLP neural network models obtained are optimal, it is our belief that the 
conclusions will not be drastically changed even if each network model is optimized.  
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