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Abstract: This paper illustrates how the fuzzy logic
approach can be used to formalize the American
College of Radiology (ACR) breast imaging reporting
lexicon. In current practice radiologists make a
relatively subjective determination for many terms
from the lexicon related to breast cancer diagnosis.
Lobulation and microlobulation of nodules are
important features in breast cancer diagnosis based on
mammographic analysis by using the ACR lexicon.
We offer an approach for formalizing the distinction
of these features and also formalize the description of
the intermediate cases between lobulated and

microlobulated masses. In this paper it is shown that

fuzzy logic can be an effective tool in dealing with
this kind of problems. The proposed formalization
creates a base for the next two steps: (i) the
automatic extraction of the related primitives from the
image, and (ii) the detection of lobulated and
microlobulated masses based on these primitives.

Topic Category: Decision analysis
Keywords: fuzzy logic, feature formalization, breast
cancer, image recognition.

1. Introduction

Current methods in digital mammography
[11, {8] are mostly based on neural networks without

incorporating fuzzy logic. Nevertheless, it should be
mentioned that these methods use degrees of
irregularity and circularity which are very close to
some key concepts in fuzzy logic. These degrees are
used as inputs to neural networks [9]. In this paper
we apply a fuzzy logic approach for classifying a
mass found in a mammogram as lobulated or
microlobulated. The lobulated and microlobulated
features of a mass are important in breast cancer
diagnosis [7]. The proposed formalization creates a
base for the next two steps: (i) the automatic
extraction of the related primitives from the image,
and (ii) the detection of lobulated and microlobulated
masses based on these primitives. We study these
next steps in a separate paper [6].

The proposed analysis is based on the
definitions of the previous two terms, as given by the
American College of Radiology (ACR) lexicon.
According to this lexicon a mass has "lobular"” shape
if "it has contours with undulations.” Note that the
lexicon defines the notion "lobular” without any
indication of the size or number of undulations. The
above situation, for a formal computer algorithmic
analysis, means that if a mass has any one of
"small/medium/large undulation”, then the algorithm
should classify it as lobular. However, this is not
necessarily what occurs in a real life situation.
Often, a radiologist takes into account the size, the
number of undulations, and how deep they are.
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However, the ACR lexicon does not mention these
attributes in the formal definition of lobulation.
Therefore, it is likely that different radiologists may
have different perceptions about the size and number
of undulations sufficient to classify the shape of a
mass as lobular or microlobular.

Next, we analyze the term "microlobulated
margins.” This term means (according to the ACR
lexicon) that "the margins undulate with short cycles
producing small undulations.” Again, different
radiologists may have different perceptions of what
"short cycles” and "small wundulation” mean.
However, currently the ACR lexicon does not
provide a unified framework for defining these terms
in a consistent and objective manner. The following
two hypothetical examples highlight the need for a
unified framework for defining terms related to the
shape of masses in mammograms.

Example 1:

Suppose that a radiologist has found one "big" and

two "small" undulations in a given mass. Does it
mean that this mass is lobular or microlobular or do
features of both coexist? Also suppose that a second
radiologist has decided that there are two "big" and
one "small" undulations for the same mass. Now we
have the same question: "Is this mass lobular or
microlobular or do features of both coexist?".

Example 2:
Suppose that in some study five out of ten

radiologists concluded that a particular mass is
lobular, but the other five came to the opposite
conclusion. How should we train a computer system
to detect a lobular mass by utilizing this contradictory
experience? Should we exclude the mentioned cases
from the training set? We certainly could. However,
similar cases may appear again in a real diagnosis
problem.,
detection system will diagnose them arbitrarily,
although, most properly it should not identify lobular
features.

The last example illustrates a typical source
of intra- and extra-observer variability in
mammography and its consequences. How can we
reduce these problems? We propose a lobular mass
detection algorithm which addresses this
methodological and practical problem. This
algorithm can also become the basis for analyzing
and formalizing the rest of the ACR lexicon terms.
The proposed algorithm is designed in a way which
copies the way human experts make decisions.

If we exclude these cases, any trained
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Therefore, this paper will concentrate only on the
development of an algorithm for formalizing
lobularity and microlobularity in the masses found in
a mammogram. This paper has the following
structure. First it discusses the development the
features, which characterize lobularity and
microlobularity and formalizing of these features with
fuzzy logic approach (section 2). In section 3 it
develops the notions of degrees of lobularity and
microlobularity based on formalized features. In
section 4 it presents a brief description of an
experimental testing of formalizing the criteria of
Iobulation/ microlobulation. We finish the paper with
some concluding remarks.

2. Formalization with Fuzzy Logic

In this section we slightly change the
previous two definitions. We define a mass to be
lobular if it has a contour with some big and deep
undulations. The margins of a mass are
microlobulated if they have several short cycles
producing several small and shallow undulations. At
a first glance it may appear that we did not move to
more accurate definitions. However, these
reformulations are of critical importance. They allow
us to apply fuzzy logic and express the original two
principal ACR definitions as functions of secondary
and easily fuzzifiable terms.

The above considerations involve two
important fuzzy terms, namely the terms "some” and
"several.” These terms have a rather clear meaning
when they are used in a context with other terms of
natural language [2], [3]. In this way we can define
a fuzzy set with the fuzzy terms {few, some, several,
many} for the number of undulations. Note that the
number of undulations can be equal to0 0,1,2,3,.. .etc.

For instance, for the fuzzy term "few” the
number of undulations can be set equal to 0. That is,
the corresponding family of the four fuzzy
membership functions are: pe,, (), Keome®™)s Kseveral(X)s
and po.,(x) (see also figure 1). For instance, some
possible sampled values of these membership
functions are: pe,(2) =1/3, teome(2) = 2/3, poome(3) =1,
Pamany(2)=0, etc. Some interviewed radiologists feit
comfortable with this formalization. Although one
may argue with the numerical values of the above
membership functions, the main issue is that it is
possible in this way one to quantify fuzzy concepts
which are critical in the classification of masses as
lobular or microlobular.
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Figure 1. Membership functions related
to the number of undulations.

Next we define the meaning of the terms of
the fuzzy set {small, big}). This set is crucial in
defining the size of undulations. First we need an
adequate scale to measure the length of a given
undulation. We consider the length of an undulation
in relative terms since different masses may have
different sizes. For instance, an undulation 3 mm in
length could be considered as microlobular in a large
mass while in a small mass with the same undulation
could be considered as lobular.

Therefore we first need to compute L; the
maximum length of a mass. This approach allows to
estimate the undulation length as a fraction of L. In
figure 2(a) we present a mass with undulations.’
Specifically, the curve between points A and B is an
undulation. Now we can formalize the fuzzy terms
"small” and "big” undulations on the scale of the
relative undulation length (see also figure 2(b)).
According to the membership functions in figure
2(b), a relative length of more than L/4 -can be
defined as a big undulation, while an undulation of
relative length of less that L/12 could be considered
as a small undulation. Undulations of intermediate
length can be assigned intermediate membership
values.
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Figure 2. (a) Mass with undulations.
{b) Membership functions related to the
length of undulations.

We can also define the fuzzy membership
functions regarding the deepness (“shallow” or
"deep”) of undulations. Different masses may have
different deepness of lobularity. Thus, we introduce
a relative measure of the deepness of lobularity,
which is defined as a fraction of the maximum length
(denoted as L) of the mass. This study is similar to
the ones described in the cases of the previous fuzzy
sets (and are explained in more detail in the next
section).

Therefore,the concept of a lobular mass can
be formulated now as follows: A mass is lobular if
it has at least 3 undulations with length and
deepness of no less than L/4. Now we can also
formulate the concept of microlobulated mass
margins. The mass margins are microlobulated if
there are at least 6 undulations with length and
deepness of no more than L/12. These definitions
allow us to quantify these concepts objectively and
consistently. We present the fuzzy logic structures
for the lobular and microlobular concepts in figures
3 and 4, respectively.

--> undulation 1 length = big ig(undulationl) = 1.00
deepness = deep Pamp(undulationl) = 1.00

MASS --> undulation 2 length = big mg(undulation2) = 1.00
deepness = deep Hamp(undulation?) = 1.00

---> undulation 3 length = big pg(undulation3) = 1.00
deepness = deep #amp(undulation3) = 1.00

Figure 3. Fuzzy logic structures for a

lobular mass.

---> undulation 1 length = small Homn(undulationl) = 1,00
deepness = shallow  pgp.(undulationl) = 1.00

---> undulation 2 length = small Moup(undulation2) = 1.00
decp = shallow  prguyn(undulation2) = 1.00

MASS ---> undulation 3 length = small Hean(undulation3) = 1.00
deepness = shallow  py (undulation3) = 1.00

--> undulation 4 length = small Moen(undulationd) . = 1.00
deepness = shallow  pgunw(undulationd) = 1.00

-—-> undulation 5 length = small Pemap(undulation5) = 1.00
deepness = shallow  pg.p,(undulations) = 1.00

---> undulation 6 length = small Hump(undulation6) = 1.00
deepness = shallow  pgupe(undulation6) = 1.00

Figure 4. Fuzzy logic structures for a
microlobulated mass.

Figures 3 shows a mass with three
undulations. Each undulation is presented with its
length and deepness. All these undulations are big
and deep. Hence, all membership functions are equal
to 1.00 and this mass is lobular according to our



formalization. Similarly, figure 4 shows a
microlobulated mass with 6 undulations and all of
them are small and shallow.

The previous definitions allow some masses
to be classified as lobular and microlobulated
without any contradiction if they have at least 9
undulations (3 lobular and 6 microlobular). That is,
one just needs to join the structures given in figures
3 and 4. Next, we propose a formal way for dealing
with cases which are of intermediate nature. Some
examples of such cases are depicted in figure 5.

We take the three biggest and deepest
undulations and compute the minimum of their
membership function values for the terms "big” and
"deep”. We define this value as the degree of
lobularity (or DL). For instance, for the mass
described in figure 5 the minimum for the first three
undulations is 0.70, that is, for this case DL = 0.70.
Similarly, it can be easily verified that the degree of
microlobularity (or DM) computed with the
remaining 6 undulations is 0.60. These estimates can
be used as some of the inputs to a breast cancer
computer-aided diagnostic (CAD) system.

-—> undulation 1 length = big tmg(undulationl) = 0.80
deepness = deep Paep(unduiation1) = 0.70

---> undulation 2 length = big tg(undulation2) = 0.73
deepness = deep Hap(undulation?) = 0.71

---> undulation 3 length = big prg(undulation3) = 0.90
deepness = deep Hampundulation3) = 0.80

MASS ---> undulation 4 length = small Homap(undulationd) = 0.90
deepness = shallow  pgaw(undulationd) = 0.80

> undulation 5 Jength = small  pmg(undulations) = 0.90
deepness = shallow  pg.nn(undulations) = 0.70

---> undulation 6 length = small Memap(undulation6) = 0.60
deepness = shallow  pgq(undulation) =0.70

---> undulation 7 length = small pemap(undulation7) = 0.67
deepness = shallow  pg.pw(undulation7) = 0,97 '

---> undulation 8 length = small Homau(undulation8) = 0.80
decpness = shallow  pganow(undulation8) = 1.00

--> undulation 9 length = small Juman(undulation9) = 0.84
deepness = shallow  pg,p,(undulation9) = 0.79

Figure 5. Structural descriptions for a
fuzzy lobular and microlobulated mass.

If the number of undulations is less than 3,
we combine the membership functions for the length
and deepness with a membership function for the
number of undulations (as defined in figure 1). This
combination means that now we compute the
minimum of these three values in accordance to fuzzy
logic practice.  We analyze arguments for the
minimum in the next section. Now let us consider,

for instance, the mass with two undulations presented.

in figure 6.
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—> undulation 1 length = big g(undulationl) = 0.80
MASS deepness = deep Pamp(undulationl) = 0.70
- undulation 2 length = big prg(undulation?) = 0.60
deepness = deep Hamp(undulation2) = 0.60

A Y

Figure 6. Structures for a mass with
less than three undulations.

Figure 6 allows to compute 0.60 as the corresponding
degree of lobularity (DL), while figure 1 shows that
Psomel2) = 0.66 for a case with 2 undulations.
Thus, their minimum of 0.60 characterizes the
lobularity of this mass. In the next section we
present these ideas formally.

3. Degrees and

Microlobularity

of Lobularity

Radiologists use an informal approach in
determining the lobularity and microlobularity of a
mass. To maintain consistency in these evaluations
and increase objectivity, we need to formalize these
concepts. Let us first consider the two masses
depicted in figure 7. Intuitively, the first mass has
deep undulations, while the second mass has shallow
undulations. Different measures can be created to
formalize this distinction. Figure 7(a) shows two
distances d; and d,, defined between the points 4
and C and between the points B and E, respectively,
for undulation 1. If each of them is no less than L/4,
then the undulation is deep (see also figure 7(b)). If
these distances are no more than L/12, then
undulation 1 is shallow (see also figure 7(a)). This
means that formally the deepness D of the
undulation is the pair d,, and d,, The question of
how to compute these values was considered in [6].

We need to compute the values of . (d))
and pg.,(d;) by using the corresponding membership
function in figure 2 in order to transform the previous
two measures into a single degree of lobularity for a
given undulation. Recall that we use the same
membership functions for the length and deepness of
undulations. This is done by substituting the terms,
"big" for "deep” and "small” for "shallow". Next we
compute min{ p.,(d,), ta,(d;)}, which we consider
as the degree of deepness of the undulation. That
is,

Paep(UnAUL) = 1IN Y0y (dy), Baeep(dy) }-
Similarly, we define the degree of shallowness of an
undulation as:

Ponaundul.) = min{ pound;), Moandds)}-
Observe that the length of undulationl (U)) is
measured as the length of the mass margin between



points A and B (see also figure 7(a)).
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Figure 7. Masses with deep and
shallow undulations.

Now we can define the Degree of Lobularity (DL)

of a mass as follows:
DL(mass) =
mj'n{/“'some(k) aminkziz 1 {:"Lbig(Ui) ’:u'deep(Ul)}} *
where U,, U,,...,U, are undulations such that:
Mily > l{l"'big(Ui), p’deep(Ui)} =0.50.
Similarly, we define the Degree of Microlobularity
(DM) of a mass with k undulations:
DM(mass) =
min{”several(k)’minkziz l{ﬂsmall(UL)> ,J':hallaw(Ul) }} ’
where U,, U,,...,U, are undulations such that:
Ml ;o uemar( U, HsnaioUD} 2 0.5. _
For the extreme case k=0 we have
Peome(K) =0 and p,,,..(k) =0 (see figure 1). Therefore,
both degrees of lobularity and microlobularity are
equal to 0, i.e., the outcome corresponds to what is
expected with common sense.
Next, we investigate arguments to justify
formulas (1) and (2). There are some general

1)

@

theoretical and experimental arguments for the

general case (e.g., [5], [4], [2]), but now we also
have some other arguments derived from this
mammographic  problem. A consistent
computer-based breast cancer diagnostic system
should refuse to diagnose a mammogram with a
significant number of doubtful features. We express
how doubtful a given feature is with some degree
between 0 and 1. The most doubtful cases have
degrees about 0.50. The values of DL and DM are
examples of such degrees.

For these doubtful uncertain features, a CAD
system can suggest a diagnosis, but only with some
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degree of reliability of this diagnosis. This reliability
can be very low. Also, this degree of reliability
depends on the particular values of DL and DM
degrees. Therefore, the formulas used to define DL
and DM become even more critical. We explain this
situation with a modified example from figure 3.
Now the first five membership functions for
undulations are equal to 1.00 and only the sixth
function is not equal to 1.00 (i.e.,
Maeep(Undulation3) =0.60), Then formula (1) gives us
a "pessimistic” estimate, i.e., low degree of
lobularity, DL=0.6. Substituting in (1) the minimum
operation for the maximum will give us an
"optimistic,” i.e.., high degree of lobularity,
DL=1.00 for this case. In the last "optimistic"
estimate we ignore and lose the warning information
(i.e.,the fact that p,,,(undulationl)=0.60). The
value 0.60 shows us that we should be more careful
and study this case in more detail not to miss a
suspicious case. However, no warning information is
lost if we use the "pessimistic" min operation in (1)
and (2). Therefore, for critical cancer diagnosis, we
see that the "pessimistic” strategy is more consistent.
We also consider the diagnosis with a low degree of
reliability as a very preliminary diagnosis. This
diagnosis shows that we need to switch the set of
features to a higher level of detail to fully evaluate
the complexity of a given case. Many experiments
[1], [9] show that relatively simple cases can be
diagnosed within a small feature space. For more
complicated cases we need a pathologically confirmed
training sample with more features and a specifically
designed diagnostic method. The whole CAD
system which we design will have switching
capabilities based on the described approach.

4. An Experiment

With the given formalization we arranged an
experiment to test the correspondence of the
formalized criteria with radiologists’ perception of
studied lobulated and microlobulated features. Using
our formal criteria, we generated four categories of
lobulated and microlobulated mass images: (1)
lobulated but not microlobulated; (2) microlobulated
but not lobulated; (3) lobulated and microlobulated;
(4) not lobulated and not microlobulated. Some of
these images were artificially constructed and some
were extracted from real mammograms. We
accomplished the experiment in two modifications: (i)
mass size close to 1 X1 cm and (i) enlarged masses
up to the window 6 X6 cm. The general conclusion
from these experiments is that the formalization is



consistent with experienced radiologists’ practice.
Detailed results of the experiments are presented in

[6].
5. Conclusions

Radiologists often make relatively subjective
determination for many features related to breast
cancer diagnosis in current practice. We formalized
some important features from the ACR breast
imaging lexicon, i.e., lobulation and microlobulation
of nodules. This formalization creates a base for the
next two steps: automatic detection of lobulation
/microlobulation in a mammographic image and

similar formalization of the other terms from the

breast imaging lexicon. This study shows that fuzzy
logic can be an effective tool in dealing with this kind
of problems.
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